CN210752733U - 一种微流控检测集成芯片 - Google Patents
一种微流控检测集成芯片 Download PDFInfo
- Publication number
- CN210752733U CN210752733U CN201920826103.1U CN201920826103U CN210752733U CN 210752733 U CN210752733 U CN 210752733U CN 201920826103 U CN201920826103 U CN 201920826103U CN 210752733 U CN210752733 U CN 210752733U
- Authority
- CN
- China
- Prior art keywords
- flow channel
- detection
- liquid
- storage tank
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本实用新型提供一种微流控检测集成芯片,包括基板、盖片和位于基板上的检测区,基板上还设有第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;盖片密封第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;覆盖在第一储液槽、第二储液槽及废液槽位置处的盖片上分别设有第一、第二和第三开口;第一储液槽通过第一流道和第三流道与检测区液体连通,第二储液槽通过第二流道和第三流道与检测区液体连通,检测区通过第四流道与废液槽液体连通;通过调整第一、二、三和四流道的表面张力使第一储液槽和第二储液槽的液体在重力作用下按序并依次流过检测区并到达废液槽。可实现无需外加动力驱动流体流动。
Description
技术领域
本实用新型属于医用诊断类物品技术领域,涉及一种微流控检测集成芯片。
背景技术
在生物医学分析,疾病诊断领域,微流控技术的出现推动了便携式快速诊断(point-of-care)产业的发展。相比较以往传统快诊技术,微流控芯片具有以下优势,例如,以往的POCT检测设备,其定标液、质控液等液体都是外置于设备中,导致检测设备体积大,管路复杂,难维护,易污染等问题,并且,以往的POCT产品由于检测原理特点,在快速精确定量分析的同时很难实现同时检测多个指标,进而增加了待检测样品的消耗和人为误差。反之,微流控检测技术最大的优势是在微升级别的血样消耗下可以同时进行多个指标的全自动快速检测并得出准确的结果。同时,平方厘米大小的微流控芯片上可以包含定量进样,混合,反应,定标,试剂储存,检测,废液收集等常规实验室所有的功能单元,全自动操作等特点实现高集成,节能,方便,误差小的新一代POCT产品。
流体控制是微流控芯片设计的核心,微流控芯片的所有功能都依赖于微通道网络的独特设计来实现。以国外的几家行业顶尖企业的微流控产品为例,从流体动力来划分,微流控芯片动力可以是气泵的(US8986527B2),注射器的 (US7842234B),外力挤压的(US5821399A),离心力的(US20110124128A1)。
以气泵为动力的芯片具有以下特点:首先对于两个以上的流体控制,气泵要求更为复杂的芯片微通道网络设计,相对更多的阀门设计来实现流体的依次流动控制。这样的复杂结构就导致仪器体积往往比较大,芯片加工要求高成本也高的特点。并且,气泵作为动力会增加流体内气泡产生的概率,产生的气泡可以阻碍传感器正常工作。
以注射器为动力的芯片,首先在操作上要求注射器与芯片加样口密封对接,这样的操作比较困难,容易引入人为误差;其次容易由于操作误差,导致样品或仪器污染的风险。
以外力挤压的流体推动方式,因为挤压形变产生的力本身比较小,因此要求芯片尺寸相对较小,这样“微型”的变化,会直接导致芯片加工及组装的难度,造成经济损失。
以离心力驱动的芯片产品比较少,原理上离心力驱动芯片可最大程度实现高集成检测,实现芯片内样本提纯,等量分样的优势,但由于其结构相对更复杂和精细,材料表面张力可以很大程度上影响流速,造成技术壁垒比较高,导致产业化难度。
随着体外诊断市场需求的激增,微流控技术在体外诊断应用中的优势逐渐突显出来,受到工业界越来越多的关注。微流控芯片应用中,多种流体的次序性流动及测试片内置液体的保存和流动控制是目前普遍存在的技术难点。
实用新型内容
本实用新型提供了一种仅由自身重力操控制流体流动的微流控集成芯片。该微流控集成芯片可以无需外加动力设备如微泵,注射泵,挤压装置,离心力装置等,完成多个流体的自动传送和检测。
具体来说,本实用新型提供的一种微流控检测集成芯片,包括基板、盖片和位于基板上的检测区,基板上还设有第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;盖片密封第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;覆盖在第一储液槽、第二储液槽及废液槽位置处的盖片上分别设有第一、第二和第三开口;第一储液槽通过第一流道和第三流道与检测区液体连通,第二储液槽通过第二流道和第三流道与检测区液体连通,检测区通过第四流道与废液槽液体连通;通过调整第一、二、三和四流道的表面张力使第一储液槽和第二储液槽的液体在重力作用下按序并依次流过检测区并到达废液槽。
通常,在微流控检测集成芯片中,通过调整第一储液槽和第二储液槽的液体的流速,使两者依次流至检测区并最终到达废液槽。本实用新型中,通过调整流道的表面张力来使第一储液槽和第二储液槽的液体流速得到控制。
一些优选的实施方式中,第一流道和第三流道做亲水处理;第二流道和第四流道做疏水处理。
一些优选的实施方式中,第一流道宽度大于第二流道宽度;第三流道宽度大于第四流道宽度。
一些优选的实施方式中,第一流道的长度小于第二流道的长度。
一些优选的实施方式中,第一流道为直线结构,第二流道包含弯曲结构。
一些优选的实施方式中,第三流道为直线结构,第四流道包含弯曲结构。
一些优选的实施方式中,第一储液槽、第一流道、第三流道和检测区设于基板正面,第二储液槽、第二流道、第四流道和废液槽设于基板反面。
一些优选的实施方式中,盖片包括覆盖在基板正面的上盖片和覆盖在基板反面的下盖片;基板和下盖片为疏水材质,上盖片为亲水材质。
一些优选的实施方式中,基板上设有连通第二流道与第三流道的第一穿孔,以及连通检测区与第四流道的第二穿孔。
一些优选的实施方式中,检测区末端向上折弯。
一些优选的实施方式中,检测区末端向上折弯后延伸一段距离后向下弯折,形成倒“U”的结构。
一些优选的实施方式中,检测区为弯曲结构或折弯结构。
一些优选的实施方式中,第三流道包含弯曲结构。
一些优选的实施方式中,第一、第二和第三开口上设有密封件。
一些优选的实施方式中,电极传感器位于检测区。更为优选的实施方式中,电极传感器的检测部分位于检测区。
一些优选的实施方式中,第一储液槽中液体为定标液;第二储液槽中液体为样本。
一些优选的实施方式中,第一储液槽和第一流道的上端覆盖一层疏水膜层。
本实用新型还提供一种微流控检测集成芯片检测样品的方法,包括微流控检测芯片,该微流控检测芯片包括疏水性基板、覆盖在基板正面的亲水性上盖片和覆盖在基板反面的疏水性上盖片,基板正面设有第一储液槽、第一流道、第三流道和检测区,基板反面设有第二储液槽、第二流道、第四流道和废液槽,覆盖在第一储液槽、第二储液槽及废液槽位置处的盖片上分别设有第一、第二和第三开口;第一储液槽通过第一流道和第三流道与检测区液体连通,第二储液槽通过第二流道和第三流道与检测区液体连通,检测区通过第四流道与废液槽液体连通;第一储液槽中密封有定标液,电极传感器的检测部分位于检测区,具体操作步骤如下:
a将样本注入第二储液槽;
b微流控检测芯片垂直或倾斜放置使第一储液槽和第二储液槽高于检测区和废液槽位置;
c使第一开口、第二开口和第三开口不封闭,第一储液槽中的定标液流动到第一流道内,并流经过第三流道后进入检测区;同时,第二储液槽中的样本也缓慢流动到第二流道内;
d当设于检测区中的电极传感器检测到其表面被定标液完全覆盖后,封闭第三开口、或封闭第一和第二开口、或封闭第一、二和三开口,定标液和样本停止流动,电极传感器对定标液进行检测;
e检测完成后,将之前封闭的开口打开,流道内的气压恢复平衡,定标液和样本恢复流动,定标液经过连通检测区与第二穿孔流入第四流道,最终流入废液槽;同时,样本经过连通第二流道和第三流道的第一穿孔流入第三流道,再流入到检测区;
f当检测区中的电极传感器检测到其表面被样本完全覆盖后,封闭第三开口、或封闭第一和第二开口、或封闭第一、二和三开口,样本停止流动,电极传感器对样本进行检测;
g检测完成后,将步骤f中封闭的开口打开,流道内的气压恢复平衡,样本恢复流动,样本经过第二穿孔流入第四流道,最终流入废液槽。
另一方面,本实用新型还提供的另一种微流控检测芯片检测样品的方法,其中,其步骤中,仅步骤c和步骤d中有不同,具体的,步骤c为:使第一开口和第三开口不封闭、第二开口封闭,第一储液槽中的定标液流动到第一流道内,并流经过第三流道后进入检测区,此时,样本在压力差作用下无法从第二储液槽向第二流道中流动;和步骤d:当设于检测区中的电极传感器检测到其表面被定标液完全覆盖后,封闭第三开口或第一开口、或封闭第一和第三开口,定标液停止流动,电极传感器对定标液进行检测。
一些优选的实施方式中,在上述的两种微流控检测芯片检测样品的方法中,微流控检测芯片垂直或倾斜放置在相应的检测仪器中。微流控检测芯片的电极传感器检测出结果被该相应的检测仪器读取并分析。
一些优选的实施方式中,检测区末端向上折弯后延伸一段距离后向下弯折,形成倒“U”的结构。
一些优选的实施方式中,第一储液槽和第一流道的上端覆盖一层疏水膜层。
有益效果
(1)利用本实用新型所述微流控检测集成芯片在流体驱动方面可实现无需外加动力设备如微泵,注射泵,挤压装置,离心力装置等,完成多个流体的自动传送。可以简化检测仪器的结构,节约能源。避免因外部动力源的使用在流体中内产生气泡。
(2)通过芯片不同区域表面张力及亲疏水性的差异,以此来控制血液等液体在不同区域的流速及扩散状况。例如当从第二储液槽中流出的血液样品在疏水性的第二流道中的流速要慢于血液样品在亲水的检测流道中的流速。
(3)在基板的正反面分别开设流道,并且利用不同亲疏水性的上下盖片水密性地粘贴在基板的正反面上后,基板流道的亲疏水性就会因为盖片的亲疏性而相应的变化。利用这样的方式很容易制造出在不同区域具有不同亲疏性的检测芯片。
(4)通过将储液槽、流道分布在基板的正方两面可以减小基板的使用面积,从而有助于检测芯片和检测仪器的小型化。
(5)检测区“U”型弯道的设置,可以进一步加强定标液和样本流到电极传感器时的减速效果,使定标液和样本有足够的时间留在检测区进行检测。
附图说明
图1为本实用新型微流控检测集成芯片的基板正面示意图。
图2为本实用新型微流控检测集成芯片的基板的反面示意图。
图3为本实用新型微流控检测集成芯片的第一穿孔的截面示意图。
图4为另一种微流控检测集成芯片的基板的正面示意图。
图5为另一种微流控检测集成芯片的基板的正面示意图。
图6为另一种微流控检测集成芯片的基板的正面示意图。
图7为另一种微流控检测集成芯片的基板的另一结构的正面示意图。
图8为另一种微流控检测集成芯片的基板的另一结构的正面示意图。
具体实施方式
在以下的详细描述中,图例附带的参考文字是这里的一个部分,它以举例说明本实用新型可能实行的特定具体方案的方式来说明。我们并不排除本实用新型还可以实行其它的具体方案和在不违背本实用新型的使用范围的情况下改变本实用新型的结构。
本实用新型中,微流控检测芯片利用流道表面张力及流体自身重力对液体的流动进行控制。一些具体的实施例中,通过改变流道的亲水性和疏水性来改变流道表面张力。另一些实施例中,通过改变流道的尺寸来改变流道表面张力。还有一些实施例中,通过改变流道的结构来改变流道表面张力。或者以上的实施例进行叠加来改变流道表面张力,比如,改变流道的亲水性和疏水性的同时,改变流道的尺寸或结构。
一些具体的实施例中,微流控检测集成芯片包括基板、盖片和位于基板上的检测区,基板上还设有第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;盖片密封第一储液槽、第二储液槽和废液槽。其中,第一流道和第三流道做亲水处理;第二流道和第四流道做疏水处理。或者,第一流道宽度大于第二流道宽度;第三流道宽度大于第四流道宽度。或者,第一流道的长度小于第二流道的长度。或者,第一流道为直线结构,第二流道包含弯曲结构。或者,第三流道为直线结构,第四流道包含弯曲结构。
另一些实施例中,基板100两面都分布有流道,一面的流道具有亲水的效果,另一面具有疏水的效果,其中将分布有亲水性流道的一面作为正面,分布有疏水性流道的一面作为反面,位于两面的流道通过穿孔连通。此外,基板100 上还设有第一储液槽11、第二储液槽12、废液槽3和检测区2,第一储液槽11 和第二储液槽12分别位于基板100的两面,第一储液槽11和第二储液槽12中的液体先后通过流道流入检测区2,经过检测后通过流道流入废液槽3中。具体的,第一储液槽11和检测区2位于基板的正面,盖合具有亲水性的上盖片,第二储液槽12和废液槽3位于基板的反面,盖合具有疏水性的下盖片。第一储液槽11、第二储液槽12和废液槽3与大气连通,这是为了平衡基板100流道内的气压,使液体能够顺利在流道中流动。通过将储液槽、流道分布在基板100的正反两面可以减小基板100的使用面积,从而有助于检测芯片和检测仪器的小型化,同时也使得芯片不同区域的表面张力的不同加工更加容易实现。
基板和盖片的亲水性和疏水性,可以通过选用亲水性材质和疏水性材质来实现,也可以通过在基板和盖片上做亲水或疏水处理来实现。
盖片可以选择性地为柔性的膜材料,或者是硬质的板材。
基板100上,流道的横截面至少有一个维度是微米级(几十到几百微米),从而使流道中流体的流动受到重力影响外,极大程度的被流道表面的亲疏水性所影响,其尺寸和形状结构除了参考下列实施例外,本领域技术人员也可在本实用新型思想的指导下,根据现有技术,针对不同的效果需求进行改变。
具体的,如图1所示,微流控芯片的基板100上设有第一储液槽11、第二储液槽12、检测区2和废液槽3,位于第一储液槽11上的第一开口110,位于第二储液槽12上的第二开口120,位于废液槽3上的第三开口30,位于检测区 2的电极传感器400,以及位于基板100上的第一流道41,第二流道42,第三流道43,第四流道44,第一穿孔61,第二穿孔62。
基板100由疏水性材料制成,在基板100的正面分布有第一储液槽11,第一流道41,第三流道43和检测区2,并被亲水的上盖片200所覆盖。基板100 的反面分布有第二储液槽12,第二流道42,第四流道44和废液槽3,并被疏水的下盖片300所覆盖。
按照图1从上而下的相对位置关系,基板100正面上的具体分布关系为:第一储液槽11上设有用于连通外界大气的第一开口110,第一储液槽11的下端与第一流道41的上端连通,第一流道41的下端与第三流道43的上端相互连通,第一流道41的下端与第三流道43的上端的连接处设有贯穿基板100的第一穿孔 61,第一穿孔61连接第二流道42的末端,第三流道43的下端与检测区2的上端连通,电极传感器400用于检测液体的部分设于检测区2内,检测区2的下端设有贯穿基板100的第二穿孔62。
按照图2从上而下的相对位置关系,基板100反面上的具体分布关系为:第二储液槽12上设有连通外界大气的第二开口120,第二储液槽12的下端与第二流道42的上端连通,第二流道42的下端设有第一穿孔61(第一穿孔61,第一流道41,第二流道42和第三流道的连接关系可参考图3),在第二流道42下方处为第四流道44,第四流道44不与第二流道42直接连通,第四流道44的上端设有第二穿孔62,从而使检测区2与第四流道44通过第二穿孔62相互连通,第四流道44的下端与废液槽3连通,废液槽3上设有与外界大气连通的第三穿孔30,为了在测试完成后,基板100内的液体不流出废液槽3,使第三穿孔30 的位置优选地设置在废液槽3的最上方处。
实施例中的上端可以理解为具有相同意思的前端,上端和前端可以相互替换。同样的,下端和末端也可以相互替换。
优选地,第一流道41、第二流道42、第三流道43、第四流道44和检测区 2在基板上的宽度为200-800微米(μm),深度为200-600μm。具体的例如基板的厚度为0.4-5毫米(mm),第一流道41、第二流道42、第三流道43、第四流道44和检测区2的宽度为400μm,深度为300μm。第一流道41、第二流道42、第三流道43、第四流道44和检测区2的宽度和深度可以在限定的范围内连续(非连续)变化,也可以维持一定的数值不变。
初始的基板100可以在第一储液槽11内加有用于矫正电极传感器400的定标液,此时第一开口110被密封件密封,用于防止定标液从储液槽流入流道。该密封件可以是能够被刺破的薄膜,也可以是能够被移除的塞体,密封件在使用时被破坏或移除。第二开口120可以选择性的被密封件密封,当密封件为薄膜时,被薄膜密封时,需刺破薄膜后,通过注射器向第二储液槽12内注入样本;当密封件为橡胶塞等可拔出的塞体时,移除塞体后,通过注射器向第二储液槽12内注入样本;第二开口120没有密封件密封时,可直接通过第二开口120向第二储液槽12内注入样本。第三开口30可选择性的被密封件所覆盖,在使用时被移除或破坏。通过密封这些开口,一是可以使基板100内的定标液不与外界大气连通,增加其保存期限。二是可以避免定标液在未开始使用就提前流入流道(由于基板 100内的空间密闭,当定标液有一小部分从储液槽流入流道时,会压缩液体下方空间中的空气,造成气压上升,而储液槽中的气压降低,这种气压差将会阻止定标液进一步在流道中流动)。三是可以防止粉尘之类的微小污染物进入基板100 内。
另外,可通过改变第二流道42的长度、形状或亲疏水性的大小来增强流动的阻力,延长样本在第二流道42内的流动时间。
利用芯片来进行样品检测时,基板100垂直或倾斜放置在相应的检测仪器中,此时,第一储液槽和第二储液槽高于检测区和废液槽位置,第一开口110、第二开口120和第三开口30不封闭,样本缓慢地从第二储液槽12流入第二流道 42,定标液从第一储液槽12流入第一流道41内并继续流动(流速明显快于样本的流速)。定标液经过第三流道43后进入检测区2,而样本未进入第三流道43。
当电极传感器400检测到其检测部分的表面被定标液完全覆盖后,第三开口 30被封闭(或者第一开口110和第二开口120被封闭,或者全部开口都被封闭),检测区2中的定标液会继续流动一小段距离,使定标液前端的气压与定标液后端的气压不平衡,从而导致压力差并阻止定标液继续流动,样本也在压力差作用下停止流动。此时,电极传感器400拥有合适的时间对停止流动的定标液进行检测。
检测完成后,之前被封闭的开口被打开,流道内的气压恢复平衡,定标液和样本恢复流动。定标液经过第二穿孔62后,最终流入废液槽30。而样本经过第一穿孔61流入亲水的第三流道43后,在亲水张力拉动下,开始加快流动速度。当电极传感器400检测到其检测部分的表面被样本完全覆盖后,将第三开口30 封闭,或者将第一开口110和第二开口120封闭,或者将全部开口都封闭,样本在气压差作用下停止流动,此时,电极传感器400拥有合适的时间对停止流动的样本进行检测。检测完成后,将被封闭的开口被打开,流道内的液体开始恢复流动,最终所有液体先后经过第二穿孔62、第四流道44后,流至废液槽3。
另一种检测方法中,将基板100垂直或倾斜放置在相应的检测仪器后使第一储液槽和第二储液槽高于检测区和废液槽位置,检测仪器封闭第二开口120,而第一开口110和第三开口30不封闭,样本在压力差作用下无法在第二流道42 中流动。定标液在第一流道41内流动,经过第三流道43后进入检测区2。
当电极传感器400检测到其检测部分的表面被定标液完全覆盖后,第三开口30被封闭(或者第一开口110被封闭,或者全部开口都被封闭),检测区2中的定标液受到压力差作用而停止流动。此时,电极传感器400开始对定标液进行检测。
检测完成后,被封闭的所有开口(包括一开始就被封闭的第二开口120)被打开,流道内的气压恢复平衡,定标液和样本开始流动。定标液经过第二穿孔 62后,最终流入废液槽30。样本经过第一穿孔61流入亲水的第三流道43,在张力拉扯下,流动速度开始加快。当检测区2中的电极传感器400检测到其检测部分的表面被样本完全覆盖后,第三开口30被封闭(或者第一开口110和第二开口120被封闭,或者全部开口都被封闭),样本在气压差作用下停止流动,此时的电极传感器400开始工作。检测完成后,被封闭的开口被打开,流道内的液体开始恢复流动,最终所有液体先后经过第二穿孔62、第四流道44后,流至废液槽3。
其中,检测区2通过第二穿孔62与背面疏水的第四流道44连通,这可以使液体流到第二穿孔62后,极大地降低流速,从而使检测仪器有足够的时间密封相应的开口,从而形成压力差阻止检测区2中的液体进一步流动,以便电极传感器400有足够的时间完成检测。当然,第四流道44和废液槽3也可以设置在基板100的正面,此时没有第二穿孔,并且第四流道44连通检测区2的部分需要做疏水处理,减缓流入第四流道44的流体流速。或者,在定标液和样本的体积足够的情况下,第四流道44和废液槽3直接设置在基板100的正面而不做其它处理。
进一步地,如图4所示,检测区2末端向上折弯。更为具体的,图5所示检测区2的末端向上方延伸后再向下延伸,使检测区2的尾部向上凸起,形成一个类似倒“U”的形状。当凸起程度较低时,如图4所示,可以降低液体流到该向上部位的速度,从而为封闭相应的开口,使液体有充足的时间停留在电极传感器 400处。当凸起程度较大时,如图5所示,使定标液无法在亲水作用下流过该凸起的最高处进入第二穿孔62,然而当样本流入第三流道后,可以挤压定标液和样本之间的气柱,间接地将定标液推入废液槽3,而样本最终会停留到电极传感器400处完成检测。因此,只要控制样本进入第三流道的时间,就无需封闭相应的开口使液体停留在电极传感器400处。
优选的实施例中,第三流道和检测区可以形成一个弧形的弯曲,如图4和图 5所示,以减缓液体在第三流道为直线结构时的流速,从而使液体缓慢又充分的流过检测区,保证检测的成功率。
可以选择地,如图6所示,检测区2相对第三流道具有折弯,检测区2的末端向上方延伸,第二穿孔62位于延伸的末端,从而使液体在该延伸处降低流速,或者在无后续气柱挤压下暂停流动。由于第二穿孔62位于向上延伸的末端,而不是如图4和图5那样位于向下延伸的末端,因此在某一些情况下,定标液被推入废液槽3后,会少量定标液会回流至电极传感器400,对后续检测造成影响。
如图7所示,为防止第一储液槽槽11内的液体因过快进入第一流道41,而形成气泡或气柱,影响后续检测。可以在第一储液槽11和第一流道41的上端覆盖一层疏水膜层201,使第一储液槽11和第一流道41上端的入口为疏水的,从而使液体以缓慢的速度流入第一流道41,避免在定标液中形成气泡或气柱。
在另外的实施例中,仅通改变第二穿孔62(如穿孔的大小、粗糙程度、疏水性等)和/或第四流道44(如流道的粗细、粗糙程度、疏水性等)来尽可能延长液体在检测区2中的滞留时间,而不采用密闭开口的方式。
本实用新型所述的检测区中的检测方法,可以是电化学检测,还可以是浊度法、荧光法、化学发光法、散射法等。
本实用新型所述微流控检测芯片除了利用电化学检测的电极传感器400进行定量检测,也可以半定量或定性检测。例如在检测区2固定一个或多个检测试纸(可以是空白的试纸,也可以是预先添加了试剂的试纸),利用定标液或样本流过检测流道与检测试纸接触后,试剂与样本反应发生颜色变化,随后通过仪器或人为观察得出检测结果。
为了配合其它检测方法,本领域技术人员需将定标液替换为其它的检测试剂,如不用于和样本反应的冲洗液,或者是参加反应的酶、裂解液、抗体、荧光试剂等。以含有信号标记物的抗体(抗体一)为例,此时检测区2没有电极传感器400,而是固定有可以与样本中待测抗原特异性结合的抗体(抗体二),将抗体一加入到第二储液槽12中,样本加入第一储液槽11中,样本流入检测区2 后,其中的待测抗原被抗体二捕获,随后抗体一流入并与检测区2中,与被抗体二捕获的抗原特异性结合,最后通过相关的设备测量检测区2中抗体一标记物的信号强度,获得最终的测量结果。进一步地,如图8所示,可以增加一个储存有冲洗液的第三储液槽13,冲洗液流入检测区2后,将未结合的抗体一冲洗掉,从而避免未固定的抗体一的标记物对检测造成干扰,从而提高检测的准确度。
Claims (10)
1.一种微流控检测集成芯片,其特征在于,包括基板、盖片和位于基板上的检测区,基板上还设有第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;盖片密封第一储液槽、第二储液槽和废液槽,以及第一、第二、第三和第四流道;覆盖在第一储液槽、第二储液槽及废液槽位置处的盖片上分别设有第一、第二和第三开口;第一储液槽通过第一流道和第三流道与检测区液体连通,第二储液槽通过第二流道和第三流道与检测区液体连通,检测区通过第四流道与废液槽液体连通;通过调整第一、二、三和四流道的表面张力使第一储液槽和第二储液槽的液体在重力作用下按序并依次流过检测区并到达废液槽。
2.根据权利要求1所述的微流控检测集成芯片,其特征在于,第一流道和第三流道做亲水处理;第二流道和第四流道做疏水处理。
3.根据权利要求2所述的微流控检测集成芯片,其特征在于,第一储液槽、第一流道、第三流道和检测区设于基板正面,第二储液槽、第二流道、第四流道和废液槽设于基板反面。
4.根据权利要求3所述的微流控检测集成芯片,其特征在于,盖片包括覆盖在基板正面的上盖片和覆盖在基板反面的下盖片;基板和下盖片为疏水材质,上盖片为亲水材质。
5.根据权利要求4所述的微流控检测集成芯片,其特征在于,基板上设有连通第二流道与第三流道的第一穿孔,以及连通检测区与第四流道的第二穿孔。
6.根据权利要求5所述的微流控检测集成芯片,其特征在于,检测区末端向上折弯。
7.根据权利要求5所述的微流控检测集成芯片,其特征在于,检测区末端向上折弯后延伸一段距离后向下弯折,形成倒“U”的结构。
8.根据权利要求6或7所述的微流控检测集成芯片,其特征在于,检测区为弯曲结构或折弯结构。
9.根据权利要求8所述的微流控检测集成芯片,其特征在于,第三流道包含弯曲结构。
10.根据权利要求5所述的微流控检测集成芯片,其特征在于,第一储液槽和第一流道的上端覆盖一层疏水膜层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920826103.1U CN210752733U (zh) | 2019-06-03 | 2019-06-03 | 一种微流控检测集成芯片 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920826103.1U CN210752733U (zh) | 2019-06-03 | 2019-06-03 | 一种微流控检测集成芯片 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210752733U true CN210752733U (zh) | 2020-06-16 |
Family
ID=71057131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920826103.1U Active CN210752733U (zh) | 2019-06-03 | 2019-06-03 | 一种微流控检测集成芯片 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210752733U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647498A (zh) * | 2020-05-25 | 2020-09-11 | 清华大学 | 一种一体化自助式核酸检测装置及其使用方法 |
CN112023989A (zh) * | 2019-06-03 | 2020-12-04 | 利多(香港)有限公司 | 一种微流控检测集成芯片及检测样品的方法 |
CN112067383A (zh) * | 2020-08-13 | 2020-12-11 | 哈尔滨工业大学(深圳) | 多孔介质材料内液体流动控制方法与芯片 |
-
2019
- 2019-06-03 CN CN201920826103.1U patent/CN210752733U/zh active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112023989A (zh) * | 2019-06-03 | 2020-12-04 | 利多(香港)有限公司 | 一种微流控检测集成芯片及检测样品的方法 |
CN111647498A (zh) * | 2020-05-25 | 2020-09-11 | 清华大学 | 一种一体化自助式核酸检测装置及其使用方法 |
CN112067383A (zh) * | 2020-08-13 | 2020-12-11 | 哈尔滨工业大学(深圳) | 多孔介质材料内液体流动控制方法与芯片 |
CN112067383B (zh) * | 2020-08-13 | 2023-07-28 | 哈尔滨工业大学(深圳) | 多孔介质材料内液体流动控制方法与芯片 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10953398B2 (en) | Fluid mixing and delivery in microfluidic systems | |
US8222049B2 (en) | Flow control in microfluidic systems | |
KR100968524B1 (ko) | 생체 시료 분석용 마이크로-나노 플루이딕 바이오칩 | |
US20060002817A1 (en) | Flow modulation devices | |
EP2226623B1 (en) | Flow cell | |
US20060000709A1 (en) | Methods for modulation of flow in a flow pathway | |
US9931630B2 (en) | Autonomous and programmable sequential flow of solutions in capillary microfluidics | |
CN210752733U (zh) | 一种微流控检测集成芯片 | |
CN210752735U (zh) | 一种微流控检测芯片 | |
WO2020244517A1 (zh) | 微流控芯片及制作方法 | |
US20240131514A1 (en) | Microfluidic chip for analyte detection | |
CN210752734U (zh) | 一种微流控芯片 | |
CN112023989A (zh) | 一种微流控检测集成芯片及检测样品的方法 | |
KR20240042957A (ko) | 현장진단을 위한 혈액 분리 바이오칩 | |
CN112033953A (zh) | 一种微流控芯片及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |