CN210810980U - An ultra-wide-range skin imaging device - Google Patents
An ultra-wide-range skin imaging device Download PDFInfo
- Publication number
- CN210810980U CN210810980U CN201921222493.8U CN201921222493U CN210810980U CN 210810980 U CN210810980 U CN 210810980U CN 201921222493 U CN201921222493 U CN 201921222493U CN 210810980 U CN210810980 U CN 210810980U
- Authority
- CN
- China
- Prior art keywords
- collimating lens
- light
- skin
- lens
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 61
- 239000013307 optical fiber Substances 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 abstract description 13
- 230000003595 spectral effect Effects 0.000 abstract description 11
- 210000003491 skin Anatomy 0.000 description 40
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 9
- 238000012014 optical coherence tomography Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 208000006787 Port-Wine Stain Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 208000031050 Skin vascular disease Diseases 0.000 description 1
- 208000026349 Vascular skin disease Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本实用新型公开了一种超宽范围的皮肤成像设备,包括光源、光纤耦合器、参考臂装置、样品臂装置、光谱仪装置和电脑处理终端;所述参考臂装置包括的第一准直透镜和反射镜,所述第一准直透镜和反射镜通过光线连接;所述样品臂装置包括第二准直透镜、二维振镜扫描系统和第一聚焦透镜,所述光谱仪装置包括通过光线连接第三准直透镜、光栅、三棱柱、第二聚焦透镜和图像采集模块,所述光源、第一准直透镜、第二准直透镜和第三准直透镜均与所述光纤耦合器通过光纤连接。本实用新型皮肤成像设备对待测皮肤进行实时大范围成像,通过提高光谱仪装置的光谱分辨率增加深度方向上的成像范围。
The utility model discloses an ultra-wide-range skin imaging device, comprising a light source, an optical fiber coupler, a reference arm device, a sample arm device, a spectrometer device and a computer processing terminal; the reference arm device includes a first collimating lens and Reflecting mirror, the first collimating lens and the reflecting mirror are connected by light; the sample arm device includes a second collimating lens, a two-dimensional galvanometer scanning system and a first focusing lens, and the spectrometer device includes a second collimating lens connected by light. Three collimating lens, grating, triangular prism, second focusing lens and image acquisition module, the light source, the first collimating lens, the second collimating lens and the third collimating lens are all connected with the fiber coupler through optical fibers . The skin imaging device of the utility model performs real-time large-scale imaging of the skin to be measured, and increases the imaging range in the depth direction by improving the spectral resolution of the spectrometer device.
Description
技术领域technical field
本实用新型涉及OCT成像技术领域,更具体地说涉及一种超宽范围的皮肤成像设备。The utility model relates to the technical field of OCT imaging, in particular to an ultra-wide range skin imaging device.
背景技术Background technique
皮肤是人体第一大器官,是人体非常重要的器官。光学相干层析成像(OCT)是一种基于低相干光干涉原理的横断成像技术,以其高分辨率、实时性与非接触性等优点,在人体皮肤病的临床诊断上有着广阔的应用前景。比如皮肤癌(如基底细胞癌)、鲜红斑痣,皮肤血管疾病的诊治。The skin is the largest organ of the human body and a very important organ of the human body. Optical coherence tomography (OCT) is a cross-sectional imaging technology based on the principle of low-coherence light interference. With its high resolution, real-time and non-contact advantages, it has broad application prospects in the clinical diagnosis of human skin diseases. . Such as skin cancer (such as basal cell carcinoma), port-wine stains, skin vascular disease diagnosis and treatment.
然而,SDOCT在皮肤的应用上具有一定的局限性。在SDOCT系统中,样品臂与参考臂的干涉信号由光谱仪接收,光谱仪的光谱分辨率受光栅分光能力以及相机像素尺寸大小约束,且光谱分辨率决定了系统的成像范围。传统光谱仪的成像深度可达3mm左右。随着深度的加深,系统灵敏度不断衰减,当成像深度达2mm时,系统灵敏度衰减约12dB,表现为图像质量随深度下降。然而,人体皮肤厚度范围在0.5~4mm之间,血管更是位于真皮层及以下组织,传统的OCT系统成像无法很好的满足皮肤结构成像或是皮肤血管成像的需求。因此,发展超大广角的皮肤成像装置必不可少,如何增大深度方向上的成像范围,即如何提高光谱仪的光谱分辨率,以及如何扩大成像迫切需要解决的。However, SDOCT has certain limitations in the application of skin. In the SDOCT system, the interference signal between the sample arm and the reference arm is received by the spectrometer. The spectral resolution of the spectrometer is constrained by the spectral capability of the grating and the pixel size of the camera, and the spectral resolution determines the imaging range of the system. The imaging depth of traditional spectrometers can reach about 3mm. As the depth deepens, the sensitivity of the system decreases continuously. When the imaging depth reaches 2mm, the sensitivity of the system decreases by about 12dB, which shows that the image quality decreases with the depth. However, the thickness of human skin ranges from 0.5 to 4 mm, and blood vessels are located in the dermis and below. Traditional OCT system imaging cannot well meet the needs of skin structure imaging or skin vascular imaging. Therefore, it is essential to develop a super-wide-angle skin imaging device. How to increase the imaging range in the depth direction, that is, how to improve the spectral resolution of the spectrometer, and how to expand the imaging urgently need to be solved.
现有技术中申请号为CN200910076054.5的“实时成像的光学相干层析皮肤诊断设备”专利可实现人体各处皮肤的实时快速成像,而申请号为CN201711340695.8的“应用于血管性皮肤病检测、定位的装置和系统及工作方法”专利实现前后扫描位置一致,检测稳定性高,但是这两个专利都是针对小范围成像,并没有提高检测深度。In the prior art, the patent application number CN200910076054.5 for "real-time imaging optical coherence tomography skin diagnostic equipment" can realize real-time rapid imaging of skin everywhere in the human body, while the patent application number CN201711340695.8 for "application to vascular skin diseases" The "Detection and Positioning Device and System and Working Method" patent achieves the same scanning position before and after, and has high detection stability, but these two patents are aimed at small-scale imaging and do not improve the detection depth.
实用新型内容Utility model content
本实用新型型要解决的技术问题是:现有的OCT成像系统成像深度方向上成像范围小。The technical problem to be solved by the utility model is that the imaging range in the imaging depth direction of the existing OCT imaging system is small.
本实用新型提供一种超宽范围的皮肤成像设备,通过提高光谱分辨率来增大成像深度方向上的成像范围。The utility model provides an ultra-wide range skin imaging device, which increases the imaging range in the imaging depth direction by improving the spectral resolution.
本实用新型解决其技术问题的解决方案是:The solution that the utility model solves its technical problem is:
一种超宽范围的皮肤成像设备,包括:光源、光纤耦合器、参考臂装置、样品臂装置、光谱仪装置和电脑处理终端;所述参考臂装置包括的第一准直透镜和反射镜,所述第一准直透镜和反射镜通过光线连接;An ultra-wide-range skin imaging device, comprising: a light source, an optical fiber coupler, a reference arm device, a sample arm device, a spectrometer device and a computer processing terminal; the reference arm device includes a first collimating lens and a reflector, the The first collimating lens and the reflector are connected by light;
所述样品臂装置包括第二准直透镜、二维振镜扫描系统和第一聚焦透镜,第二准直透镜的出射光经过二维振镜扫描系统的偏转后射入第一聚焦透镜,第一聚焦透镜的出射光射入待测皮肤;The sample arm device includes a second collimating lens, a two-dimensional galvanometer scanning system and a first focusing lens. The light emitted from the second collimating lens is deflected by the two-dimensional galvanometer scanning system and then enters the first focusing lens. The outgoing light of a focusing lens enters the skin to be tested;
所述光谱仪装置包括通过光线连接第三准直透镜、光栅、三棱柱、第二聚焦透镜和图像采集模块,所述第三准直透镜的出射光依次透过光栅和三棱柱,三棱柱的出射光透过第二聚焦透镜后射入图像采集模块;The spectrometer device includes a third collimating lens, a grating, a triangular prism, a second focusing lens, and an image acquisition module connected by light rays. The light emitted from the third collimating lens passes through the grating and the triangular prism in sequence, and the output of the triangular prism is The incident light enters the image acquisition module after passing through the second focusing lens;
所述光源、第一准直透镜、第二准直透镜和第三准直透镜均与所述光纤耦合器通过光纤连接,所述图像采集模块和二维振镜扫描系统均与所述电脑处理终端电连接。The light source, the first collimating lens, the second collimating lens and the third collimating lens are all connected with the optical fiber coupler through optical fibers, and the image acquisition module and the two-dimensional galvanometer scanning system are processed with the computer Terminal electrical connection.
作为上述技术方案的进一步改进,所述二维振镜扫描系统通过数据采集卡与所述电脑处理终端连接。As a further improvement of the above technical solution, the two-dimensional galvanometer scanning system is connected to the computer processing terminal through a data acquisition card.
作为上述技术方案的进一步改进,所述图像采集模块通过图像采集卡与所述电脑处理终端连接。As a further improvement of the above technical solution, the image acquisition module is connected to the computer processing terminal through an image acquisition card.
作为上述技术方案的进一步改进,所述图像采集模块为线阵CCD相机。As a further improvement of the above technical solution, the image acquisition module is a line array CCD camera.
作为上述技术方案的进一步改进,所述光源为波长为1310nm的发光二极管。As a further improvement of the above technical solution, the light source is a light emitting diode with a wavelength of 1310 nm.
本实用新型的有益效果是:本实用新型皮肤成像设备对待测皮肤进行实时大范围成像,通过提高光谱仪装置的光谱分辨率增加深度方向上的成像范围。The beneficial effects of the utility model are: the skin imaging device of the utility model performs real-time large-scale imaging of the skin to be measured, and increases the imaging range in the depth direction by improving the spectral resolution of the spectrometer device.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本实用新型的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly describes the accompanying drawings that are used in the description of the embodiments. Obviously, the described drawings are only a part of the embodiments of the present invention, but not all of the embodiments, and those skilled in the art can also obtain other design solutions and drawings according to these drawings without creative work.
图1是实施例的设备结构示意图;Fig. 1 is the schematic diagram of the device structure of the embodiment;
图2是实施例的设备扫描路径的示意图;2 is a schematic diagram of a device scan path of an embodiment;
图3是实施例的电脑处理终端对干涉光信号的处理流程图。FIG. 3 is a flowchart of the processing of the interference light signal by the computer processing terminal of the embodiment.
具体实施方式Detailed ways
以下将结合实施例和附图对本实用新型的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本实用新型的目的、特征和效果。显然,所描述的实施例只是本实用新型的一部分实施例,而不是全部实施例,基于本实用新型的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本实用新型保护的范围。另外,文中所提到的所有连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少连接辅件,来组成更优的连接结构。本实用新型创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。The concept, specific structure and technical effects of the present utility model will be described clearly and completely below in conjunction with the embodiments and the accompanying drawings, so as to fully understand the purpose, characteristics and effects of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, those skilled in the art can obtain other embodiments without creative work, All belong to the scope of protection of the present invention. In addition, all connection relationships mentioned in the text do not mean that the components are directly connected, but refer to a better connection structure that can be formed by adding or reducing connection accessories according to specific implementation conditions. Various technical features in the creation of the present invention can be combined interactively on the premise of not contradicting each other.
实施例1,参照图1,一种超宽范围的皮肤成像设备,包括:光源100、光纤耦合器200、参考臂装置300、样品臂装置400、光谱仪装置500和电脑处理终端600;所述参考臂装置300包括的第一准直透镜301和反射镜302,所述第一准直透镜301和反射镜302通过光线连接;Embodiment 1, referring to FIG. 1 , an ultra-wide-range skin imaging device includes: a
所述样品臂装置400包括第二准直透镜401、二维振镜扫描系统402和第一聚焦透镜403,第二准直透镜401的出射光经过二维振镜扫描系统402的偏转后射入第一聚焦透镜403,第一聚焦透镜403的出射光射入待测皮肤700;The
所述光谱仪装置500包括通过光线连接第三准直透镜501、光栅502、三棱柱503、第二聚焦透镜504和图像采集模块505,所述第三准直透镜501的出射光依次透过光栅502和三棱柱503,三棱柱503的出射光透过第二聚焦透镜504后射入图像采集模块505;The
所述光源100、第一准直透镜301、第二准直透镜401和第三准直透镜501均与所述光纤耦合器200通过光纤连接,所述图像采集模块505和二维振镜扫描系统402均与所述电脑处理终端600电连接。The
光源100发出的光束进入光纤耦合器200后被分成第一光束和第二光束,所述第一光束进入参考臂装置300,第二光束进入样品臂装置400,本实施例中的光纤耦合器200的分光比为50:50。所述第一光束透过第一准直透镜301的准直后射向反射镜302,第一光束在反射镜302的作用下沿原路返回光纤耦合器200。The light beam emitted by the
第二光束透过第二准直透镜401准直后的出射光射入二维振镜扫描系统402,所述二维振镜扫描系统402的出射光透过第一聚焦透镜403后对待测皮肤700沿预设的扫描路径进行扫描,扫描的光束在待测皮肤700的表面发生散射,散射光依次通过第一聚焦透镜403、二维振镜扫描系统402和第二准直透镜401后进入光纤耦合器200。The outgoing light collimated by the second light beam through the second
返回光纤耦合器200的第一光束和散射光发生干涉,产生干涉光信号,所述干涉光信号中包含待测皮肤700的图像信息,所述光纤耦合器200将所述干涉光信号输出到光谱仪装置500。所述干涉光信号透过第三准直透镜501进行准直,第三准直透镜501的出射光依次经过光栅502和三棱柱503进行分光,分光后的干涉光信号透过第二聚焦透镜504后进入图像采集模块505,所述图像采集模块505将采集得到的分光后的干涉光信号发送到电脑处理终端600。The first light beam returning to the
作为优选的实施方式,所述图像采集模块505通过图像采集卡与所述电脑处理终端600连接。As a preferred embodiment, the
所述干涉光信号携带着待测皮肤700的图像信息,所述电脑处理终端600与所述图像采集模块505通过图像采集卡连接。The interference light signal carries the image information of the
电脑处理终端600对接收到的包含待测皮肤700的图像信息的干涉光信号进行傅里叶变换和背景去噪处理,再通过相位补偿算法进行消除运动伪影,得到去伪影图像,通过二维互相关算法计算相邻的去伪影图像之间的图像偏移量,校准相邻的去伪影图像之间的运动偏移,进行图像匹配,最终利用基于SURF的图像拼接算法的进行图像拼接,最终得到待测皮肤700的成像图像。The
其中光谱仪装置500包括第三准直透镜501、光栅502、三棱柱503、第二聚焦透镜504和图像采集模块505,所述光栅502和三棱柱503作为光谱仪装置500的色散元件,其中光栅502以波长衍射角进行分光,所述三棱柱503以波长折射率进行分光,干涉光信号经过光栅502进行第一层分光,在经过三棱柱503进行第二层分光,光栅502和三棱柱503作为两个色散元件可增大光谱分辨率并将光谱从波长域转换成波数域,既实现成像深度的加深,又能在机械结构上实现光谱精准校准,而无需借助软件算法,大大简化图像处理过程,并提高装置性能。The
本皮肤成像设备可实现6mm成像深度,在成像深度达到2mm时,光谱仪装置500的系统灵敏度仅损失6dB,有效保证成像图像质量。The skin imaging device can achieve an imaging depth of 6 mm, and when the imaging depth reaches 2 mm, the system sensitivity of the
所述二维振镜扫描系统402用于调节光束的方向,所述二维振镜扫描系统402由X方向反射镜和Y方向反射镜组成,分别进行X方向的扫描和Y方向的扫描,X方向代表横向扫描,Y方向代表纵向扫描。当Y方向扫描为0时,实现二维扫描,即横截面成像,当Y扫描不为0时,则实现三维扫描,即实现三维成像。所述二维振镜扫描系统402与所述电脑处理终端600电连接,所述电脑处理终端600控制二维振镜扫描系统402调节光束的扫描速度和扫描路径。The two-dimensional
所述预设的扫描路径参考图2,在扫描成像的过程中,以2*2mm的成像大小为基元,以S型的扫描顺序对待测皮肤700进行顺序扫描,以2*2mm为基元的相邻的扫描区域有重叠部分,完成预设的扫描路径后获取多个扫描区域的扫描信号,所述图像采集模块505采集包含这些扫描区域的扫描信号的干涉光信号,并将所述干涉光信号发送到电脑处理终端600。Referring to FIG. 2 for the preset scanning path, in the process of scanning and imaging, the imaging size of 2*2mm is used as the primitive, and the skin to be tested 700 is scanned sequentially in the S-shaped scanning sequence, and 2*2mm is used as the primitive. The adjacent scanning areas of 100 have overlapping parts. After completing the preset scanning path, the scanning signals of multiple scanning areas are acquired. The
进一步作为优选的实施方式,所述二维振镜扫描系统402通过数据采集卡与所述电脑处理终端600连接。As a further preferred embodiment, the two-dimensional
所述电脑处理终端600通过调节所述二维振镜扫描系统402的X方向反射镜和Y方向反射镜的角度来实现对待测皮肤700的扫描。所述电脑处理终端600通过数据采集卡对二维振镜扫描系统402进行数据信号传输。The
进一步作为优选的实施方式,所述图像采集模块505为线阵CCD相机。As a further preferred embodiment, the
进一步作为优选的实施方式,所述光源100为波长为1310nm的发光二极管。因为1310nm这波段的光在皮肤组织内的吸收系数相对较少,散射系数相对较高,适用于皮肤成像。As a further preferred embodiment, the
参考图3,所述的一种超宽范围的皮肤成像设备还包括一种超宽范围的皮肤成像方法,所述方法包括:Referring to FIG. 3 , the ultra-wide-range skin imaging device further includes an ultra-wide-range skin imaging method, and the method includes:
光源100发出光束被光纤耦合器200分成第一光束和第二光束,所述第一光束进入第一准直透镜301,所述第二光束进入第二准直透镜401;The light beam emitted by the
第一光束透过第一准直透镜301后在反射镜302的作用下,原路返回光纤耦合器200;第二光束透过第二准直透镜401后的出射光射入二维振镜扫描系统402,所述二维振镜扫描系统402用于调节光束的方向,所述二维振镜扫描系统402的出射光透过第一聚焦透镜403后对待测皮肤700沿预设的扫描路径进行扫描,扫描的光束在待测皮肤700的表面发生散射,散射光依次通过第一聚焦透镜403、二维振镜扫描系统402和第二准直透镜401后进入光纤耦合器200;After the first beam passes through the
返回光纤耦合器200的第一光束和散射光发生干涉,产生干涉光信号,所述干涉光信号包含待测皮肤700的图像信息,所述光纤耦合器200将所述干涉光信号输出到第三准直透镜501进行准直,第三准直透镜501的出射光依次经过光栅502和三棱柱503进行分光,分光后的干涉光信号透过第二聚焦透镜504后进入图像采集模块505;The first light beam returning to the
所述二维振镜扫描系统402用于调节光束的方向,所述二维振镜扫描系统402由X方向反射镜和Y方向反射镜组成,分别进行X方向的扫描和Y方向的扫描,X方向代表横向扫描,Y方向代表纵向扫描。当Y方向扫描为0时,实现二维扫描,即横截面成像,当Y扫描不为0时,则实现三维扫描,即实现三维成像。所述二维振镜扫描系统402与所述电脑处理终端600电连接,所述电脑处理终端600控制二维振镜扫描系统402调节光束的扫描速度和扫描路径。The two-dimensional
所述预设的扫描路径参考图2,在扫描成像的过程中,以2*2mm的成像大小为基元,以S型的扫描顺序对待测皮肤700进行顺序扫描,以2*2mm为基元的相邻的扫描区域有重叠部分,完成预设的扫描路径后获取多个扫描区域的扫描信号,所述图像采集模块505采集包含这些扫描区域的扫描信号的干涉光信号,并将所述干涉光信号发送到电脑处理终端600。Referring to FIG. 2 for the preset scanning path, in the process of scanning and imaging, the imaging size of 2*2mm is used as the primitive, and the skin to be tested 700 is scanned sequentially in the S-shaped scanning sequence, and 2*2mm is used as the primitive. The adjacent scanning areas of 100 have overlapping parts. After completing the preset scanning path, the scanning signals of multiple scanning areas are acquired. The
对干涉光信号进行傅里叶变换和背景去噪,得到扫描过程中多个扫描区域的去噪图像;Fourier transform and background denoising are performed on the interference light signal to obtain denoised images of multiple scanning areas during the scanning process;
对所述去噪图像采用相位补偿算法消除运动伪影,得到去伪影图像;Using a phase compensation algorithm to eliminate motion artifacts on the denoised image to obtain a de-artifacted image;
对去伪影图像采用二维互相关算法进行图像校准和匹配,再利用基于SURF的图像拼接算法对完成校准和匹配的去伪影图像进行拼接,得到成像图像。The two-dimensional cross-correlation algorithm is used to calibrate and match the de-artifacted images, and then the SURF-based image stitching algorithm is used to stitch the calibrated and matched de-artifact images to obtain an imaging image.
进一步作为优选的实施方式,所述对干涉光信号进行傅里叶变换和背景去噪的过程包括:Further as a preferred embodiment, the process of performing Fourier transform and background denoising on the interference optical signal includes:
采集返回光纤耦合器200的第一光束的光信号作为背景信号,对所述干涉光信号进行傅里叶变换,得到块扫描图像,所述块扫描图像减去背景信号,得到去噪图像,消除背景信号对最终待测皮肤700的成像图像的影响。Collecting the optical signal of the first light beam returning to the
在扫描待测皮肤700的过程中,不可避免出现人体组织移动,为了消除血液成像中因人体自主运动产生的运动伪影,本实施例通过相位补偿算法中的直方图补偿图提取出运动伪影并消除运动伪影。In the process of scanning the
进一步作为优选的实施方式,所述对所述去噪图像采用相位补偿算法消除运动伪影,得到去伪影图像的过程包括:Further as a preferred embodiment, the process of using a phase compensation algorithm to eliminate motion artifacts on the de-noised image, and obtaining the de-artifact image includes:
对所述去噪图像的相位进行直方图计算,所述直方图的宽度取值原则为:A histogram calculation is performed on the phase of the denoised image, and the principle of the width of the histogram is:
h=2IQm-1/3 h=2IQm -1/3
其中h为直方图的宽度,IQ为相位排列的四分位差,m为相位的总数;Where h is the width of the histogram, IQ is the interquartile difference of the phase arrangement, and m is the total number of phases;
从相邻的去噪图像的直方图中得到出现频率最多的相位值,这些相位值组成了运动伪影相位,从相邻的去噪图像的直方图中提取出运动伪影相位,相邻的去噪图像的直方图的相位减去运动伪影相位,得到去伪影图像。The most frequently occurring phase values are obtained from the histograms of adjacent denoised images. These phase values constitute the motion artifact phase. The motion artifact phases are extracted from the histograms of adjacent denoised images. The phase of the histogram of the denoised image is subtracted from the phase of the motion artifact to obtain the de-artifacted image.
进一步作为优选的实施方式,所述对去伪影图像采用二维互相关算法进行图像校准和匹配的过程包括:Further as a preferred embodiment, the process of performing image calibration and matching using a two-dimensional cross-correlation algorithm on the de-artifacted image includes:
通过二维互相关算法计算相邻的两张去伪影图像之间的图像偏移量,相邻的两张去伪影图像之间的相关性可表示为:The two-dimensional cross-correlation algorithm is used to calculate the image offset between two adjacent de-artifacted images, and the correlation between the two adjacent de-artifacted images can be expressed as:
其中,f1(x1,y1)、f2(x2,y2)分别为相邻的两张去伪影图像的函数,Δx为横向方向上的偏移量,Δy为轴向方向上的偏移量,校准相邻的两张去伪影图像之间的运动偏移量,以进行图像匹配。根据计算得到的两张去伪影图像之间的运动偏移量,若运动偏移量为负,则加上运动偏移量进行图像匹配,若运动偏移量为正,则减去运动偏移量进行图像匹配。Among them, f 1 (x 1 , y 1 ), f 2 (x 2 , y 2 ) are the functions of two adjacent de-artifact images respectively, Δx is the offset in the lateral direction, and Δy is the axial direction Offset on , calibrates the motion offset between two adjacent de-artifacted images for image matching. According to the calculated motion offset between the two de-artifacted images, if the motion offset is negative, add the motion offset for image matching; if the motion offset is positive, subtract the motion offset Shift amount for image matching.
相邻的去伪影图像进行图像匹配后,再利用基于SURF的图像拼接算法对完成校准和匹配的去伪影图像进行拼接,得到成像图像。After the adjacent de-artifacted images are matched, the SURF-based image stitching algorithm is used to stitch the calibrated and matched de-artifact images to obtain an imaging image.
图像拼接是基于SURF的图像拼接算法。首先输入两张相邻且具有重叠区域的去伪影图像,重叠区域的宽度以0.1~0.3mm为最佳,本实施例中通过电脑处理终端600调节二维振镜扫描系统402对待测皮肤700的扫描速率和扫描距离,使得相邻的去伪影图像之间的重叠区域的宽度为0.1mm,通过对相邻的去伪影图像采用二维互相关算法进行图像校准和匹配,再通过SURF特征匹配算法提取相邻去伪影图像之间的重叠区域的图像特征点后,将相邻去伪影图像的特征点进行融合,并将相邻去伪影图像映射到一张新的空白图像中形成拼接图像,最终得到成像图像。Image stitching is an image stitching algorithm based on SURF. First, input two adjacent de-artifact images with overlapping areas. The width of the overlapping area is preferably 0.1-0.3 mm. In this embodiment, the
将采集得到的所有的去伪影图像进行基于SURF的图像拼接算法的重叠区域的图像特征点识别和融合,并将融合后的去伪影图像映射到新的空白图像中形成拼接图像,得到待测皮肤700的成像图像,这样有效获得待测皮肤700超宽的扫描氛围。Perform image feature point recognition and fusion in the overlapping area of the SURF-based image stitching algorithm on all the collected de-artifact images, and map the fused de-artifact images to a new blank image to form a stitched image, and obtain the desired image. The imaging image of the
本实施例中相邻的去伪影图像之间的重叠区域的宽度为0.1mm,可确保图像拼接的连贯性。In this embodiment, the width of the overlapping area between adjacent de-artifacted images is 0.1 mm, which can ensure the continuity of image stitching.
本实用新型皮肤成像设备对待测皮肤700进行实时大范围成像,通过提高光谱仪装置500的光谱分辨率增加深度方向上的成像范围,通过图像拼接算法获得大范围的成像图像。The skin imaging device of the present invention performs real-time large-scale imaging of the skin to be tested 700, increases the imaging range in the depth direction by improving the spectral resolution of the
以上对本实用新型的较佳实施方式进行了具体说明,但本实用新型创造并不限于所述实施例,熟悉本领域的技术人员在不违背本实用新型精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。The preferred embodiments of the present utility model have been specifically described above, but the invention of the present utility model is not limited to the described embodiments, and those skilled in the art can make various equivalent modifications without departing from the spirit of the present utility model. Or alternatives, these equivalent modifications or alternatives are included within the scope defined by the claims of the present application.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921222493.8U CN210810980U (en) | 2019-07-30 | 2019-07-30 | An ultra-wide-range skin imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921222493.8U CN210810980U (en) | 2019-07-30 | 2019-07-30 | An ultra-wide-range skin imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210810980U true CN210810980U (en) | 2020-06-23 |
Family
ID=71249784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921222493.8U Active CN210810980U (en) | 2019-07-30 | 2019-07-30 | An ultra-wide-range skin imaging device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210810980U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110292361A (en) * | 2019-07-30 | 2019-10-01 | 佛山科学技术学院 | A kind of dermal imaging apparatus and method for of super wide range |
-
2019
- 2019-07-30 CN CN201921222493.8U patent/CN210810980U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110292361A (en) * | 2019-07-30 | 2019-10-01 | 佛山科学技术学院 | A kind of dermal imaging apparatus and method for of super wide range |
CN110292361B (en) * | 2019-07-30 | 2024-04-30 | 佛山科学技术学院 | Ultra-wide-range skin imaging device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110292361B (en) | Ultra-wide-range skin imaging device and method | |
Srinivasan et al. | Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography | |
US12029481B2 (en) | Parallel optical coherence tomography apparatuses, systems, and related methods | |
CN105748041B (en) | Speckle noise suppression system and method in optical coherence tomography imaging | |
CN112022093B (en) | Skin imaging system | |
JP2008542758A (en) | System, method and apparatus capable of using spectrally encoded heterodyne interferometry for imaging | |
CN105996999B (en) | Method and system for measuring sample depth resolution attenuation coefficient based on OCT | |
CN104997519B (en) | Dual-wavelength retinal blood vessel blood oxygen measurement system based on fundus camera | |
JP2009523040A (en) | Data generation system and method using endoscopic technology for encoding one or more spectra | |
CN105374028B (en) | The method of optical coherent chromatographic imaging retinal images layering | |
CN105342568A (en) | Optical coherence tomography method and system combining phase and amplitude | |
CN104783767A (en) | Device and method for detecting human body microcirculation by means of orthogonal polarization spectral imaging | |
CN109965838A (en) | A device and method for tracking eye movement based on optical coherence method | |
CN102657519A (en) | OCT (optical coherence tomography)-based high-sensitivity measurement system and method with large dynamic range of flow speed | |
CN106491078B (en) | Remove the method and device of ordered dither noise in blood-stream image | |
CN113418469B (en) | Spectrum confocal scanning common-path digital holographic measurement system and measurement method | |
CN112057049B (en) | Optical coherent blood flow radiography method and system based on multi-dimensional feature space | |
CN210810980U (en) | An ultra-wide-range skin imaging device | |
CN109752377A (en) | A spectroscopic dual-mode projection tomography tissue blood vessel imaging device and method | |
CN203280368U (en) | Parallel OCT detection system based on spectral coding and orthogonal light splitting | |
CN111386439B (en) | Interference imaging device and application thereof | |
CN115639198B (en) | Full-field optical space-time coherent coding dynamic imaging device and method | |
CN113706567B (en) | A blood flow imaging quantitative processing method and device combining vascular morphological characteristics | |
CN210130810U (en) | Device for tracking eyeball movement based on optical dry method | |
CN113362412A (en) | Speckle spectrum information reconstruction method and device based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210707 Address after: 528000 one of the fourth floor of Building 1, block 2, No. 117, Zhangcha 1st Road, Chancheng District, Foshan City, Guangdong Province Patentee after: GUANGDONG WEIREN MEDICAL TECHNOLOGY Co.,Ltd. Address before: No.33 Guangyun Road, Shishan town, Nanhai District, Foshan City, Guangdong Province Patentee before: FOSHAN University |
|
TR01 | Transfer of patent right |