CN217976391U - Gas turbine combined cycle power generation system under distributed energy environment - Google Patents
Gas turbine combined cycle power generation system under distributed energy environment Download PDFInfo
- Publication number
- CN217976391U CN217976391U CN202123229660.1U CN202123229660U CN217976391U CN 217976391 U CN217976391 U CN 217976391U CN 202123229660 U CN202123229660 U CN 202123229660U CN 217976391 U CN217976391 U CN 217976391U
- Authority
- CN
- China
- Prior art keywords
- power generation
- generation system
- gas turbine
- heat
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 82
- 239000007789 gas Substances 0.000 claims abstract description 67
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003546 flue gas Substances 0.000 claims abstract description 12
- 239000002918 waste heat Substances 0.000 claims abstract description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 63
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 48
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 48
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 41
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 36
- 150000003839 salts Chemical class 0.000 claims description 32
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 30
- 229910021529 ammonia Inorganic materials 0.000 claims description 21
- 239000003345 natural gas Substances 0.000 claims description 18
- 238000002485 combustion reaction Methods 0.000 claims description 16
- 239000006096 absorbing agent Substances 0.000 claims description 14
- 238000005057 refrigeration Methods 0.000 claims description 14
- 229920006395 saturated elastomer Polymers 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002699 waste material Substances 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 3
- 239000000446 fuel Substances 0.000 description 14
- 230000001105 regulatory effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
技术领域technical field
本实用新型属于分布式能源发电技术领域,具体涉及一种分布式能源环境下的燃气轮机联合循环发电系统。The utility model belongs to the technical field of distributed energy power generation, in particular to a gas turbine combined cycle power generation system in a distributed energy environment.
背景技术Background technique
燃气轮机的作用在于能量转化,主要将燃料的化学能最终转化为机械能,和传统发电设备相比,燃气轮机有着轻便快捷的优势,因为它在设备上省去了不少麻烦,如冷凝器等。而在效率上目前已有40%的成就,联合型的有40至50%,完全不亚于大型设备的转化率。该设备凭借其便捷、灵活以及高效等特点被广泛地运用于各发电站。然而,这一设备并非是完美的,还有着很多的不足,如要求质量更加上乘的燃料、使用年限不长久等。The role of the gas turbine is energy conversion, which mainly converts the chemical energy of the fuel into mechanical energy. Compared with traditional power generation equipment, the gas turbine has the advantage of being light and fast, because it saves a lot of trouble in equipment, such as condensers, etc. At present, the efficiency has reached 40%, and the joint type has 40 to 50%, which is no less than the conversion rate of large-scale equipment. The equipment is widely used in various power stations due to its convenience, flexibility and high efficiency. However, this equipment is not perfect, and there are still many deficiencies, such as requiring higher quality fuel, and the service life is not long.
天然气是一种“零有害排放,少温室排放”的绿色能源。将其作为主要的发电燃料不但能减少对环境造成的污染,而且在利用效率上也具有较大的优势。因为和其他能源比较而言,天然气能够被转化得更加彻底。近几年我国天然气的开采量和消费量在能源份额中的比例逐年增加,西气东输工程也为天然气的大规模利用创造了有利条件,为我国大力发展燃机电厂提供了便利。但是,和未来对天然气的需求相比,我国天然气的供应还相差甚远,不能满足燃气发电的需求。在这种情况下,为提高天然气的利用率和提高燃气轮机联合循环的效率,需要挖掘更多的联合循环系统。Natural gas is a green energy with "zero harmful emissions and less greenhouse emissions". Using it as the main fuel for power generation can not only reduce the pollution to the environment, but also has great advantages in utilization efficiency. Because compared with other energy sources, natural gas can be converted more completely. In recent years, the proportion of natural gas exploitation and consumption in my country's energy share has been increasing year by year. The West-East Gas Transmission Project has also created favorable conditions for the large-scale utilization of natural gas and facilitated the vigorous development of gas turbine power plants in my country. However, compared with the future demand for natural gas, the supply of natural gas in my country is still far behind and cannot meet the demand for gas-fired power generation. In this case, more combined cycle systems need to be excavated in order to increase the utilization rate of natural gas and improve the efficiency of gas turbine combined cycle.
发明内容Contents of the invention
为了克服以上技术问题,本实用新型提供了一种分布式能源环境下的燃气轮机联合循环发电系统,该系统可节能减排,充分利用燃气轮机的余热烟气,充分利用余热资源,减少能源的浪费。In order to overcome the above technical problems, the utility model provides a gas turbine combined cycle power generation system in a distributed energy environment. The system can save energy and reduce emissions, make full use of the waste heat and flue gas of the gas turbine, make full use of waste heat resources, and reduce energy waste.
为了实现上述目的,本实用新型采用的技术方案是:In order to achieve the above object, the technical solution adopted by the utility model is:
一种分布式能源环境下的燃气轮机联合循环发电系统,包括塔式太阳能发电系统100、燃气轮机发电系统200和Kalina循环发电系统300三部分;A gas turbine combined cycle power generation system in a distributed energy environment, including three parts: a tower solar
所述Kalina循环发电系统300对燃气轮机排气进行余热回收,将热能转化为机械能,驱动第二发电机19发电,所述塔式太阳能发电系统100用于增加Kalina循环发电系统300的热量,所述燃气轮机发电系统200用于接收的塔式太阳能发电系统100传递的热量进行发电;The Kalina cycle
所述塔式太阳能发电系统100、燃气轮机发电系统200和Kalina循环发电系统300相互之间耦合。The tower solar
所述塔式太阳能发电系统100包括镜场2,所述镜场2用于反射太阳能1至所述吸热器3,所述吸热器3的入口与熔融盐泵8的出口相连通;所述吸热器3的出口与第一回热器5的热源管道的入口相连通,所述第一回热器5的热源管道的入口经第二回热器6的热源管道与熔融盐罐7的入口相连通,熔融盐罐7的出口连接熔融盐泵8的入口;The tower type solar
所述燃气轮机发电系统200包括用于提供压缩空气的第一压缩机9,第一压缩机9的压缩空气出口连接溴化锂制冷系统10,所述溴化锂制冷系统10用于对出第一压缩机9的压缩空气进行降温,溴化锂制冷系统10通过第二压气机11连接第二回热器6,第二回热器6对天然气和出第二压气机11的压缩空气进行预热,预热后的天然气和压缩空气在燃烧室12中进行燃烧,产生的烟气在燃气透平13中做工,驱动第一发电机14发电;The gas turbine
所述Kalina循环发电系统300包括蒸发器15,所述蒸发器15利用燃气轮机的高温排气进行换热对经第三回热器20换热后的基本氨水溶液进行预热,蒸发器15换热后的基本氨水溶液为两相区的基本氨水溶液,并输出给分离器16,所述分离器16对两相区的基本氨水溶液进行分离,输出饱和富氨蒸汽和饱和贫氨溶液,所述饱和富氨蒸汽通过第一回热器5转变为过热蒸汽,过热蒸汽通过氨气透平18将热能转化为机械能,驱动第二发电机19发电;The Kalina cycle
所述贫氨溶液通过第三回热器20与第一混合器22相连,所述第一混合器22用于将氨气透平18输出的乏汽与降压后饱和贫氨溶液进行等压混合,输出基本氨水溶液混合工质,所述混合器22输出端连接冷凝器23,工质泵24用于为冷凝器23输出的基本氨水溶液增压后输入第三回热器20。The ammonia-poor solution is connected to the
所述第三回热器20与第一混合器22之间设置有用于将高压的贫氨溶液节流降压的节流阀21。A
一种分布式能源环境下的燃气轮机联合循环发电系统的运行方法,包括以下步骤:A method for operating a gas turbine combined cycle power generation system in a distributed energy environment, comprising the following steps:
空气送入第一压缩机9,输出压缩处理后的压缩空气;压缩空气进入溴化锂制冷系统10,吸收第一压缩机9出口压缩空气的热量,压缩空气在溴化锂制冷系统10中降温、降压;Air is sent into the first compressor 9, and the compressed air after the output compression treatment is processed; the compressed air enters the lithium
降温后的压缩空气被送入第二压气机11,压缩成高压的空气;压缩空气与燃料共同被第二回热器6预热,预热后一同送入燃烧室12中混合燃烧,产生烟气;烟气在燃气透平13中膨胀做功,用于带动第一发电机14产生电能;The cooled compressed air is sent to the
熔融盐在吸热器3中吸收太阳能,熔融盐温度升高,高温的熔融盐一部分进入第一回热器5,将热量传递给饱和的富氨蒸汽,产生过热蒸汽,提高了氨气透平18的进气温度;另一部分在第一调节阀4的作用下,控制熔融盐释放给燃料和压缩空气的热量,其中第一调节阀4开度越大,释放给压缩空气和天然气的热量越高;The molten salt absorbs solar energy in the heat absorber 3, the temperature of the molten salt rises, and a part of the high-temperature molten salt enters the first regenerator 5, and transfers heat to the saturated ammonia-rich steam to generate superheated steam, which improves the efficiency of the ammonia turbine. 18 intake air temperature; the other part controls the heat released by the molten salt to the fuel and compressed air under the action of the first regulating valve 4, wherein the larger the opening of the first regulating valve 4, the more heat released to the compressed air and natural gas high;
燃气轮机的排气在蒸发器15中释放热量给基本氨水溶液,升温后的基本氨水溶液进入分离器16,分离成富氨蒸汽和贫氨溶液;富氨蒸汽经第一回热器5后,转变为过热蒸汽,在氨气透平18中膨胀做功,氨气透平18的排汽与贫氨溶液进行混合,产生基本氨水溶液,之后在冷凝器23中放热,冷凝器23出口的基本氨水溶液经工质泵加压,产生高压的基本氨水溶液,基本氨水溶液分别流经第三回热器20后送至蒸发器15,最终完成整个热力循环。The exhaust gas of the gas turbine releases heat to the basic ammonia solution in the
本实用新型的有益效果:The beneficial effects of the utility model:
本实用新型的系统可节能减排,将塔式太阳能发电系统、燃气轮机发电系统和Kalina循环发电系统进行耦合,充分利用了清洁的太阳能资源和成本低的氨水工质,采用Kalina循环发电系统对燃气轮机排气进行余热回收,避免了高品质热能的浪费。另外,本实用新型的系统具有多元化形式,使得系统小而灵活,相比于传统的燃气蒸汽联合循环,本实用新型采用对压缩空气进行了降温,减小了压缩机的耗功。The system of the utility model can save energy and reduce emissions. The tower solar power generation system, the gas turbine power generation system and the Kalina cycle power generation system are coupled to make full use of clean solar energy resources and low-cost ammonia water. The Kalina cycle power generation system is used to control the gas turbine Waste heat is recovered from the exhaust, avoiding the waste of high-quality heat energy. In addition, the system of the utility model has multiple forms, which makes the system small and flexible. Compared with the traditional gas-steam combined cycle, the utility model adopts the method of cooling the compressed air, which reduces the power consumption of the compressor.
本实用新型中,采用太阳能为燃气蒸汽联合循环提供稳定的能量输入,一方面节省燃料,另一方面实现了节能减排。具体的,本实用新型采用太阳能对饱和的富氨蒸汽进行加热,增加了输入Kalina循环发电系统的热量,提高了进入氨气透平的进气温度,益于提高蒸汽轮机的做功能力。除此外,采用熔融盐对燃烧室前的燃料和压缩空气进行预热,减小了燃烧室的热损失,降低了燃料的消耗量。In the utility model, solar energy is used to provide stable energy input for the gas-steam combined cycle, which saves fuel on the one hand, and realizes energy saving and emission reduction on the other hand. Specifically, the utility model uses solar energy to heat the saturated ammonia-rich steam, which increases the heat input to the Kalina cycle power generation system, improves the intake temperature of the ammonia gas turbine, and is beneficial to improving the working capacity of the steam turbine. In addition, the use of molten salt to preheat the fuel and compressed air in front of the combustion chamber reduces the heat loss of the combustion chamber and reduces fuel consumption.
附图说明Description of drawings
图1是本实用新型实施例的一种新型燃气轮机联合循环发电系统的示意图。Fig. 1 is a schematic diagram of a new gas turbine combined cycle power generation system according to an embodiment of the present invention.
图中,100、塔式太阳能发电系统;200、燃气轮机发电系统;300、Kalina循环发电系统;In the figure, 100, tower solar power generation system; 200, gas turbine power generation system; 300, Kalina cycle power generation system;
1、太阳;2、镜场;3、吸热器;4、第一调节阀;5、第一回热器、6、第二回热器、7、熔融盐罐;8、熔融盐泵1. Sun; 2. Mirror field; 3. Heat absorber; 4. First regulating valve; 5. First regenerator; 6. Second regenerator; 7. Molten salt tank; 8. Molten salt pump
9、第一压缩机;10、溴化锂制冷系统;11、第二压气机;12、燃烧室;13、燃气透平;14、第一发电机9. First compressor; 10. Lithium bromide refrigeration system; 11. Second compressor; 12. Combustion chamber; 13. Gas turbine; 14. First generator
15、蒸发器;16、分离器;17、第二调节阀;18、氨气透平;19、第二发电机;20、第三回热器;21、节流阀;22、混合器;23、冷凝器;24、工质泵。15. Evaporator; 16. Separator; 17. Second regulating valve; 18. Ammonia turbine; 19. Second generator; 20. Third regenerator; 21. Throttle valve; 22. Mixer; 23. Condenser; 24. Working medium pump.
具体实施方式detailed description
下面结合附图对本实用新型作进一步详细说明。Below in conjunction with accompanying drawing, the utility model is described in further detail.
参考图1,本实用新型的一种基于分布式能源环境下的燃气轮机Kalina联合循环发电系统,包括三个部分:Referring to Fig. 1, a gas turbine Kalina combined cycle power generation system based on a distributed energy environment of the present utility model includes three parts:
第一部分为塔式太阳能发电系统100,包含:太阳能1、镜场2、吸热器3、第一调节阀4、第一回热器5、第二回热器6、熔融盐罐7、熔融盐泵8等部件组成。The first part is a tower solar
所述镜场2用于反射太阳能1至所述吸热器3;The mirror field 2 is used to reflect solar energy 1 to the heat absorber 3;
所述吸热器3的入口经所述熔融盐泵8与所述熔融盐罐7的出口相连通;所述吸热器3的出口与所述第一回热器5和所述第二回热器6的热源管道的入口相连通;The inlet of the heat absorber 3 communicates with the outlet of the molten salt tank 7 through the molten salt pump 8; the outlet of the heat absorber 3 is connected to the first regenerator 5 and the second regenerator. The inlet of the heat source pipeline of heater 6 is connected;
所述第一回热器5的热源管道的入口经所述第二回热器6的热源管道与所述熔融盐罐7的入口相连通;The inlet of the heat source pipeline of the first regenerator 5 communicates with the inlet of the molten salt tank 7 through the heat source pipeline of the second regenerator 6;
第二部分为燃气轮机发电系统200,包含:第一压缩机9、溴化锂制冷系统10、第二压气机11、燃烧室12、燃气透平13、第一发电机14等部件。The second part is a gas turbine
所述第一压缩机9用于获取压缩空气;The first compressor 9 is used to obtain compressed air;
所述溴化锂制冷系统10采用溴化锂作为制冷剂,对第一压缩机9出口的空气进行降温;The lithium
所述第二回热器6,用于高温的熔融盐释放热量给第二压气机11的压缩空气和天然气;The second regenerator 6 is used for the high-temperature molten salt to release heat to the compressed air and natural gas of the
所述燃烧室12,用于预热后的天然气和压缩空气的混合燃烧,产生高温高压的烟气;The
燃气透平13,用于输入所述燃烧室12输出的烟气并进行膨胀做功,以驱动第一发电机14发电。The
第三部分为Kalina循环发电系统300,包含:蒸发器15、分离器16、第二调节阀17、氨气透平18、第二发电机19、第三回热器20、节流阀21、混合器22、冷凝器23、工质泵24。The third part is the Kalina cycle
所述蒸发器15,用于在所述第三回热器20换热后的基本氨水溶液与燃气轮机的高温排气进行换热;蒸发器15换热后的基本氨水溶液为两相区的基本氨水溶液,用于输出给所述分离器16;The
所述分离器16,用于输入两相区的基本氨水溶液并进行分离,输出饱和富氨蒸汽和饱和贫氨溶液;The
所述第一回热器5,用于利用所述塔式太阳能系统的高温熔融盐释放热能给分离器16输出的饱和富氨蒸汽,将饱和的富氨蒸汽转变为过热蒸汽;The first regenerator 5 is used to use the high-temperature molten salt of the tower solar system to release heat energy to the saturated ammonia-rich steam output by the
所述氨气透平18,用于将所述第一回热器5加热后的过热蒸汽的热能转化为机械能,以驱动第二发电机19发电;The
所述第二发电机19,用于将机械能转化为电能;The
所述节流阀21,用于将高压的贫氨溶液节流降压;The
所述第一混合器22,用于将氨气透平18输出的乏汽与降压后饱和贫氨溶液进行等压混合,输出基本氨水溶液混合工质;The
所述冷凝器23,用于将所述混合器22输出的基本氨水溶液混合工质凝结成过冷的基本氨水溶液;The
所述工质泵24,用于基本氨水溶液增压;The working medium pump 24 is used for pressurizing the basic ammonia solution;
所述第三回热器20中,饱和贫氨溶液用于加热过冷的基本氨水溶液,使其温度升高。In the
本实用新型的进一步改进在于,所述溴化锂吸收制冷系统10为压缩空气进行降温,充分利用空气的热胀冷缩原理,减小了压缩机的耗功,对压缩空气进行二次压缩,提高了压缩空气进入燃烧室的压力,使得燃气透平13进口的烟气具有更高的压力,提高了透平的膨胀做功;The further improvement of the utility model is that the lithium bromide
本实用新型的进一步改进在于,对天然气和第二压气机11出口的压缩空气一同输入到第二回热器6中,使得高温的熔融盐对其释放热量,减小了燃烧室的热损失,并充分利用太阳能,降低了对天然气燃料的消耗,益于节能减排;The further improvement of the utility model is that the natural gas and the compressed air from the outlet of the
本实用新型的进一步改进在于,对于燃气轮机的高温排气,采用Kalina循环作为底循环,充分利用烟气余热,Kalina循环以氨水作为工质,且重复利用,成本低等优点;The further improvement of the utility model is that for the high-temperature exhaust of the gas turbine, the Kalina cycle is used as the bottom cycle to make full use of the waste heat of the flue gas. The Kalina cycle uses ammonia water as the working medium, and has the advantages of repeated utilization and low cost;
本实用新型的进一步改进在于,采用塔式太阳能系统100中的高温熔融盐对分离器16出口的富氨蒸汽进行加热,提高了氨气透平18的进口温度,使得氨气透平18的做功能力增大;The further improvement of the utility model is that the high-temperature molten salt in the tower
本实用新型的进一步改进在于,对氨气透平18进行了中间级补汽,通过调整第二调节阀的阀门空度,控制补汽阀的进汽流量,用于调整氨气透平18的做功能力。The further improvement of the utility model is that the
实施例:Example:
本实用新型实施例的一种分布式能源环境下的燃气轮机联合循环发电系统,包括三个部分,分别是塔式太阳能发电系统100、燃气轮机发电系统200、Kalina循环发电系统300等组成。A gas turbine combined cycle power generation system in a distributed energy environment according to an embodiment of the utility model includes three parts, namely a tower solar
所述的塔式太阳能发电系统100,白天产生的太阳能通过镜场2的反射作用,在吸热器3中熔融盐吸收热能,熔融盐在吸热器中温度升高,高温的熔融盐一部分进入第一回热器5,在回热器中释放热量给富氨蒸汽,使其转变为过热蒸汽。塔式太阳能发电系统100采用旁路控制的方式,一部分高温的熔融盐通过第一调节阀4进入第二回热器6中,通过控制第一调节阀4的阀门开度,控制熔融盐在第二回热器6中的放热量,当第一调节阀4开度增大时,意味着在第二回热器6中的放热量增大,从而达到控制压缩空气和天然气燃料的加热程度。In the tower solar
所述的燃气轮机发电系统200,空气首先被送入第一压缩机9,压缩机消耗功率,将常温常压的空气压缩成高压的空气;进一步地,为了将高压的空气实现进一步压缩,对高压的空气进行降温,因此,高压的空气被送入溴化锂制冷系统10,在溴化锂制冷系统10中高压的压缩空气降温,由于空气的热胀冷缩,压缩空气的温度压力均降低;进一步地,降温降压后的压缩空气被送入第二压缩机11,压缩空气的压力再次升高,压力再次升高的压缩空气与燃料被送入第二回热器6,被来自第三部分的塔式太阳能系统中高温的熔融盐加热,对压缩空气和燃料进行预热,减小了燃烧室12内部的热损失,燃烧室12中产生的高温高压烟气首先被送入燃气透平13,燃气透平中将高温高压烟气的热能转变为机械能,在第一发电机14中将机械能转变为电能。In the gas turbine
所述的Kalina循环发电系统300,采用多级回热的方式,在Kalina循环发电系统300主要包括蒸发器15、分离器16、第二调节阀17、氨气透平18、第二发电机19、第三回热器20、节流阀21、混合器22、冷凝器23、工质泵24等几个部分;其中,燃气轮机发电系统200中燃气透平13的排气被送入蒸发器中释放热量给基本氨水溶液,基本氨水溶液进入第一蒸发器中,吸收烟气余热,从过冷区进去两相区,升温后的氨水溶液进入分离器中分离,分别分离出饱和的富氨蒸汽和贫氨溶液;饱和的富氨蒸汽进入第一回热器5中,高温的熔融盐释放热能给饱和的富氨蒸汽,使其温度再次升高,转变为过热蒸汽,过热蒸汽进入氨气透平18中膨胀做功,氨气透平采用中间级进汽的方式,通过控制第二调节阀17的开度,调节进入氨气透平的补汽流量,氨气透平18与第二发电机19采用同轴布置,高速旋转的转子带动发电机进行发电,在氨气透平18中完成膨胀做功的富氨蒸汽进入混合器22中。The Kalina cycle
分离器16下端出口的饱和贫氨溶液在第三回热器20中释放一部分热能;降温后的贫氨溶液在节流阀21的作用下,实现节流降压,降压至氨气透平的背压一致;与富氨蒸汽在混合器22中等压混合,产生基本氨水溶液;混合后的基本氨水溶液进入冷凝器中被冷却水冷凝成过冷液体;在工质泵24的作用下,升高压力,基本氨水溶液被送至第三回热器20中吸收高温的贫氨溶液的热能,完成整个高温Kalina的热力循环。The saturated ammonia-lean solution at the outlet of the lower end of the
综上所述,本实用新型公开了一种分布式能源环境下的燃气轮机联合循环发电系统,包含了塔式太阳能发电系统、燃气轮机发电系统、Kalina循环发电系统等部分构成,利用太阳能发电系统对燃烧室前的燃料、压缩空气和氨气透平前的富氨蒸汽进行加热,减少了对天然气燃料的消耗,分利用了清洁的太阳能资源和成本低的氨水工质。除此外,采用Kalina循环发电系统对燃气轮机排气进行余热回收,避免了高品质热能的浪费。另外,本实用新型的系统具有多元化形式,使得系统小而灵活。In summary, the utility model discloses a gas turbine combined cycle power generation system in a distributed energy environment, which includes a tower solar power generation system, a gas turbine power generation system, and a Kalina cycle power generation system. The fuel in front of the room, the compressed air and the ammonia-rich steam in front of the ammonia turbine are heated, which reduces the consumption of natural gas fuel, and makes full use of clean solar energy resources and low-cost ammonia water working medium. In addition, the Kalina cycle power generation system is used to recover waste heat from the exhaust gas of the gas turbine, which avoids the waste of high-quality heat energy. In addition, the system of the present invention has multiple forms, making the system small and flexible.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123229660.1U CN217976391U (en) | 2021-12-21 | 2021-12-21 | Gas turbine combined cycle power generation system under distributed energy environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123229660.1U CN217976391U (en) | 2021-12-21 | 2021-12-21 | Gas turbine combined cycle power generation system under distributed energy environment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217976391U true CN217976391U (en) | 2022-12-06 |
Family
ID=84254789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202123229660.1U Active CN217976391U (en) | 2021-12-21 | 2021-12-21 | Gas turbine combined cycle power generation system under distributed energy environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217976391U (en) |
-
2021
- 2021-12-21 CN CN202123229660.1U patent/CN217976391U/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107630726B (en) | A multi-energy hybrid power generation system and method based on supercritical carbon dioxide cycle | |
US10247050B2 (en) | Energy tower of multi-energy-form output for stepwise recovering waste heat of a gas engine | |
CN110887278B (en) | Energy self-sufficient carbon dioxide cogeneration system for low-grade heat source | |
CN111022138A (en) | Supercritical carbon dioxide power generation system based on absorption heat pump waste heat recovery | |
CN113090507B (en) | Combined cooling, heating and power system and method based on compressed air energy storage and organic Rankine cycle | |
CN111365131B (en) | Power-cooling combined supply system driven by exhaust smoke waste heat of gas turbine and method thereof | |
CN108397936A (en) | A kind of Combined cold-heat-power supplying circulation system and method | |
CN108798898B (en) | System and method for supplying steam and hot water by combining proton exchange membrane fuel cell and gas turbine | |
CN114135398A (en) | A gas turbine combined cycle power generation system and method in a distributed energy environment | |
CN113803166B (en) | Cold-heat poly-generation coupling system based on gas turbine Kalina combined cycle and operation method | |
CN109915219B (en) | Energy supply system and method integrating fuel cell and supercritical carbon dioxide solar thermal power generation | |
CN111384782A (en) | Clean energy storage system and energy storage method | |
CN215566144U (en) | Combined cycle power generation system | |
CN114934843A (en) | Multi-energy efficient complementary integrated dual-pressure ORC combined cycle power generation system | |
CN207348915U (en) | Multipotency hybrid power system based on supercritical carbon dioxide circulation | |
CN212837979U (en) | Organic Rankine cycle power generation system capable of realizing waste heat gradient utilization | |
CN217976391U (en) | Gas turbine combined cycle power generation system under distributed energy environment | |
CN216077330U (en) | Combined cooling heating and power coupling device based on gas turbine Kalina combined cycle | |
CN113309612B (en) | Cogeneration system of combined pressure energy, compressed air energy storage and solar energy | |
CN115164266A (en) | Heating system for coupling compressed air energy storage and absorption heat pump and operation method | |
CN216518290U (en) | Waste heat recovery device of gas turbine | |
CN110905611A (en) | Combined supply system based on organic Rankine cycle and supercritical carbon dioxide cycle | |
CN115095899B (en) | Coal-fired unit coupled compressed air energy storage waste heat supply system and operation method | |
CN221032783U (en) | Gas-steam combined cycle refrigeration system coupled with solar thermal power generation | |
CN114370719B (en) | Multi-combined supply system fully utilizing photovoltaic heat and geothermal energy and working method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |