CN216266087U - Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device - Google Patents
Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device Download PDFInfo
- Publication number
- CN216266087U CN216266087U CN202122577999.4U CN202122577999U CN216266087U CN 216266087 U CN216266087 U CN 216266087U CN 202122577999 U CN202122577999 U CN 202122577999U CN 216266087 U CN216266087 U CN 216266087U
- Authority
- CN
- China
- Prior art keywords
- shaft
- sleeved
- gear
- transmission mechanism
- connecting rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 45
- 238000010168 coupling process Methods 0.000 title claims abstract description 45
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 45
- 230000007246 mechanism Effects 0.000 claims abstract description 94
- 230000005540 biological transmission Effects 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000003044 adaptive effect Effects 0.000 claims description 46
- 239000003638 chemical reducing agent Substances 0.000 claims description 20
- 230000008569 process Effects 0.000 abstract description 23
- 230000009471 action Effects 0.000 abstract description 15
- 230000033001 locomotion Effects 0.000 abstract description 13
- 238000012423 maintenance Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本实用新型属于机器人手技术领域,特别涉及一种并联连杆模式切换平夹耦合自适应机器人手指装置的结构设计。The utility model belongs to the technical field of robot hands, in particular to a structural design of a parallel link mode switching flat clip coupling self-adaptive robot finger device.
背景技术Background technique
机器人手是机器人领域中重要的末端执行机构。为了能更大程度地复现人手的灵巧性、适应性,很多学者开始研究具有更多驱动自由度的灵巧手,如日本岐阜大学研制的Gifu II手和美国宇航局研制的Robonaut手等。灵巧手的每一个关节都由一个电机一对一地单独控制,因而具有很高的精度。但灵巧手往往结构复杂,难以控制,并且成本高昂,在现阶段难以广泛使用。The robot hand is an important end effector in the field of robotics. In order to reproduce the dexterity and adaptability of human hands to a greater extent, many scholars have begun to study dexterous hands with more driving degrees of freedom, such as the Gifu II hand developed by Gifu University in Japan and the Robonaut hand developed by NASA. Each joint of the dexterous hand is individually controlled one-to-one by a motor, so it has high precision. However, dexterous hands are often complicated in structure, difficult to control, and expensive, making it difficult to be widely used at this stage.
而欠驱动机器人手则通过巧妙的机构设计,使得少量电机可以控制多个关节的自由度,并且使抓取方式具有自适应性,让手指能够适应不同形状、尺寸的物体,扩大了抓取范围。与此同时,更少的电机数量也大幅简化了控制方案,有效降低了制造和维护的成本,受到了外界的广泛关注,成为了近年来的研究热点。加拿大Robotiq公司生产的平行夹持自适应手(美国专利US8973958B2)就是欠驱动机器人手。On the other hand, the underactuated robot hand uses a clever mechanism design, so that a small number of motors can control the degrees of freedom of multiple joints, and the grasping method is adaptive, so that the fingers can adapt to objects of different shapes and sizes, expanding the grasping range . At the same time, the smaller number of motors also greatly simplifies the control scheme and effectively reduces the cost of manufacturing and maintenance, which has attracted extensive attention from the outside world and has become a research hotspot in recent years. The parallel gripping adaptive hand (US patent US8973958B2) produced by Robotiq of Canada is an underactuated robot hand.
欠驱动机器人手包含平夹、耦合、自适应等几种基本类型,以及它们相互结合的复合类型。其中,平夹手指在抓取过程中始终维持远指段姿态不变;耦合手指在抓取过程中使多个关节进行联动,加快指尖闭合的速度,起到笼式包络抓取的效果;自适应手指则是从根部关节到末端关节依次转动,当前一个指段接触物体后,下一个指段才会开始运动,最终达到适应不同形状、尺寸物体的效果。There are several basic types of underactuated robotic hands, such as flat clamp, coupling, and self-adaptation, as well as composite types in which they are combined with each other. Among them, the flat clamp fingers always maintain the same posture of the distal finger segment during the grasping process; the coupling fingers make multiple joints linked during the grasping process to speed up the closing speed of the fingertips and achieve the effect of cage-type envelope grasping ; The adaptive finger rotates in turn from the root joint to the end joint. After the previous finger segment touches the object, the next finger segment will start to move, and finally achieve the effect of adapting to objects of different shapes and sizes.
平夹自适应手指是将平行夹持与自适应抓取功能在一前一后两个时间阶段进行结合产生的复合抓取类型手指。例如加拿大Robotiq手指就是典型的平行夹持与自适应复合模式手指;而耦合自适应手指则是将耦合夹持与自适应抓取功能在前后两个时间阶段进行结合产生的复合抓取类型手指。The flat-clamp adaptive finger is a composite grasping type finger that combines the parallel clamping and the adaptive grasping function in one, one, and two time periods. For example, the Canadian Robotiq finger is a typical parallel gripping and adaptive composite mode finger; while the coupled adaptive finger is a composite grasping type finger produced by combining the coupled gripping and adaptive grasping functions in the two time periods before and after.
然而目前平夹自适应手指、耦合自适应手指的自适应性仅在手指的末端指段展现。但在运动的前期阶段,手指的运动轨迹是唯一确定、较为单一的。因而即使在手指的末端添加了自适应功能,其自适应性和自适应范围仍将在极大程度上受限于运动前期唯一确定的运动模式。于是,为了突破该局限性,多模式可切换手指成为一个有潜力的研究方向。However, at present, the adaptability of the flat clip adaptive finger and the coupled adaptive finger is only displayed at the end segment of the finger. But in the early stage of movement, the movement trajectory of the finger is unique and relatively single. Therefore, even if an adaptive function is added at the end of the finger, its adaptiveness and adaptive range will still be largely limited by the uniquely determined motion pattern in the early stage of motion. Therefore, in order to break through this limitation, multi-mode switchable fingers become a potential research direction.
已有的一种多模式抓取并联连杆复合自适应机器人手指装置(专利CN109129530A),包括基座、两个指段、两个关节轴、两个驱动器,采用了多个连杆、齿轮、拨块、簧件和限位凸块等。该装置利用驱动器、连杆传动机构、齿轮传动机构、簧件、凸块拨盘和限位凸块等综合实现了多模式复合自适应抓取。其不足之处在于:该手指通过翻转底部连杆实现模式切换,但在翻转的过程中,该连杆会同时带动其所在的连杆机构同时运动,造成末端指段的冗余动作;同时,在切换过程中,随着底部连杆的翻动,在某一特定时刻,底部连杆所在的连杆机构会出现多根连杆共线(称为奇异位置)的情况,导致下一运动步骤出现多解,运动方式不唯一,使得设计时需要添加额外的机构,以防止切换过程出现异常。An existing multi-mode grasping parallel link compound adaptive robot finger device (patent CN109129530A) includes a base, two finger segments, two joint shafts, and two drives, and adopts a plurality of connecting rods, gears, Dial blocks, spring parts and limit bumps, etc. The device utilizes a driver, a connecting rod transmission mechanism, a gear transmission mechanism, a spring element, a bump dial and a limit bump to comprehensively realize multi-mode composite adaptive grasping. The disadvantage is that the finger realizes mode switching by flipping the bottom link, but in the process of flipping, the link will simultaneously drive the link mechanism where it is located to move at the same time, resulting in redundant actions of the end finger; at the same time, During the switching process, with the flipping of the bottom link, at a certain moment, the link mechanism where the bottom link is located will have multiple links collinear (called singular position), resulting in the occurrence of the next movement step. There are multiple solutions, and the movement mode is not unique, so it is necessary to add additional mechanisms in the design to prevent abnormal switching process.
实用新型内容Utility model content
本实用新型的目的是为了克服已有技术的不足之处,提供一种并联连杆模式切换平夹耦合自适应机器人手指装置。该装置具有平夹、耦合、平夹自适应和耦合自适应抓取等多种抓取模式。该装置的适应性体现在两方面,首先可根据待抓取物体的情况来驱动第二电机,切换到适合的模式,随后进行沿特定轨迹、且具有末端自适应性的抓取。比起单一的平夹自适应、耦合自适应手指,该装置提供了更多的轨迹选择,强化了欠驱动手指在前期轨迹上的适应性;同时,切换时不会造成冗余的运动,避免切换过程中的多解问题。The purpose of the utility model is to overcome the shortcomings of the prior art and provide a parallel link mode switching flat clip coupling adaptive robot finger device. The device has various grasping modes such as flat clip, coupling, flat clip adaptive and coupling adaptive grasping. The adaptability of the device is reflected in two aspects. First, the second motor can be driven according to the condition of the object to be grasped, and the second motor can be switched to a suitable mode, and then the grasping along a specific trajectory with end-adaptiveness can be performed. Compared with a single flat clip self-adaptive and coupled self-adaptive fingers, the device provides more trajectory choices, which strengthens the adaptability of the underactuated fingers on the early trajectory; Multi-solution problem during handover.
本实用新型的技术方案如下:The technical scheme of the present utility model is as follows:
本实用新型设计的并联连杆模式切换平夹耦合自适应机器人手指装置,包括基座、第一指段、第二指段、近关节轴、远关节轴、第一电机、第二电机、第一传动机构和第二传动机构;所述远关节轴套设在第一指段中,所述第二指段套接在远关节轴上;所述第一电机与基座固接,所述第一电机的输出轴与第一传动机构的输入端相连;所述第二电机与基座固接,所述第二电机的输出轴与第二传动机构的输入端相连;所述近关节轴、远关节轴的中心线相互平行;其特征在于:该并联连杆模式切换平夹耦合自适应机器人手指装置还包括第三传动机构、第四传动机构、第一连杆、第二连杆、第三连杆、第四连杆、第一轴、第二轴、第三轴、第四轴、簧件和限位块;所述第一传动机构的输出端与第二连杆相连;所述第二传动机构的第一输出端与第三传动机构的输入端相连;在初始状态时,第二传动机构的第二输出端与第四传动机构相连,第四传动机构具有自锁功能;所述第三传动机构的输出端与第一连杆相连,所述第四传动机构的输出端与第四连杆相连;第三传动机构与第四传动机构输出端速度的大小和方向一致;所述第四轴套设在基座中;所述第一连杆的一端套接在第四轴上,第一连杆的另一端套接在近关节轴上;所述第二连杆的一端套接在第四轴上,第二连杆的另一端套接在第二轴上;所述第三连杆的一端套接在第二轴上,第三连杆的另一端套接在第一轴上;所述簧件的两端分别连接第二连杆和第三连杆,所述限位块与第三连杆固接;在初始状态时,所述限位块与第二连杆接触;所述第二指段套接在第一轴上,所述第一指段套接在第三轴上;所述第四连杆的一端套接在第三轴上,第四连杆的另一端套接在近关节轴上。The parallel link mode switching flat clip coupling adaptive robot finger device designed by the utility model comprises a base, a first finger segment, a second finger segment, a proximal joint shaft, a distal joint shaft, a first motor, a second motor, a first a transmission mechanism and a second transmission mechanism; the distal joint shaft is sleeved in the first finger segment, and the second finger segment is sleeved on the distal joint shaft; the first motor is fixedly connected to the base, and the The output shaft of the first motor is connected to the input end of the first transmission mechanism; the second motor is fixedly connected to the base, and the output shaft of the second motor is connected to the input end of the second transmission mechanism; the proximal joint shaft , The center lines of the distal joint shafts are parallel to each other; it is characterized in that: the parallel link mode switching flat clip coupling adaptive robot finger device also includes a third transmission mechanism, a fourth transmission mechanism, a first connecting rod, a second connecting rod, The third connecting rod, the fourth connecting rod, the first shaft, the second shaft, the third shaft, the fourth shaft, the spring member and the limit block; the output end of the first transmission mechanism is connected with the second connecting rod; The first output end of the second transmission mechanism is connected with the input end of the third transmission mechanism; in the initial state, the second output end of the second transmission mechanism is connected with the fourth transmission mechanism, and the fourth transmission mechanism has a self-locking function; The output end of the third transmission mechanism is connected with the first connecting rod, and the output end of the fourth transmission mechanism is connected with the fourth connecting rod; the speed of the third transmission mechanism and the output end of the fourth transmission mechanism are consistent in magnitude and direction; The fourth shaft is sleeved in the base; one end of the first connecting rod is sleeved on the fourth shaft, and the other end of the first connecting rod is sleeved on the proximal joint shaft; One end is sleeved on the fourth shaft, and the other end of the second connecting rod is sleeved on the second shaft; one end of the third connecting rod is sleeved on the second shaft, and the other end of the third connecting rod is sleeved on the second shaft on the first shaft; the two ends of the spring element are respectively connected to the second connecting rod and the third connecting rod, and the limiting block is fixedly connected with the third connecting rod; in the initial state, the limiting block is connected to the second connecting rod and the third connecting rod. The connecting rod is in contact; the second finger segment is sleeved on the first shaft, the first finger segment is sleeved on the third shaft; one end of the fourth connecting rod is sleeved on the third shaft, and the fourth The other end of the connecting rod is sleeved on the proximal joint shaft.
本实用新型所述的并联连杆模式切换平夹耦合自适应机器人手指装置,其特征在于:所述第一传动机构包括第一减速器、第一齿轮、第二齿轮、第三齿轮、第五轴;所述第一电机的输出轴与第一减速器的输入轴相连,所述第三齿轮套固在第一减速器的输出轴上;所述第五轴套设在基座中;所述第二齿轮套接在第五轴上,第二齿轮与第三齿轮啮合;所述第一齿轮套固在第四轴上,第一齿轮与第二齿轮啮合。The parallel link mode switching flat clip coupling adaptive robot finger device according to the utility model is characterized in that: the first transmission mechanism comprises a first reducer, a first gear, a second gear, a third gear, a fifth gear shaft; the output shaft of the first motor is connected with the input shaft of the first reducer, the third gear is sleeved on the output shaft of the first reducer; the fifth shaft is sleeved in the base; The second gear is sleeved on the fifth shaft, and the second gear meshes with the third gear; the first gear is sleeved on the fourth shaft, and the first gear meshes with the second gear.
本实用新型所述的并联连杆模式切换平夹耦合自适应机器人手指装置,其特征在于:所述第二传动机构包括第二减速器、第四齿轮、第五齿轮、第六齿轮、第七齿轮、第六轴、第七轴和第八轴;所述第二电机的输出轴与第二减速器的输入轴相连,所述第七齿轮套固在第二减速器的输出轴上;所述第六轴套设在基座中、所述第七轴套设在基座中、所述第八轴套设在基座中;所述第六齿轮套接在第七轴上,第六齿轮与第七齿轮啮合;所述第五齿轮套接在第八轴上,第五齿轮与第六齿轮啮合,第五齿轮为第二传动机构的第一输出端;所述第四齿轮套接在第六轴上,第四齿轮与第六齿轮啮合,第四齿轮为第二传动机构的第二输出端。The parallel link mode switching flat clip coupling adaptive robot finger device according to the utility model is characterized in that: the second transmission mechanism comprises a second reducer, a fourth gear, a fifth gear, a sixth gear, a seventh gear a gear, a sixth shaft, a seventh shaft and an eighth shaft; the output shaft of the second motor is connected to the input shaft of the second reducer, and the seventh gear is sleeved on the output shaft of the second reducer; The sixth shaft is sleeved in the base, the seventh shaft is sleeved in the base, and the eighth shaft is sleeved in the base; the sixth gear is sleeved on the seventh shaft, the sixth The gear meshes with the seventh gear; the fifth gear is sleeved on the eighth shaft, the fifth gear meshes with the sixth gear, and the fifth gear is the first output end of the second transmission mechanism; the fourth gear is sleeved On the sixth shaft, the fourth gear meshes with the sixth gear, and the fourth gear is the second output end of the second transmission mechanism.
本实用新型所述的并联连杆模式切换平夹耦合自适应机器人手指装置,其特征在于:所述第三传动机构包括第八齿轮、第九轴、第一蜗轮和第一蜗杆;所述第九轴套设在基座中;所述第八齿轮套固在第九轴上,第八齿轮与第二传动机构的第一输出端相连;所述第一蜗杆套固在第九轴上;所述第一蜗轮套固在第四轴上,第一蜗轮与第一蜗杆啮合。The parallel link mode switching flat clip coupling adaptive robot finger device according to the utility model is characterized in that: the third transmission mechanism comprises an eighth gear, a ninth shaft, a first worm gear and a first worm; The nine shaft is sleeved in the base; the eighth gear is sleeved on the ninth shaft, and the eighth gear is connected with the first output end of the second transmission mechanism; the first worm is sleeved and fixed on the ninth shaft; The first worm gear is sleeved on the fourth shaft, and the first worm gear is engaged with the first worm.
本实用新型所述的并联连杆模式切换平夹耦合自适应机器人手指装置,其特征在于:所述第四传动机构包括第九齿轮、第十轴、第二蜗轮和第二蜗杆;所述第十轴套设在第一指段中,所述第九齿轮套固在第十轴上,第九齿轮与第二传动机构的第二输出端相连;所述第二蜗杆套固在第十轴上;所述第二蜗轮套固在第三轴上,第二蜗轮与第二蜗杆啮合。The parallel link mode switching flat clip coupling adaptive robot finger device according to the utility model is characterized in that: the fourth transmission mechanism comprises a ninth gear, a tenth shaft, a second worm gear and a second worm; The tenth shaft is sleeved in the first finger segment, the ninth gear is sleeved on the tenth shaft, and the ninth gear is connected with the second output end of the second transmission mechanism; the second worm is sleeved and fixed on the tenth shaft the second worm gear is sleeved on the third shaft, and the second worm gear is engaged with the second worm.
本实用新型所述的并联连杆模式切换平夹耦合自适应机器人手指装置,其特征在于:所述簧件采用拉簧、压簧或扭簧。The parallel link mode switching flat clip coupling adaptive robot finger device of the utility model is characterized in that: the spring member adopts a tension spring, a compression spring or a torsion spring.
本实用新型与现有技术相比,具有以下优点和突出性效果:Compared with the prior art, the utility model has the following advantages and outstanding effects:
并联连杆模式切换平夹耦合自适应机器人手指装置,属于机器人手技术领域,包括基座、两个指段、两个关节轴、两个电机、两套传动机构、六个连杆、簧件和限位块等。该装置可进行模式切换,可以完成平行夹持、耦合抓取、自适应抓取三种抓取模式。通过设立两个旋转中心,该装置的驱动和切换互不影响,在进行切换时过程简洁,不会出现冗余的动作。在驱动状态下,在两个指段未被阻挡时,该装置处于平夹或耦合的第一阶段,第二指段将随模式的选择而表现出特定的运动轨迹;当第一指段被阻挡时,该装置进入自适应抓取状态,第二指段绕着远关节轴转动,直到接触物体。该装置适应性良好,抓取稳定,控制简单,制造和维护成本低,适用范围广。A parallel link mode switching flat clip coupling adaptive robot finger device belongs to the technical field of robot hands, comprising a base, two finger segments, two joint shafts, two motors, two sets of transmission mechanisms, six connecting rods, and a spring member and limit blocks, etc. The device can switch modes, and can complete three gripping modes: parallel gripping, coupling gripping, and adaptive gripping. By setting up two rotation centers, the driving and switching of the device do not affect each other, and the switching process is simple and no redundant actions occur. In the driving state, when the two finger segments are not blocked, the device is in the first stage of flat clamping or coupling, and the second finger segment will show a specific motion trajectory with the selection of the mode; when the first finger segment is blocked When blocked, the device enters an adaptive grasping state, and the second finger segment rotates around the distal joint axis until it touches the object. The device has good adaptability, stable grasping, simple control, low manufacturing and maintenance costs, and wide application range.
附图说明Description of drawings
图1是本实用新型设计的并联连杆模式切换平夹耦合自适应机器人手指装置的一种实施例的立体外观图。1 is a perspective view of an embodiment of a parallel link mode switching flat clip coupling adaptive robot finger device designed by the present invention.
图2是图1所示实施例的立体试图(未画出部分零件)。FIG. 2 is a perspective view of the embodiment shown in FIG. 1 (some parts are not shown).
图3是图1所示实施例在平夹模式下的左视图(未画出部分零件)。Fig. 3 is a left side view of the embodiment shown in Fig. 1 in a flat clamp mode (parts are not shown).
图4是图1所示实施例在耦合模式下的左视图(未画出部分零件)。FIG. 4 is a left side view of the embodiment shown in FIG. 1 in a coupled mode (parts not shown).
图5是图1所示实施例的正视图(未画出部分零件)。Fig. 5 is a front view of the embodiment shown in Fig. 1 (parts not shown).
图6是图1所示实施例的立体视图(未画出部分零件)。FIG. 6 is a perspective view of the embodiment shown in FIG. 1 (parts not shown).
图7是图1所示实施例的立体视图(未画出部分零件)。FIG. 7 is a perspective view of the embodiment shown in FIG. 1 (parts not shown).
图8是图1所示实施例在平夹模式下平行夹持动作过程。FIG. 8 is a parallel clamping action process in the flat clamping mode of the embodiment shown in FIG. 1 .
图9是图1所示实施例在平夹模式下自适应动作过程。FIG. 9 is an adaptive action process of the embodiment shown in FIG. 1 in a flat clamp mode.
图10是图1所示实施例在耦合模式下耦合夹持动作过程。FIG. 10 is a process of coupling and clamping in the coupling mode of the embodiment shown in FIG. 1 .
图11是图1所示实施例在耦合模式下自适应动作过程。FIG. 11 is an adaptive action process in the coupled mode of the embodiment shown in FIG. 1 .
图12是图1所示实施例在预备阶段时由平夹模式切换到耦合模式动作过程。FIG. 12 is the action process of switching from the flat clamp mode to the coupling mode in the preparatory stage of the embodiment shown in FIG. 1 .
图13是图1所示实施例在平夹模式下的左视机构原理简图。Fig. 13 is a schematic diagram of the left-view mechanism of the embodiment shown in Fig. 1 in a flat clip mode.
图14是图1所示实施例在平夹模式下的立体机构原理简图。Fig. 14 is a schematic diagram of the three-dimensional mechanism of the embodiment shown in Fig. 1 in a flat clip mode.
图15是图1所示实施例在耦合模式下的左视机构原理简图。Fig. 15 is a schematic diagram of the left-view mechanism of the embodiment shown in Fig. 1 in a coupling mode.
图16是图1所示实施例在耦合模式下的立体机构原理简图。FIG. 16 is a schematic diagram of the three-dimensional mechanism of the embodiment shown in FIG. 1 in a coupling mode.
在图1至图16中:In Figures 1 to 16:
100-基座, 101-基座第一左板, 102-基座右板, 103-基座第一后板,100-base, 101-base first left panel, 102-base right panel, 103-base first rear panel,
104-基座第二左板, 105-基座底板, 106-基座前板, 107-基座第二后板,104- the second left plate of the base, 105- the bottom plate of the base, 106- the front plate of the base, 107- the second rear plate of the base,
108-基座第一盖板, 109-基座第二盖板, 110-第一电机, 111-第二电机,108- the first cover of the base, 109- the second cover of the base, 110- the first motor, 111- the second motor,
112-第一减速器, 113-第二减速器, 201-第一连杆, 202-第二连杆,112-first reducer, 113-second reducer, 201-first connecting rod, 202-second connecting rod,
203-第三连杆, 204-第四连杆, 301-第一轴, 302-第二轴,203-third link, 204-fourth link, 301-first shaft, 302-second shaft,
303-第三轴, 304-第四轴, 305-第五轴, 306-第六轴,303-third axis, 304-fourth axis, 305-fifth axis, 306-sixth axis,
307-第七轴, 308-第八轴, 309-第九轴, 310-第十轴,307 - the seventh axis, 308 - the eighth axis, 309 - the ninth axis, 310 - the tenth axis,
401-第一指段, 402-第二指段, 403-第一左连杆, 404-第一右连杆,401-first finger segment, 402-second finger segment, 403-first left link, 404-first right link,
405-第四左连杆, 406-第四右连杆, 501-近关节轴, 502-远关节轴,405-4th left link, 406-4th right link, 501-proximal joint axis, 502-distal joint axis,
503-第四左轴, 504-第四右轴, 601-第一齿轮, 602-第二齿轮,503- the fourth left shaft, 504- the fourth right shaft, 601- the first gear, 602- the second gear,
603-第三齿轮, 604-第四齿轮, 605-第五齿轮, 606-第六齿轮,603-Third gear, 604-Fourth gear, 605-Fifth gear, 606-Sixth gear,
607-第七齿轮, 608-第八齿轮, 609-第九齿轮, 701-第一蜗杆,607 - seventh gear, 608 - eighth gear, 609 - ninth gear, 701 - first worm,
702-第二蜗杆, 703-第一蜗轮, 704-第二蜗轮, 801-簧件,702-second worm, 703-first worm gear, 704-second worm gear, 801-spring piece,
802-限位块, 900-物体。802 - Limit block, 900 - Object.
具体实施方式Detailed ways
下面结合附图及实施例进一步详细介绍本实用新型的具体结构、工作原理的内容。The specific structure and working principle of the present utility model are further described in detail below with reference to the accompanying drawings and embodiments.
本实用新型设计的并联连杆模式切换平夹耦合自适应机器人手指装置的一种实施例,如图1至图7所示,包括基座100、第一指段401、第二指段402、近关节轴501、远关节轴502、第一电机110、第二电机111、第一传动机构和第二传动机构;所述远关节轴502套设在第一指段401中,所述第二指段402套接在远关节轴502上;所述第一电机110与基座100固接,所述第一电机110的输出轴与第一传动机构的输入端相连;所述第二电机111与基座100固接,所述第二电机111的输出轴与第二传动机构的输入端相连;所述近关节轴501、远关节轴502的中心线相互平行;其特征在于:该并联连杆模式切换平夹耦合自适应机器人手指装置还包括第三传动机构、第四传动机构、第一连杆201、第二连杆202、第三连杆203、第四连杆204、第一轴301、第二轴302、第三轴303、第四轴304、簧件801和限位块802;所述第一传动机构的输出端与第二连杆202相连;所述第二传动机构的第一输出端与第三传动机构的输入端相连;在初始状态时,第二传动机构的第二输出端与第四传动机构相连,第四传动机构具有自锁功能;所述第三传动机构的输出端与第一连杆201相连,所述第四传动机构的输出端与第四连杆204相连;第三传动机构与第四传动机构输出端速度的大小和方向一致;所述第四轴304套设在基座100中;所述第一连杆201的一端套接在第四轴304上,第一连杆201的另一端套接在近关节轴501上;所述第二连杆202的一端套接在第四轴304上,第二连杆202的另一端套接在第二轴302上;所述第三连杆203的一端套接在第二轴302上,第三连杆203的另一端套接在第一轴301上;所述簧件801的两端分别连接第二连杆202和第三连杆203,所述限位块802与第三连杆203固接;在初始状态时,所述限位块802与第二连杆202接触;所述第二指段402套接在第一轴301上,所述第一指段401套接在第三轴303上;所述第四连杆204的一端套接在第三轴303上,第四连杆204的另一端套接在近关节轴501上。An embodiment of the parallel link mode switching flat clip coupling adaptive robot finger device designed by the present invention, as shown in FIG. 1 to FIG. 7 , includes a base 100, a first finger segment 401, a second finger segment 402, The proximal joint shaft 501, the distal joint shaft 502, the first motor 110, the second motor 111, the first transmission mechanism and the second transmission mechanism; the distal joint shaft 502 is sleeved in the first finger segment 401, the second The finger segment 402 is sleeved on the distal joint shaft 502; the first motor 110 is fixedly connected to the base 100, and the output shaft of the first motor 110 is connected to the input end of the first transmission mechanism; the second motor 111 Fixedly connected to the base 100, the output shaft of the second motor 111 is connected to the input end of the second transmission mechanism; the centerlines of the proximal joint shaft 501 and the distal joint shaft 502 are parallel to each other; it is characterized in that: the parallel connection The lever mode switching flat clip coupling adaptive robot finger device further includes a third transmission mechanism, a fourth transmission mechanism, a first link 201, a second link 202, a third link 203, a fourth link 204, a first axis 301, the second shaft 302, the third shaft 303, the fourth shaft 304, the spring member 801 and the limit block 802; the output end of the first transmission mechanism is connected to the second connecting rod 202; The first output end is connected with the input end of the third transmission mechanism; in the initial state, the second output end of the second transmission mechanism is connected with the fourth transmission mechanism, and the fourth transmission mechanism has a self-locking function; the third transmission mechanism The output end of the transmission mechanism is connected with the first connecting rod 201, the output end of the fourth transmission mechanism is connected with the fourth connecting rod 204; the speed of the third transmission mechanism and the output end of the fourth transmission mechanism are consistent in size and direction; The shaft 304 is sleeved on the base 100; one end of the first connecting rod 201 is sleeved on the fourth shaft 304, and the other end of the first connecting rod 201 is sleeved on the proximal joint shaft 501; the second connecting rod 201 is sleeved on the proximal joint shaft 501; One end of the rod 202 is sleeved on the fourth shaft 304, and the other end of the second connecting rod 202 is sleeved on the second shaft 302; one end of the third connecting rod 203 is sleeved on the second shaft 302, and the third The other end of the connecting rod 203 is sleeved on the first shaft 301 ; the two ends of the spring member 801 are respectively connected to the second connecting rod 202 and the third connecting rod 203 , and the limiting block 802 is fixed to the third connecting rod 203 . In the initial state, the
在本实施例中,所述第一传动机构包括第一减速器112、第一齿轮601、第二齿轮602、第三齿轮603、第五轴305;所述第一电机110的输出轴与第一减速器112的输入轴相连,所述第三齿轮603套固在第一减速器112的输出轴上;所述第五轴305套设在基座100中;所述第二齿轮602套接在第五轴305上,第二齿轮602与第三齿轮603啮合;所述第一齿轮601套固在第四轴304上,第一齿轮601与第二齿轮602啮合。In this embodiment, the first transmission mechanism includes a
在本实施例中,所述第二传动机构包括第二减速器113、第四齿轮604、第五齿轮605、第六齿轮606、第七齿轮607、第六轴306、第七轴307和第八轴308;所述第二电机111的输出轴与第二减速器113的输入轴相连,所述第七齿轮607套固在第二减速器113的输出轴上;所述第六轴306套设在基座100中、所述第七轴307套设在基座100中、所述第八轴308套设在基座100中;所述第六齿轮606套接在第七轴307上,第六齿轮606与第七齿轮607啮合;所述第五齿轮605套接在第八轴308上,第五齿轮605与第六齿轮606啮合,第五齿轮605为第二传动机构的第一输出端;所述第四齿轮604套接在第六轴306上,第四齿轮604与第六齿轮606啮合,第四齿轮604为第二传动机构的第二输出端。In this embodiment, the second transmission mechanism includes the
在本实施例中,所述第三传动机构包括第八齿轮608、第九轴309、第一蜗轮703和第一蜗杆701;所述第九轴309套设在基座100中;所述第八齿轮608套固在第九轴309上,第八齿轮608与第二传动机构的第一输出端相连;所述第一蜗杆701套固在第九轴309上;所述第一蜗轮703套固在第四轴304上,第一蜗轮703与第一蜗杆701啮合。In this embodiment, the third transmission mechanism includes an
在本实施例中,所述第四传动机构包括第九齿轮609、第十轴310、第二蜗轮704和第二蜗杆702;所述第十轴310套设在第一指段401中,所述第九齿轮609套固在第十轴310上,第九齿轮609与第二传动机构的第二输出端相连;所述第二蜗杆702套固在第十轴310上;所述第二蜗轮704套固在第三轴303上,第二蜗轮704与第二蜗杆702啮合。In this embodiment, the fourth transmission mechanism includes a
本实用新型所述的并联连杆模式切换平夹耦合自适应机器人手指装置,其特征在于:所述簧件采用拉簧、压簧或扭簧。在本实施例中,所述簧件801采用拉簧。The parallel link mode switching flat clip coupling adaptive robot finger device of the utility model is characterized in that: the spring member adopts a tension spring, a compression spring or a torsion spring. In this embodiment, the
在本实施例中,所述基座100包括基座第一左板101,基座右板102,基座第一后板103,基座第二左板104,基座底板105,基座前板106,基座第二后板107,基座第一盖板108和基座第二盖板109。In this embodiment, the
在本实施例中,所述第一连杆201包括第一左连杆403和第一右连杆404;所述第四连杆204包括第四左连杆405和第四右连杆406;所述第四轴304包括第四左轴503和第四右轴504;所述第一左连杆403的一端套接在第四左轴503上,第一左连杆403的另一端套接在近关节轴501上;所述第一右连杆404的一端套接在第四右轴504上,第一右连杆404的另一端套接在近关节轴501上;所述第四左连杆405的一端套接在第三轴303上,第四左连杆405的另一端套接在近关节轴501上;所述第四右连杆406的一端套接在第三轴303上,第四右连杆406的另一端套接在近关节轴501上。In this embodiment, the
本实施例的工作原理,结合附图,叙述如下:The working principle of the present embodiment, in conjunction with the accompanying drawings, is described as follows:
本实施例的运动过程大致分为预备阶段和驱动阶段。The movement process of this embodiment is roughly divided into a preparation stage and a driving stage.
在本实施例处于预备阶段以及驱动阶段的初始状态时,如图3所示,在簧件801的作用下,所述第二连杆202与限位块802接触。When the present embodiment is in the preparatory stage and the initial state of the driving stage, as shown in FIG. 3 , under the action of the
(1)预备阶段(1) Preparatory stage
如图7所示,在本实施例预备阶段时,第九齿轮609与第四齿轮604啮合;如图13-16所示,在本实施例预备阶段时,线段FG与y轴平行,点A、D、I位于同一直线上;第三轴303、第四左轴503和第四右轴504的中心线共线。此时第二电机111通过第二传动机构、第三传动机构和第四传动机构,使得第一连杆201与第四连杆204可以分别绕第四右轴504和第三轴303进行同步转动,从而实现模式切换;如图12所示即为本实施例由平夹模式切换为耦合模式的动作过程。As shown in FIG. 7 , in the preliminary stage of this embodiment, the
当第一连杆201与第四连杆204如图14所示指向y轴正半轴时,本实施例即处于平夹模式;当第一连杆201与第四连杆204如图16所示指向y轴负半轴时,本实施例即处于耦合模式;而当第一连杆201与第四连杆204处于上述两种情况的中间状态时,本实施例则处于符合一定几何关系的变比例耦合模式。When the
(2)驱动阶段(2) Drive stage
在第一连杆201与第四连杆204旋转到期望的位置后,第二电机111停止转动。由于所述第四传动机构中的第二蜗轮704和第二蜗杆702相啮合,具有自锁功能,因此,此时第一指段401与第四连杆204的相对位置保持不变,它们等效于一根连接E点和C点的连杆。类似地,在第一指段401未受到足够阻力的情况下,由于有簧件801和限位块802的联合作用,第二连杆202与第三连杆203的相对位置保持不变,它们等效于一根连接G点和I点的连杆。因此,在第一指段尚未触碰物体时,线段GF、EC、BA、IG所代表的连杆将构成一个四连杆机构。After the
随后在本实施例的驱动阶段中,第一电机110转动,带动第二连杆202绕第四左轴503转动;在第一指段尚未触碰物体时,由上述分析可知,第一电机110等效于在带动线段IG绕I点转动,从而驱动由线段GF、EC、BA、IG所代表的连杆构成的四连杆机构;在运动过程中,线段BA保持固定,线段EC绕C点转动,线段GF绕F点转动,线段IG绕I点转动。Then, in the driving stage of this embodiment, the
当第二指段先触碰到物体时,驱动停止,抓取结束;当第一指段先触碰到物体时,第一指段被阻挡无法运动;此时第一电机110持续转动,继续带动第二连杆202绕第四左轴503转动,从而带动第三连杆203绕第九轴309转动,继而推动第二指段402绕远关节轴502转动,进行自适应抓取。When the second finger first touches the object, the driving stops and the grasping ends; when the first finger first touches the object, the first finger is blocked and cannot move; at this time, the
此时第二连杆与第三连杆的夹角增大,簧件801被拉伸,第二连杆202与限位块802分离。At this time, the angle between the second link and the third link increases, the
为了能更好地解释驱动阶段的工作原理,下将结合特定的情况进行举例分析。In order to better explain the working principle of the driving phase, an example analysis will be given in combination with a specific situation.
(3)驱动阶段参考样例:平夹及平夹自适应(3) Reference example of driving stage: flat clamp and flat clamp self-adaptation
在第一连杆201与第四连杆204旋转如图13、14所示位置后,第二电机111停止转动,本实施例处于平夹模式。由于所述第四传动机构中的第二蜗轮704和第二蜗杆702相啮合,具有自锁功能,因此,此时第一指段401与第四连杆204的相对位置保持不变,它们等效于一根连接E点和C点的连杆。类似地,在第一指段401未受到足够阻力的情况下,由于有簧件801和限位块802的联合作用,第二连杆202与第三连杆203的相对位置保持不变,它们等效于一根连接G点和I点的连杆。因此,在第一指段尚未触碰物体时,线段GF、EC、BA、IG所代表的连杆将构成一个平行四边形。After the
随后在本实施例的驱动阶段中,第一电机110转动,带动第二连杆202绕第四左轴503转动;在第一指段尚未触碰物体时,由上述分析可知,第一电机110等效于在带动线段IG绕I点转动,从而驱动由线段GF、EC、BA、IG所代表的连杆构成的平行四边形;在运动过程中,线段BA保持固定,线段EC绕C点转动,线段GF绕F点转动,线段IG绕I点转动,且线段GF时刻与线段BA保持水平,维持第二指段的姿态不变,进行平夹抓取;如图8所示即为本实施例在平夹模式下进行平行夹持的动作过程。Then, in the driving stage of this embodiment, the
当第二指段先触碰到物体时,驱动停止,抓取结束;当第一指段先触碰到物体时,第一指段被阻挡无法运动;此时第一电机110持续转动,继续带动第二连杆202绕第四左轴503转动,从而带动第三连杆203绕第九轴309转动,继而推动第二指段402绕远关节轴502转动,进行自适应抓取;如图9所示即为本实施例在平夹模式下进行自适应抓取的动作过程。When the second finger first touches the object, the driving stops and the grasping ends; when the first finger first touches the object, the first finger is blocked and cannot move; at this time, the
此时第二连杆与第三连杆的夹角增大,簧件801被拉伸,第二连杆202与限位块802分离。At this time, the angle between the second link and the third link increases, the
(4)驱动阶段参考样例:耦合及耦合自适应(4) Reference example of driving stage: coupling and coupling adaptation
在第一连杆201与第四连杆204旋转如图15、16所示位置后,第二电机111停止转动,本实施例处于耦合模式。由于所述第四传动机构中的第二蜗轮704和第二蜗杆702相啮合,具有自锁功能,因此,此时第一指段401与第四连杆204的相对位置保持不变,它们等效于一根连接E点和C点的连杆。类似地,在第一指段401未受到足够阻力的情况下,由于有簧件801和限位块802的联合作用,第二连杆202与第三连杆203的相对位置保持不变,它们等效于一根连接G点和I点的连杆。因此,在第一指段尚未触碰物体时,线段GF、EC、BA、IG所代表的连杆将构成一个八字四连杆机构。After the
随后在本实施例的驱动阶段中,第一电机110转动,带动第二连杆202绕第四左轴503转动;在第一指段尚未触碰物体时,由上述分析可知,第一电机110等效于在带动线段IG绕I点转动,从而驱动由线段GF、EC、BA、IG所代表的连杆构成的八字四连杆机构;在运动过程中,线段BA保持固定,线段EC绕C点转动,线段GF绕F点转动,线段IG绕I点转动,且线段EC绕C点转动的速率与线段GF绕F点转动的速率相等,加速第二指段的抓取过程,进行耦合抓取;如图10所示即为本实施例在耦合模式下进行耦合夹持的动作过程。Then, in the driving stage of this embodiment, the
当第二指段先触碰到物体时,驱动停止,抓取结束;当第一指段先触碰到物体时,第一指段被阻挡无法运动;此时第一电机110持续转动,继续带动第二连杆202绕第四左轴503转动,从而带动第三连杆203绕第九轴309转动,继而推动第二指段402绕远关节轴502转动,进行自适应抓取;如图11所示即为本实施例在耦合模式下进行自适应抓取的动作过程。When the second finger first touches the object, the driving stops and the grasping ends; when the first finger first touches the object, the first finger is blocked and cannot move; at this time, the
此时第二连杆与第三连杆的夹角增大,簧件801被拉伸,第二连杆202与限位块802分离。At this time, the angle between the second link and the third link increases, the
(5)驱动阶段其它模式(5) Other modes in the driving stage
上述“(3)”和“(4)”仅为两个特殊情况,当第一连杆201与第四连杆204处于上述两种切换情况的中间状态时,同样可以停止第二电机的转动,进入到驱动阶段。此时本实施例将进行符合一定几何关系的变比例耦合自适应抓取。The above "(3)" and "(4)" are only two special cases. When the
释放物体9的过程与上述过程相反,不再赘述。The process of releasing the
并联连杆模式切换平夹耦合自适应机器人手指装置,属于机器人手技术领域,包括基座、两个指段、两个关节轴、两个电机、两套传动机构、六个连杆、簧件和限位块等。该装置可进行模式切换,可以完成平行夹持、耦合抓取、自适应抓取三种抓取模式。通过设立两个旋转中心,该装置的驱动和切换互不影响,在进行切换时过程简洁,不会出现冗余的动作。在驱动状态下,在两个指段未被阻挡时,该装置处于平夹或耦合的第一阶段,第二指段将随模式的选择而表现出特定的运动轨迹;当第一指段被阻挡时,该装置进入自适应抓取状态,第二指段绕着远关节轴转动,直到接触物体。该装置适应性良好,抓取稳定,控制简单,制造和维护成本低,适用范围广。A parallel link mode switching flat clip coupling adaptive robot finger device belongs to the technical field of robot hands, comprising a base, two finger segments, two joint shafts, two motors, two sets of transmission mechanisms, six connecting rods, and a spring member and limit blocks, etc. The device can switch modes, and can complete three gripping modes: parallel gripping, coupling gripping, and adaptive gripping. By setting up two rotation centers, the driving and switching of the device do not affect each other, and the switching process is simple and no redundant actions occur. In the driving state, when the two finger segments are not blocked, the device is in the first stage of flat clamping or coupling, and the second finger segment will show a specific motion trajectory with the selection of the mode; when the first finger segment is blocked When blocked, the device enters an adaptive grasping state, and the second finger segment rotates around the distal joint axis until it touches the object. The device has good adaptability, stable grasping, simple control, low manufacturing and maintenance costs, and wide application range.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122577999.4U CN216266087U (en) | 2021-10-25 | 2021-10-25 | Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122577999.4U CN216266087U (en) | 2021-10-25 | 2021-10-25 | Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216266087U true CN216266087U (en) | 2022-04-12 |
Family
ID=81072703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202122577999.4U Withdrawn - After Issue CN216266087U (en) | 2021-10-25 | 2021-10-25 | Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216266087U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113954111A (en) * | 2021-10-25 | 2022-01-21 | 阳嘉辉 | Parallel Link Mode Switching Flat Clamp Coupling Adaptive Robot Finger Device |
-
2021
- 2021-10-25 CN CN202122577999.4U patent/CN216266087U/en not_active Withdrawn - After Issue
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113954111A (en) * | 2021-10-25 | 2022-01-21 | 阳嘉辉 | Parallel Link Mode Switching Flat Clamp Coupling Adaptive Robot Finger Device |
CN113954111B (en) * | 2021-10-25 | 2024-11-01 | 阳嘉辉 | Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105583836B (en) | The parallel folding adaptive robot finger apparatus of bicyclic flexible piece | |
CN102909727B (en) | Separate type three-motor synergetic composite finger device of gripping robot | |
CN108515528B (en) | Adaptive Robot Finger Device for Slide Bar Delayed Displacement Linear Flat Clamp | |
CN102205542A (en) | Multipath flexible piece two-joint compound robot finger device | |
CN105798944A (en) | Gear-connecting bar driving parallel-clamping self-adaptive robot finger device | |
CN102179818A (en) | Finger device of composite underactuated double-joint robot with differential-motion bevel gear system | |
CN101664929A (en) | Rack type parallel coupling underactuated robot finger device | |
CN101722514A (en) | Coupling under-actuated integrated three-joint robot finger device | |
CN110900641A (en) | Parallel-clamping self-adaptive three-finger under-actuated robot hand | |
CN102825610A (en) | Finger device of double-motor cooperative combination grabbing robot | |
CN216266087U (en) | Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device | |
CN106142118A (en) | Idle running transmission flat folder adaptive robot finger apparatus taken turns by four bars six | |
CN101664930B (en) | Coupled underactuated integrated dual-joint robot finger device | |
CN109877868A (en) | A coupled-adaptive underactuated humanoid dexterous finger | |
CN101774176A (en) | Rack-flexible piece coupling underactuated double-joint robot finger device | |
CN108453768B (en) | Pole-wheel parallel racing envelope adaptive robot finger device | |
CN111761599B (en) | Gear racing dual-drive parallel clamping and coupling self-adaptive robot finger device | |
CN107030719B (en) | Multi-joint built-in drive variable grip delay adaptive robot finger device | |
CN111941450B (en) | Connecting rod collaborative driving multi-mode composite grabbing robot finger device | |
CN106426240B (en) | Idle running kinematic link coupling adaptive robot finger apparatus | |
CN105598992A (en) | Multi-axis wheel train robot finger device for achieving parallel opening and closing and self-adaptive enveloping | |
CN107009375B (en) | Composite adaptive robotic finger device with multiple modes of grasping force | |
CN113954111B (en) | Parallel connecting rod mode switching parallel clamp coupling self-adaptive robot finger device | |
CN113319878B (en) | Parallel connecting rod double shift block straight line flat clamp adaptive robot finger device | |
CN206663270U (en) | The built-in driving of multi-joint becomes grip time-delayed adaptive robot finger apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20220412 Effective date of abandoning: 20241101 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20220412 Effective date of abandoning: 20241101 |