CN217010858U - 一种射频电路和电子设备 - Google Patents
一种射频电路和电子设备 Download PDFInfo
- Publication number
- CN217010858U CN217010858U CN202220258387.0U CN202220258387U CN217010858U CN 217010858 U CN217010858 U CN 217010858U CN 202220258387 U CN202220258387 U CN 202220258387U CN 217010858 U CN217010858 U CN 217010858U
- Authority
- CN
- China
- Prior art keywords
- wifi
- cellular
- frequency band
- circuit
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/401—Circuits for selecting or indicating operating mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
- H04B1/52—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
- H04B1/525—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Noise Elimination (AREA)
Abstract
一种射频电路和电子设备,所述射频电路包括工作在第一频段的WiFi射频电路和工作在第二频段的蜂窝射频电路,第一频段的WiFi信号与第二频段的蜂窝信号之间存在邻频干扰,通过在WiFi前端电路和蜂窝前端电路中设置有共存滤波器的通路和无共存滤波器的通路,可以在该两个射频电路同时工作时,通过有共存滤波器的通路避免互扰,在该两个射频电路不同时工作,通过无共存滤波器的通路减少插损,提升性能。
Description
技术领域
本公开涉及但不限于无线通信技术,更具体地,涉及一种射频电路和电子设备。
背景技术
随着通信技术的快速发展,蜂窝移动通信(下文简称为蜂窝或蜂窝通信) 进入5G时代。在5G新空口(5G New Radio,简称5GNR)这一基于正交频分复用(OrthogonalFrequency Division Multiplexing,简称OFDM)的全新空口设计的全球性5G(第五代移动通信)通信标准中,对5G频谱进行了扩展,在Sub6G(频率低于6GHz的电磁波)的频段中新增了3.3G到5G之间多个频段,其中包括频率范围为4.4GHz-5GHz的N79频段。而基于IEEE802.11这一无线局域网通信标准的WiFi5G,常用频段的频率范围包括5.15GHz -5.835GHz,文中将该频段简称为5G频段。由于N79频段和5G频段的频率间隔仅有150MHz,加之n79频段的带宽较宽,工作在N79频段的蜂窝信号和工作在5G频段的Wi-Fi信号之间存在较为严重的邻频干扰。
实用新型内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开一实施例提供了一种射频电路,包括工作在第一频段的WiFi射频电路和工作在第二频段的蜂窝射频电路,所述第一频段的WiFi信号与所述第二频段的蜂窝信号之间存在邻频干扰,其中:
所述工作在第一频段的WiFi射频电路包括WiFi收发机及一个或多个 WiFi前端电路,其中至少一个WiFi前端电路设置有两个通路:无WiFi共存滤波器的通路和有WiFi共存滤波器的通路,且能够在所述无WiFi共存滤波器的通路和有WiFi共存滤波器的通路之间切换;
所述工作在第二频段的蜂窝射频电路包括蜂窝收发机及一个或多个蜂窝前端电路,其中至少一个蜂窝前端电路设置有两个通路:无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路,且能够在所述无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路之间切换。
本公开一实施例还提供了一种电子设备,包括:设备本体;及,如本公开任一实施例所述的射频电路,所述射频电路设置在所述设备本体上。
本公开实施例的射频电路和电子设备,通过设置有共存滤波器和无共存滤波器的通路,可以实现第一频段的WiFi射频电路和第二频段的蜂窝射频电路同时工作时,使用共存滤波器解决互扰问题,而不同时工作时可以切换到无共存滤波器的通路以减少射频链路插损,提升性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开实施例的理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本公开一实施例射频电路的示意图;
图2是本公开另一实施例射频电路的示意图;
图3是一种只设置有共存滤波器通路的射频电路的示意图;
图4是本公开一实施例信号传输控制方法中WiFi信号的传输控制过程的流程图;
图5是本公开一实施例信号传输控制方法中蜂窝信号的传输控制过程的流程图;
图6是本公开一实施例信号传输控制装置的示意图。
具体实施方式
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。
本公开的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开中被描述为“示例性的”或者“例如”的任何实施例不应被解释为比其他实施例更优选或更具优势。本文中的“和/或”是对关联对象的关联关系的一种描述,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“多个”是指两个或多于两个。另外,为了便于清楚描述本公开实施例的技术方案,使用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在描述具有代表性的示例性实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/ 或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
工作在N79频段的蜂窝信号和工作在5G频段的WiFi信号之间存在邻频干扰,需要克服。与此相类似的,4G的蜂窝移动通信技术使用的B40频段和B41频段与WiFi通信使用的2.4G频段完全挨在一起,会造成当工作于 B40频段或B41频段的4G通信和工作于2.4G频段的WiFi通信共同开启时,双方的发射杂散信号都会落在对方的工作频段内,从而造成干扰。
本公开一实施例提供了一种射频电路,如图1所示,该射频电路包括工作在第一频段的WiFi射频电路20和工作在第二频段的蜂窝射频电路30,所述第一频段与第二频段相邻,其中:工作在第一频段的WiFi射频电路20包括WiFi收发机201及一个或多个WiFi前端电路,其中至少一个WiFi前端电路203设置有两个通路:无WiFi共存滤波器2037的通路和有WiFi共存滤波器2037的通路,且能够在所述无WiFi共存滤波器2037的通路和有WiFi 共存滤波器2037的通路之间切换。工作在第二频段的蜂窝射频电路30包括蜂窝收发机301及一个或多个蜂窝前端电路,其中,至少一个蜂窝前端电路 303设置有两个通路:无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路,且能够在所述无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路之间切换。
图1的示例中,WiFi射频电路20和蜂窝射频电路30均与处理器10连接。文中的前端电路指用于射频信号收发的电路,至少包括前端模块和天线。
本实施例的设置有两个通路的WiFi前端电路能够在无WiFi共存滤波器的通路和有WiFi共存滤波器的通路之间切换,设置有两个通路的蜂窝前端电路能够在无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路之间切换。这样在WiFi射频电路20和蜂窝射频电路30同时工作,会发生较大的相互干扰时,设置有两个通路的WiFi前端电路可以切换到有WiFi共存滤波器的通路,通过WiFi共存滤波器滤除邻近的第二频段的蜂窝信号的干扰,达到 WiFi信号的传输质量要求,而在蜂窝射频电路30不工作即不收发第二频段的蜂窝信号时,设置有两个通路的WiFi前端电路可以切换到无WiFi共存滤波器的通路,避免共存滤波器的插损导致WiFi信号的传输质量下降。
本实施例在工作于第一频段的WiFi射频电路20和工作于第二频段的蜂窝射频电路30同时工作时,设置有两个蜂窝前端电路也可以切换到有蜂窝共存滤波器的通路,通过蜂窝共存滤波器滤除邻近的第一频段的WiFi信号,以达到蜂窝信号的传输质量要求,而在WiFi射频电路20不工作即不收发第一频段的WiFi信号时,设置有两个蜂窝前端电路可以切换到无蜂窝共存滤波器的通路,避免共存滤波器的插损导致蜂窝信号的传输质量下降。
本实施例的射频电路可以用于客户前置设备(Customer Premise Equipment,简称CPE),很好地解决CPE所存在的N79频段的蜂窝射频电路和5G频段的WiFi射频电路同时工作时信号的相互干扰,另外在N79 频段的蜂窝射频电路和5G频段的WiFi射频电路不需要同时工作时,能够避免共存滤波器的高插损,提升N79和WiFi 5G射频链路的性能。
需要说明的是,也可以只在WiFi射频电路中设置有两个通路的WiFi前端电路,或者只在蜂窝射频电路中设置有两个通路的蜂窝前端电路,对于没有设置两个通路的蜂窝射频电路或WiFi射频电路可以采用其他的方式来避免干扰,例如在前端电路中只设置存在共存滤波器的通路,这样在整体上仍可以取得良好的效果。
在本公开一示例性的实施例中,所述第一频段为5G频段,所述第二频段为N79频段;或者,所述第一频段为2.4G频段,所述第二频段为B40频段;或者,所述第一频段为2.4G频段,所述第二频段为B41频段。
本公开以下的实施例以第一频段为5G频段,所述第二频段为N79频段为例进行说明,但是,这些实施例也适应用于第一频段为2.4G频段,第二频段为B40频段,以及第一频段为2.4G频段,第二频段为B41频段的场景。
在本公开一示例性的实施例中,请参见图1,设置有两个通路的WiFi 前端电路203包括WiFi前端模块2031、WiFi切换开关2033、WiFi共存滤波器2037、第一WiFi天线2035和第二WiFi天线2039,其中,WiFi切换开关2033设置为响应于第一WiFi通路控制信号,接通WiFi前端模块2031和第一WiFi天线2035构成的无WiFi共存滤波器的通路,或者,响应于第二WiFi通路控制信号,接通WiFi前端模块2031、WiFi共存滤波器2037和第二WiFi天线2039构成的有WiFi共存滤波器的通路。
在本实施例的一个示例中,WiFi切换开关2033为单刀双掷开关,所述单刀双掷开关的固定端与WiFi前端模块2031连接,第一切换端与第一WiFi 天线2035连接,第二切换端与WiFi共存滤波器2037的一端连接,WiFi共存滤波器2037的另一端与第二WiFi天线2039连接。
在本实施例的一个示例中,WiFi收发机201设置为检测到蜂窝通信未工作在N79频段的情况下(包括蜂窝通信未工作的情况),向WiFi切换开关 2033发送第一WiFi通路控制信号,接通无WiFi共存滤波器的通路,此时 WiFi前端模块2031与WiFi共存滤波器2037、第二WiFi天线2039连接,接收的信号会经过WiFi共存滤波器滤波,抑制N79频段的蜂窝信号的干扰;及在检测到蜂窝通信工作在N79频段的情况下,向WiFi切换开关2033发送第二WiFi通路控制信号,接通有WiFi共存滤波器的通路,此时WiFi前端模块2031与第一WiFi天线2035连接,因为此时蜂窝通信不会发送N79频段的蜂窝信号,不存在邻频干扰,第一WiFi天线2035接收的信号不需要经过WiFi共存滤波器滤波。
虽然本示例是由WiFi收发机201向WiFi切换开关2033发送第一WiFi 通路控制信号和第二WiFi通路控制信号,但这仅仅是示例性的。例如,在其他示例中,也可以由处理器10向WiFi切换开关2033发送第一WiFi通路控制信号和第二WiFi通路控制信号。该第一WiFi通路控制信号和第二WiFi 通路控制信号可以对应于同一通路控制信号的两个不同取值,例如值为1时为第一WiFi通路控制信号,值为0时为第二WiFi通路控制信号,或者相反。在图1中,WiFi收发机201是通过通用型输入输出(General-purpose input/output,简称GPIO)的接口向WiFi切换开关2033发送第一WiFi通路控制信号和第二WiFi通路控制信号,但也可以通过其他类型的接口发送。
在本公开一示例性的实施例中,请参见图1,设置有两个通路的蜂窝前端电路303包括蜂窝前端模块3031、蜂窝切换开关3033、蜂窝共存滤波器 3037、第一蜂窝天线3035和第二蜂窝天线3039,其中,蜂窝切换开关3033 设置为响应于第一蜂窝通路控制信号,接通蜂窝前端模块3031和第一蜂窝天线3035构成的无蜂窝共存滤波器的通路,或者,响应于第二蜂窝通路控制信号,接通蜂窝前端模块3031、蜂窝共存滤波器3037和第二蜂窝天线3039构成的有蜂窝共存滤波器的通路。
在本实施例的一个示例中,蜂窝切换开关3033为单刀双掷开关,所述单刀双掷开关的固定端与蜂窝前端模块3031连接,第一切换端与第一蜂窝天线 3035连接,第二切换端与蜂窝共存滤波器3037的一端连接,蜂窝共存滤波器3037的另一端与第二蜂窝天线3039连接。
在本实施例的一个示例中,蜂窝收发机301设置为检测到WiFi通信未工作在5G频段的情况下(包括WiFi通信未工作的情况),向蜂窝切换开关 3033发送第一蜂窝通路控制信号,接通无蜂窝共存滤波器的通路,此时蜂窝前端模块3031与蜂窝共存滤波器3037、第二蜂窝天线3039连接,接收的信号会经过蜂窝共存滤波器滤波,抑制G5频段的WiFi信号的干扰;及在检测到WiFi通信工作在G5频段的情况下,向蜂窝切换开关3033发送第二蜂窝通路控制信号,接通有蜂窝共存滤波器的通路,此时蜂窝前端模块3031与第一蜂窝天线3035连接,因为此时WiFi通信不会发送G5频段的WiFi信号,不存在邻频干扰,第一蜂窝天线3035接收的信号可以不经过蜂窝共存滤波器滤波。
虽然本示例是由蜂窝收发机301向蜂窝切换开关3033发送第一蜂窝通路控制信号和第二蜂窝通路控制信号,但这仅仅是示例性的。例如,在其他示例中,也可以由处理器10向蜂窝切换开关3033发送第一蜂窝通路控制信号和第二蜂窝通路控制信号。该第一蜂窝通路控制信号和第二蜂窝通路控制信号可以对应于同一通路控制信号的两个不同取值。在图1中,蜂窝收发机301 是通过GPIO接口向蜂窝切换开关3033发送第一蜂窝通路控制信号和第二蜂窝通路控制信号,但并不局限于此。
本公开一实施例还提供了一种电子设备,所述电子设备包括:
设备本体;
如本公开任一实施例所述的射频电路,所述射频电路设置在所述设备本体上。
在本公开一示例性实施例中,所述电子设备为客户前置设备。
WiFi射频电路20中的WiFi收发机201可以设置为完成数字信号到射频信号的转换和逆转换过程。处理器10编码得到的数字信号送入WiFi收发机 201后,经过封装成帧,数模信号的转换、调制、上变频等过程,最终生成了相应的WiFi信号。或者,接收到的WiFi信号在WiFi收发机201中经过一系列逆过程如下变频,解调,模数信号的转换,解封装等过程,再送到处理器进行解码和后续的信号处理。WiFi前端电路203中的WiFi前端模块2031 设置成将发射的射频信号放大以提高发射功率,增加传输距离,以及将接收的射频信号经过低噪声放大器放大以提高接收灵敏度,提高接收距离,还可以用于将部分发射功率连接反馈到WiFi收发机201以实现功率控制。WiFi 前端电路203中的第一WiFi天线2035和第二WiFi天线2039设置成将传导的信号转换成无线信号发送到空气中。
蜂窝射频电路30中的蜂窝收发机301完成的功能与WiFi收发机201类似,蜂窝前端电路303中的蜂窝前端模块3031、第一蜂窝天线3035和第二蜂窝天线3039与WiFi前端电路203中的WiFi前端模块2031、第一WiFi 天线2035和第二WiFi天线2039的功能也是类似的,只是传输的信号是蜂窝信号而不是WiFi信号。这里不再赘述。
在本实施例的一示例中,同一WiFi前端电路203的两支WiFi天线之间,以及同一蜂窝前端电路303的两支蜂窝天线之间可以靠近设置,使得两支天线的环境相似,避免因为环境上的差异(如一支天线所处环境无遮挡物而另一支天线所处球境有遮挡物),导致数据传输质量的突变。
共存滤波器可以提供频段之间的高隔离、高抑制。本文中的WiFi共存滤波器可以通过第一频段(如5G频段)的WiFi信号,同时对第二频段(如 N79频段)的蜂窝信号的抑制能力能够满足至少25dB的要求。类似的,本文中的蜂窝共存滤波器可以通过第二频段(如N79频段)的蜂窝信号,同时对第一频段(如5G频段)的WiFi信号的抑制能力能够满足至少25dB的需要。一个示例中,WiFi共存滤波器具备对N79全频段的35dB的抑制能力,蜂窝共存滤波器具备对WiFi 5G全频段的35dB的抑制能力。
图1的示例示出了2个WiFi前端电路203,这两个WiFi前端电路203 结构相同,均包括无WiFi共存滤波器的通路和有WiFi共存滤波器的通路,但是本公开的其他示例中,WiFi射频电路20中也可以有部分WiFi前端电路只设置有无WiFi共存滤波器的通路。相似的,图1示出了2个蜂窝前端电路303,这两个蜂窝前端电路303结构相同,均包括无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路,但是本公开不局限于此。蜂窝射频电路30 中也可以有部分蜂窝前端电路只设置有无蜂窝共存滤波器的通路。
在本公开一示例性的实施例中,设置有两个通路的WiFi前端电路中的 WiFi天线与所述工作在N79频段的蜂窝射频电路中的至少一个蜂窝天线之间的天线隔离度小于预设的通信隔离度阈值;设置有两个通路的蜂窝前端电路中的蜂窝天线与所述工作在5G频段的WiFi射频电路中的至少一个WiFi 天线之间的天线隔离度小于预设的通信隔离度阈值。
本实施例工作在5G频段的WiFi射频电路可以包括2个或3个或4个或更多个WiFi前端电路;工作在N79频段的蜂窝射频电路可以包括1个或2 个或3或4个或更多个蜂窝前端电路。这些WiFi前端电路可以有一部分只设置无WiFi共存滤波器的通路,这些蜂窝前端电路也可以有一部分只设置无蜂窝共存滤波器的通路。例如,如果空间允许,一个蜂窝前端电路中的蜂窝天线和一个WiFi前端电路中的WiFi天线之间的距离足够远,两者之间的天线隔离度能够满足预设的通信隔离度阈值,则该蜂窝前端电路和该WiFi 前端电路可以只设置无共存滤波器的通路。通信隔离度阈值是天线之间的信号传输不会产生相互干扰的情况下允许的天线之间隔离度的下限值,可以用天线之间的距离表示,在本实施例中,可以针对5GNR和WIFI 5G共存场景下的工程经验或者实验仿真数据预先设置。
图2所示的示例中,WiFi射频电路20包括2个WiFi前端电路,其中一个WiFi前端电路203包括两个通路即有WiFi共存滤波器2037的通路和无 WiFi共存滤波器2037的通路。另一个WiFi前端电路203’只设置了无WiFi 共存滤波器的通路,该WiFi前端电路203’中的WiFi天线与工作在N79频段的蜂窝射频电路30中的蜂窝天线之间均满足天线隔离度的要求。同样,蜂窝射频电路30包括2个蜂窝前端电路,其中一个蜂窝前端电路303包括两个通路即有蜂窝共存滤波器3037的通路和无蜂窝共存滤波器3037的通路,另一个蜂窝前端电路303’只设置了无蜂窝共存滤波器的通路,该蜂窝前端电路 303’中的蜂窝天线与工作在5G频段的WiFi射频电路20中的WiFi天线之间均满足天线隔离度的要求。
虽然拉远WiFi射频电路和蜂窝射频电路的天线之间的距离可以避免天线之间的相互干扰,但在实际产品中往往没有足够的空间来满足这一要求,特别在布设的射频电路的数量和类型较多的情况下。
为了解决N79频段的蜂窝信号与5G频段的WiFi之间的邻频干扰,还可以采用其他的解决方案,例如,在触发蜂窝通信工作于N79频段之前,如果WiFi的工作频段为5G频段,就先将WiFi的工作频段切换为其他频段如2.4 频段,而只要蜂窝通信工作于N79频段,就不允许将WiFi的工作频段切换回5G频段。或者,在触发WiFi通信工作于5G频段之前,使得蜂窝通信工作于N79频段之外的其他频段,如果WiFi工作于5G频段,就不允许将蜂窝通信的工作频段切换到N79频段。这种方式是通过切换蜂窝或者WiFi的频段,使得N79频段的蜂窝信号和5G频段的WiFi信号不共存,也就不会产生邻频干扰。这种方式采用规避的策略,会导致设备的工作带宽受到限制,同时如果当前网络条件仅支持蜂窝通信工作于N79频段而WiFi工作于5G频段的组网方式时,会导致设备不可用。
另一种解决方案是增加共存工作的保护机制,使其在共存时能够工作,例如在蜂窝通信工作于N79频段而WiFi工作于5G频段时,限制蜂窝信号发射时不能够接收WiFi信号,以及WiFi信号发射时不能够接收蜂窝信号。还可以增加对低噪声放大器(LNA)的保护。这种方案会导致流量性能的大幅下降。
还有一种解决方案是在工作于5G频段的WiFi射频电路的所有通路和工作于N79频段的蜂窝射频电路的所有通路上都增加高隔离的共存滤波器,以防止干扰信号落到对应的频段中,实现优化的解调性能。由于N79频段和 WiFi的5G频段仅有150MHz频率间隔,为了实现共存所需的高隔离度效果,使用的共存滤波器往往会带来较大的插损。
如图3所示,射频电路包括处理器50和与处理器50连接的WiFi射频电路60和蜂窝射频电路70。WiFi射频电路60包括WiFi收发机601和WiFi 前端电路603,而每一个WiFi前端电路603均包括WiFi前端模块6031、 WiFi共存滤波器6033和WiFi天线6035。也就是说,WiFi前端电路603只设置有WiFi共存滤波器的通路。蜂窝射频电路70与此类似,包括蜂窝收发机701和蜂窝前端电路703,每一个蜂窝前端电路703均包括蜂窝前端模块 7031、蜂窝共存滤波器7033和蜂窝天线7035,蜂窝前端电路703只设置有蜂窝共存滤波器的通路。这种方案虽然可以实现共存所需的高隔离度效果,但是当前已有的共存滤波器会产生接近3dB的插损,导致会出现插损较大的情况。特别是蜂窝通信不工作在N79频段的情况下,WiFi共存滤波器仍然会存在于WiFi信号的接收通路上,造成Wi-Fi性能下降。或者,当WiFi工作在非5G频段(如2.4G频段)时,蜂窝共存滤波器也会存在于蜂窝信号的接收通路上,造成蜂窝通信的性能下降。
而本公开实施例通过动态切换有共存滤波器的通路和无共存滤波器的通路,在同时实现蜂窝通信工作于N79频段、WiFi通信工作于5G频段的情况下,设备的工作带宽不受限制,蜂窝通信和WiFi通信也可以同时发送和接收,且能够在两者不同时工作于N79频段和5G频段的情况下,通过切换到无共存滤波器的通路可以避免共存滤波器带来的插损,从而能够最大限度的保证WiFi信号和蜂窝信号的传输性能。
本公开一实施例还提供了一种信号传输控制方法,实施于电子设备,所述电子设备包括如本公开任一实施例所述的射频电路,如图4所示,所述方法包括以下工作在第一频段的WiFi信号的传输控制过程:
步骤110,确定所述电子设备当前传输信号的蜂窝射频电路的工作频段;
步骤120,判断当前传输信号的蜂窝射频电路的工作频段是否包括第二频段(如N79频段),如果包括第二频段,执行步骤130,如果不包括第二频段,执行步骤140;
步骤130,在当前传输信号的蜂窝射频电路的工作频段包括第二频段的情况下,控制所述设置有两个通路的WiFi前端电路通过有WiFi共存滤波器的通路传输WiFi信号,结束;
步骤140,在当前传输信号的蜂窝射频电路的工作频段不包括第二频段的情况下,控制所述设置有两个通路的WiFi前端电路通过无WiFi共存滤波器的通路传输WiFi信号。
本实施例的方法可以在蜂窝射频电路工作于第二频段如N79频段时,控制设置有两个通路的WiFi前端电路通过有WiFi共存滤波器的通路传输WiFi 信号,从而抑制第二频段的蜂窝信号的干扰。同时又可以在蜂窝射频电路工作于第二频段之外的其他频段时,控制设置有两个通路的WiFi前端电路通过无WiFi共存滤波器的通路传输WiFi信号,避免WiFi共存滤波器带来的插损,从而能够保证WiFi信号的传输性能。
在本公开一示例性的实施例中,所述工作在第一频段的WiFi信号的传输控制过程还包括:
控制所述设置有两个通路的WiFi前端电路通过有WiFi共存滤波器的通路传输WiFi信号之后,检测到当前传输信号的蜂窝射频电路的工作频段不包括第二频段的情况下,控制所述设置有两个通路的WiFi前端电路切换为通过无WiFi共存滤波器的通路传输WiFi信号;
控制所述设置有两个通路的WiFi前端电路通过无WiFi共存滤波器的通路传输WiFi信号之后,检测到当前传输信号的蜂窝射频电路的工作频段包括第二频段的情况下,控制所述设置有两个通路的WiFi前端电路切换为通过有WiFi共存滤波器的通路传输WiFi信号。
本实施例在当前传输信号的蜂窝射频电路的工作频段发生变化时,及时地对WiFi前端电路进行相应的通路切换,可以取得良好的传输性能。
控制设置有两个通路的WiFi前端电路通过有WiFi共存滤波器的通路或无WiFi共存滤波器的通路传输WiFi信号,可以通过向WiFi前端电路中的 WiFi切换开关发送相应的WiFi通路控制信号来实现,该WiFi通路控制信号可以由WiFi收发机或电子设备中的处理器来产生和发送。
在本公开一示例性的实施例中,如图5所示,所述方法还包括以下工作在第二频段的蜂窝信号的传输控制过程:
步骤210,确定所述电子设备当前传输信号的WiFi射频电路的工作频段;
步骤220,判断当前传输信号的WiFi射频电路的工作频段是否包括第一频段,如果包括第一频段,执行步骤230,如果不包括第一频段,执行步骤 240;
步骤230,在当前传输信号的WiFi射频电路的工作频段包括第一频段的情况下,控制所述设置有两个通路的蜂窝前端电路通过有蜂窝共存滤波器的通路传输蜂窝信号,结束;
步骤240,在当前传输信号的WiFi射频电路的工作频段不包括第一频段的情况下,控制所述设置有两个通路的蜂窝前端电路通过无蜂窝共存滤波器的通路传输蜂窝信号。
本实施例的方法可以在WiFi射频电路工作于第一频段如5G频段时,控制设置有两个通路的蜂窝前端电路通过有蜂窝共存滤波器的通路传输蜂窝信号,从而抑制第一频段的WiFi信号的干扰。同时又可以在WiFi射频电路工作于第一频段之外的其他频段时,控制设置有两个通路的蜂窝前端电路通过无蜂窝共存滤波器的通路传输蜂窝信号,避免蜂窝共存滤波器带来的插损,从而能够保证蜂窝信号的传输性能。
在本公开一示例性的实施例中,所述工作在第二频段的蜂窝信号的传输控制过程还包括:
控制所述设置有两个通路的蜂窝前端电路通过有蜂窝共存滤波器的通路传输蜂窝信号之后,检测到当前传输信号的WiFi射频电路的工作频段不包括第一频段的情况下,控制所述设置有两个通路的蜂窝前端电路通过无蜂窝共存滤波器的通路传输蜂窝信号;
控制所述设置有两个通路的蜂窝前端电路通过无蜂窝共存滤波器的通路传输蜂窝信号之后,检测到当前传输信号的WiFi射频电路的工作频段包括第一频段的情况下,控制所述设置有两个通路的蜂窝前端电路通过有蜂窝共存滤波器的通路传输蜂窝信号。
本实施例在当前传输信号的WiFi射频电路的工作频段发生变化时,及时地对蜂窝前端电路进行相应的通路切换,可以取得良好的传输性能。
控制设置有两个通路的蜂窝前端电路通过有蜂窝共存滤波器的通路或无蜂窝共存滤波器的通路传输蜂窝信号,可以通过向蜂窝前端电路中的蜂窝切换开关发送相应的蜂窝通路控制信号来实现,该蜂窝通路控制信号可以由蜂窝收发机或电子设备中的处理器来产生和发送。
本公开一实施例还提供了一种信号传输控制装置,如图6所示,包括存储器90和处理器80,所述存储器90中保存有计算机程序,所述处理器80 执行所述计算机程序时能够实现如本公开任一实施例所述的信号传输控制方法。本实施例中的处理器80可以是通用处理器,例如可以是中央处理器 (Central Processing Unit,简称CPU)、网络处理器(NetworkProcessor,简称 NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等等。本实施例中的存储器90可以包括RAM、ROM、EEPROM、CD-ROM,或者其它光盘存储装置、磁盘存储装置,或者其它磁性存储装置、快闪存储器,或者可以指令或数据结构的形式存储所需要的程序代码且可由计算机存取的任何其它介质。
本实施例的信号传输控制装置可以通过处理器实现,也可以集成在射频电路中,或者部分功能通过处理器实现,部分功能集成在射频电路中。集成在射频电路中时,可以集成在WiFi射频电路中的WiFi收发机和蜂窝射频电路中的蜂窝收发机中。
在本实施例的一个示例中,所述电子设备为客户前置设备(Customer PremiseEquipment,简称CPE)。CPE是一种接收移动信号并以无线WIFI 信号转发出来的移动信号接入设备。CPE可将高速4G/5G信号转换成WiFi 信号,可支持同时上网的移动终端数量也较多。CPE可大量应用于农村、城镇、医院、单位、工厂、小区等,可供无线网络接入,能节省宽带费用并免除布线环节。5G CPE可以对手机信号(例如5G/4G信号)进行二次中继。把接收到的5G/4G信号变成WiFi信号,提供给身边的设备使用。采用CPE对运营商网络信号进行二次中继。本公开上述实施例的方法、装置用于CPE时,可以很好地解决CPE所存在的N79频段的蜂窝信号和5G频段的WiFi信号同时工作时相互的干扰,另外在不需要同时工作时能够避免共存滤波器的高插损,提升N79和WiFi 5G射频链路的性能。
本公开一实施例还提供了一种计算机程序产品,包括所述计算机程序,所述计算机程序被处理器执行时实现如本公开任一实施例所述的信号传输控制方法。
本公开一实施例还提供了一种非瞬态计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序时被处理器执行时实现如本公开任一实施例所述的信号传输控制方法。
在上述任意一个或多个示例性实施例中,所描述的功能可以硬件、软件、固件或其任一组合来实施。如果以软件实施,那么功能可作为一个或多个指令或代码存储在计算机可读介质上或经由计算机可读介质传输,且由基于硬件的处理单元执行。计算机可读介质可包含对应于例如数据存储介质等有形介质的计算机可读存储介质,或包含促进计算机程序例如根据通信协议从一处传送到另一处的任何介质的通信介质。以此方式,计算机可读介质通常可对应于非暂时性的有形计算机可读存储介质或例如信号或载波等通信介质。数据存储介质可为可由一个或多个计算机或者一个或多个处理器存取以检索用于实施本公开中描述的技术的指令、代码和/或数据结构的任何可用介质。计算机程序产品可包含计算机可读介质。
举例来说且并非限制,此类计算机可读存储介质可包括RAM、ROM、 EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来以指令或数据结构的形式存储所要程序代码且可由计算机存取的任何其它介质。而且,还可以将任何连接称作计算机可读介质举例来说,如果使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)或例如红外线、无线电及微波等无线技术从网站、服务器或其它远程源传输指令,则同轴电缆、光纤电缆、双纹线、DSL或例如红外线、无线电及微波等无线技术包含于介质的定义中。然而应了解,计算机可读存储介质和数据存储介质不包含连接、载波、信号或其它瞬时(瞬态)介质,而是针对非瞬时有形存储介质。如本文中所使用,磁盘及光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)、软磁盘或蓝光光盘等,其中磁盘通常以磁性方式再生数据,而光盘使用激光以光学方式再生数据。上文的组合也应包含在计算机可读介质的范围内。
举例来说且并非限制,可由例如一个或多个数字信号理器(DSP)、通用微处理器、专用集成电路(ASIC)现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一个或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指上述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文描述的功能性可提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或并入在组合式编解码器中。并且,可将所述技术完全实施于一个或多个电路或逻辑元件中。
本公开实施例的技术方案可在广泛多种装置或设备中实施,包含无线手机、集成电路(IC)或一组IC(例如,芯片组)。本公开实施例中描各种组件、模块或单元以强调经配置以执行所描述的技术的装置的功能方面,但不一定需要通过不同硬件单元来实现。而是,如上所述,各种单元可在编解码器硬件单元中组合或由互操作硬件单元(包含如上所述的一个或多个处理器)的集合结合合适软件和/或固件来提供。
Claims (11)
1.一种射频电路,其特征在于,包括工作在第一频段的WiFi射频电路和工作在第二频段的蜂窝射频电路,所述第一频段的WiFi信号与所述第二频段的蜂窝信号之间存在邻频干扰,其中:
所述工作在第一频段的WiFi射频电路包括WiFi收发机及一个或多个WiFi前端电路,其中至少一个WiFi前端电路设置有两个通路:无WiFi共存滤波器的通路和有WiFi共存滤波器的通路,且能够在所述无WiFi共存滤波器的通路和有WiFi共存滤波器的通路之间切换;
所述工作在第二频段的蜂窝射频电路包括蜂窝收发机及一个或多个蜂窝前端电路,其中至少一个蜂窝前端电路设置有两个通路:无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路,且能够在所述无蜂窝共存滤波器的通路和有蜂窝共存滤波器的通路之间切换。
2.如权利要求1所述的射频电路,其特征在于:
所述第一频段为5G频段,所述第二频段为N79频段;或者
所述第一频段为2.4G频段,所述第二频段为B40频段;或者
所述第一频段为2.4G频段,所述第二频段为B41频段。
3.如权利要求1所述的射频电路,其特征在于:
所述设置有两个通路的WiFi前端电路包括WiFi前端模块、WiFi切换开关、WiFi共存滤波器、第一WiFi天线和第二WiFi天线,其中,所述WiFi切换开关设置为响应于第一WiFi通路控制信号,接通所述WiFi前端模块和第一WiFi天线构成的所述无WiFi共存滤波器的通路,或者响应于第二WiFi通路控制信号,接通所述WiFi前端模块、WiFi共存滤波器和第二WiFi天线构成的所述有WiFi共存滤波器的通路。
4.如权利要求3所述的射频电路,其特征在于:
所述WiFi切换开关为单刀双掷开关,所述单刀双掷开关的固定端与所述WiFi前端模块连接,第一切换端与所述第一WiFi天线连接,第二切换端与所述WiFi共存滤波器的一端连接,所述WiFi共存滤波器的另一端与所述第二WiFi天线连接。
5.如权利要求3所述的射频电路,其特征在于:
所述WiFi收发机设置为检测到蜂窝通信未工作在第二频段的情况下,向所述WiFi切换开关发送所述第一WiFi通路控制信号,接通所述无WiFi共存滤波器的通路;及检测到蜂窝通信工作在第二频段的情况下,向所述WiFi切换开关发送所述第二WiFi通路控制信号,接通所述有WiFi共存滤波器的通路。
6.如权利要求1所述的射频电路,其特征在于:
所述设置有两个通路的蜂窝前端电路包括蜂窝前端模块、蜂窝切换开关、蜂窝共存滤波器、第一蜂窝天线和第二蜂窝天线,其中,所述蜂窝切换开关设置为响应于第一蜂窝通路控制信号,接通所述蜂窝前端模块和第一蜂窝天线构成的所述无蜂窝共存滤波器的通路,或者响应于第二蜂窝通路控制信号,接通所述蜂窝前端模块、蜂窝共存滤波器和第二蜂窝天线构成的所述有蜂窝共存滤波器的通路。
7.如权利要求6所述的射频电路,其特征在于:
所述蜂窝切换开关为单刀双掷开关,所述单刀双掷开关的固定端与所述蜂窝前端模块连接,第一切换端与所述第一蜂窝天线连接,第二切换端与所述蜂窝共存滤波器的一端连接,所述蜂窝共存滤波器的另一端与所述第二蜂窝天线连接。
8.如权利要求6所述的射频电路,其特征在于:
所述蜂窝收发机设置为检测到WiFi通信未工作在第一频段的情况下,向所述蜂窝切换开关发送所述第一蜂窝通路控制信号,接通所述无蜂窝共存滤波器的通路;及检测到WiFi通信工作在第一频段的情况下,向所述蜂窝切换开关发送所述第二蜂窝通路控制信号,接通所述有蜂窝共存滤波器的通路。
9.如权利要求1所述的射频电路,其特征在于:
所述设置有两个通路的WiFi前端电路中的WiFi天线与所述工作在第二频段的蜂窝射频电路中的至少一个蜂窝天线之间的天线隔离度小于预设的通信隔离度阈值;
所述设置有两个通路的蜂窝前端电路中的蜂窝天线与所述工作在第一频段的WiFi射频电路中的至少一个WiFi天线之间的天线隔离度小于预设的通信隔离度阈值。
10.一种电子设备,其特征在于,所述电子设备包括:
设备本体;
如权利要求1至9中任一所述的射频电路,所述射频电路设置在所述设备本体上。
11.如权利要求10所述的电子设备,其特征在于:
所述电子设备为客户前置设备。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220258387.0U CN217010858U (zh) | 2022-02-08 | 2022-02-08 | 一种射频电路和电子设备 |
PCT/CN2022/142428 WO2023151404A1 (zh) | 2022-02-08 | 2022-12-27 | 射频电路、电子设备、信号传输控制方法、装置及介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202220258387.0U CN217010858U (zh) | 2022-02-08 | 2022-02-08 | 一种射频电路和电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217010858U true CN217010858U (zh) | 2022-07-19 |
Family
ID=82393468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202220258387.0U Active CN217010858U (zh) | 2022-02-08 | 2022-02-08 | 一种射频电路和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN217010858U (zh) |
WO (1) | WO2023151404A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023151404A1 (zh) * | 2022-02-08 | 2023-08-17 | Oppo广东移动通信有限公司 | 射频电路、电子设备、信号传输控制方法、装置及介质 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9060280B2 (en) * | 2011-07-29 | 2015-06-16 | Blackberry Limited | Enhanced in-device coexistence interference avoidance using predetermined downlink channel |
US9297697B2 (en) * | 2012-06-05 | 2016-03-29 | Apple Inc. | In-device coexistence between radios |
CN103906205A (zh) * | 2012-12-28 | 2014-07-02 | 华为终端有限公司 | 一种降低无线通信协议共存装置功耗的系统及其实现方法 |
CN104185187B (zh) * | 2013-05-27 | 2017-12-22 | 华为终端有限公司 | 一种LTE与WiFi共存的控制方法及终端设备 |
CN206559349U (zh) * | 2017-01-26 | 2017-10-13 | 维沃移动通信有限公司 | 一种wifi射频电路及移动终端 |
CN109274378A (zh) * | 2017-07-17 | 2019-01-25 | 西安中兴新软件有限责任公司 | 一种射频电路、通信终端及射频收发方法 |
CN212726998U (zh) * | 2020-08-12 | 2021-03-16 | 上海闻泰信息技术有限公司 | 信号发射装置及电子设备 |
CN112468166B (zh) * | 2020-11-30 | 2022-12-02 | 维沃移动通信有限公司 | 射频电路及电子设备 |
CN217010858U (zh) * | 2022-02-08 | 2022-07-19 | Oppo广东移动通信有限公司 | 一种射频电路和电子设备 |
-
2022
- 2022-02-08 CN CN202220258387.0U patent/CN217010858U/zh active Active
- 2022-12-27 WO PCT/CN2022/142428 patent/WO2023151404A1/zh unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023151404A1 (zh) * | 2022-02-08 | 2023-08-17 | Oppo广东移动通信有限公司 | 射频电路、电子设备、信号传输控制方法、装置及介质 |
Also Published As
Publication number | Publication date |
---|---|
WO2023151404A1 (zh) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230102723A1 (en) | Rf front-end architecture, antenna device and communication terminal | |
AU2020248826B2 (en) | Radio frequency front end circuit and mobile terminal | |
KR101836199B1 (ko) | 다중모드 무선 단말기 | |
US11569850B2 (en) | Radio frequency front-end circuit and controller | |
CN105634569A (zh) | 实现载波聚合和wifi双频mimo的控制电路、终端 | |
WO2021031713A1 (zh) | 射频前端电路及移动终端 | |
CN109861735A (zh) | 一种射频前端电路及移动终端 | |
CN109474921B (zh) | 一种自组网应急通信系统及其通信方法 | |
CN107889120B (zh) | 一种提高tdd-lte上行抗干扰性的室内覆盖系统 | |
CN111756399A (zh) | 射频电路及电子设备 | |
CN211880379U (zh) | 射频接收模组、射频电路和电子设备 | |
CN217010858U (zh) | 一种射频电路和电子设备 | |
WO2024067406A1 (zh) | 射频电路和电子设备 | |
CN112737628A (zh) | 射频电路和电子设备 | |
CN116054967A (zh) | 一种功率检测电路及方法 | |
CN210246745U (zh) | 一种射频控制电路及移动终端 | |
CN213152052U (zh) | 信号收发电路和电子设备 | |
CN218772060U (zh) | 一种射频电路、射频系统和通讯设备 | |
RU2791910C1 (ru) | Высокочастотная схема входного каскада и мобильный терминал | |
RU2784458C1 (ru) | Радиочастотная входная схема и мобильный терминал | |
CN112886987B (zh) | 射频电路及电子设备 | |
US20240080103A1 (en) | Repeater with Field-Configured Fiber/Radio Frequency (RF) Mode | |
CN116388793A (zh) | 射频前端电路和电子设备 | |
CN116865779A (zh) | 射频电路和电子设备 | |
CN115102569A (zh) | 一种射频系统、天线切换方法和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |