SUMMERY OF THE UTILITY MODEL
The embodiment of the utility model provides a Touch-control 3D module and Touch-control 3D display device for the thickness of Touch +3D display module is thicker among the solution prior art, the lower problem of luminousness, can reduce technology processing procedure, reduction in production cost simultaneously.
The embodiment of the utility model provides a touch-control 3D display module assembly, touch-control 3D display module assembly includes polaroid, first touch-control electrode, first base plate, first electrode, insulating layer, second electrode, second touch-control electrode, liquid crystal layer and second base plate; wherein,
the first substrate and the second substrate are oppositely arranged;
the liquid crystal layer is positioned between the first substrate and the second substrate;
the polaroid is positioned above the liquid crystal layer;
the first touch electrode is positioned above the first substrate and back to one side of the second substrate;
the first electrode is positioned between the first substrate and the liquid crystal layer;
the insulating layer is positioned between the first electrode and the liquid crystal layer;
the second electrode and the second touch electrode are both positioned between the insulating layer and the liquid crystal layer and are distributed at intervals;
when the power is on, the first touch electrode and the second touch electrode act to realize a touch function; liquid crystal molecules in the area below the second electrode deflect, and liquid crystal molecules in the area below the second touch electrode do not deflect, so that the 3D function is realized.
Preferably, the first touch electrode is a strip electrode, and is perpendicular to the second touch electrode in a non-coplanar manner.
Preferably, the second electrodes are domain-shaped, the width of each second electrode is half of the width of the unit pixel, and each second electrode is composed of at least two second sub-electrodes.
Furthermore, the second touch electrode is positioned in an interval area between two adjacent second electrodes and is perpendicular to the opposite surface of the first touch electrode;
the second touch electrode is composed of at least two second touch sub-electrodes parallel to each other, and any one end of all the second touch sub-electrodes on each second touch electrode is conducted through a metal wire.
The first electrode is a strip electrode, and the width of the first electrode is the same as that of the second electrode corresponding to the lower part of the first electrode.
The embodiment of the utility model provides a touch-control 3D display device, this touch-control 3D display device include display panel with touch-control 3D display module assembly.
The embodiment of the utility model provides a touch-control 3D display module assembly, including first base plate, second base plate, polaroid, liquid crystal layer, first touch-control electrode, first electrode, insulating layer, second electrode and second touch-control electrode; the polaroid is positioned above the first touch electrode; the first touch electrode is positioned above the first substrate and back to one side of the second substrate; the first electrode is positioned below the first substrate and faces one side of the second substrate; the insulating layer is positioned below the first electrode and used for insulating the first electrode from the second electrode; the second electrode and the second touch electrode are both positioned below the insulating layer and are distributed at intervals; the multi-point touch function is realized through the first substrate and the first touch electrode and the second touch electrode which are insulated by the insulating layer, so that the touch sensitivity and the signal-to-noise ratio are greatly improved; when the second electrode is connected with a liquid crystal driving signal, liquid crystal molecules in the area below the second electrode deflect to form a bright field, and the bright field and a dark field below the second touch electrode jointly form a touch 3D grating. Because the grating is only formed on the first substrate and the grating is formed by the second electrode and the second touch electrode together, the number of layers of the electrodes is reduced, the thickness of the display module is reduced, and the light transmittance of the whole grating is improved; meanwhile, the first touch electrode, the second touch electrode, the first electrode and the second electrode are all located on the first substrate, so that an electric signal does not need to be conducted by using a conductive adhesive, and an alignment mark does not need to be arranged on the second substrate, so that the preparation process is simplified, and the production cost is reduced.
Detailed Description
The embodiment of the utility model provides a Touch-control 3D module and Touch-control 3D display device for solve the problem that Touch + Touch-control 3D display module's thickness is thicker among the prior art, can reduce technology processing procedure, reduction in production cost simultaneously.
The embodiment of the utility model provides a touch-control 3D display module assembly, touch-control 3D display module assembly includes polaroid, first touch-control electrode, first base plate, first electrode, insulating layer, second electrode, second touch-control electrode, liquid crystal layer and second base plate; the first substrate and the second substrate are oppositely arranged; the liquid crystal layer is positioned between the first substrate and the second substrate; the polaroid is positioned above the liquid crystal layer; the first touch electrode is positioned above the first substrate and back to one side of the second substrate; the first electrode is positioned between the first substrate and the liquid crystal layer; the insulating layer is positioned between the first electrode and the liquid crystal layer; the second electrode and the second touch electrode are arranged on the same layer, are positioned between the insulating layer and the liquid crystal layer and are distributed at intervals; when the power is on, the first touch electrode and the second touch electrode act together to realize the touch function; liquid crystal molecules in the area below the second electrode deflect, and liquid crystal molecules in the area below the second touch electrode do not deflect, so that the 3D function is realized.
Preferably, the first touch electrode is a strip electrode, the width of the strip electrode is 5-6 mm, and the strip electrode is perpendicular to the opposite surface of the second touch electrode.
The second electrodes are in a domain shape, the width of each second electrode is half of the width of the unit pixel, and each second electrode is composed of at least two second sub-electrodes; the unit pixel width is equal to the sum of the width of the second electrode and the width of the interval between the adjacent second electrodes; the second sub-electrode can be in the shape of a strip, a wave or a sawtooth.
The second touch electrode is positioned in an interval area between two adjacent second electrodes and is perpendicular to the different surface of the first touch electrode.
Meanwhile, the second touch electrode is composed of at least two second touch sub-electrodes which are parallel to each other, and any one end of all the second touch sub-electrodes on each second touch electrode is conducted through a metal wire.
Further, the width of the second electrode is the same as the width of the spacing region between two adjacent pixels.
The first electrode is a strip electrode, and the width of the first electrode is the same as that of the second electrode corresponding to the lower part of the first electrode.
In addition, the touch 3D display module further comprises a liquid crystal layer filled between the first substrate and the second substrate, when the liquid crystal layer is powered on, liquid crystal molecules in an area below the second electrode deflect, and liquid crystal molecules in an area below the second touch electrode do not deflect, so that a 3D function is realized.
Fig. 2 is a cross-sectional structure diagram of a touch 3D display module according to an embodiment of the present invention, and fig. 3 is a perspective view of the touch 3D display module; as can be seen from fig. 2, the touch 3D display module includes a first substrate 21, a second substrate 22, a first touch electrode 23, a first electrode 24, an insulating layer 25, a second electrode 26, a second touch electrode 27, a liquid crystal layer 28, and a polarizer 29; wherein,
with reference to fig. 2 and fig. 3, it can be seen that the first touch electrode 23 is located above the first substrate and on a side opposite to the second substrate; specifically, the first touch electrode 23 is a strip electrode, and has a width of 5 to 6 μm, and is perpendicular to the opposite surface of the second touch electrode 27.
The first electrode 24 is a strip-shaped electrode, is parallel to the opposite surface of the second electrode, has the same width as the second electrode, and is half of the width of the unit pixel; when the touch control 3D display module works, the first electrode is grounded and forms mutual capacitance with the second electrode; meanwhile, the first electrode 24 serves as a shielding layer to shield the electric signal emitted by the second electrode below, so that the first touch electrode is not affected when the second electrode below is connected with the liquid crystal driving signal.
The insulating layer 25 is located between the first electrode 24 and the second electrode 26 and the second touch electrode 27, and is used for insulating the first electrode 24 from the second electrode 26.
The second electrode 26 and the second touch electrode 27 are both located on the insulating layer and are distributed at intervals; the second electrodes 26 are located below the first electrodes, the width of each second electrode is half of that of a unit pixel, the second electrodes are in a domain shape, and each second electrode is composed of at least two second sub-electrodes; specifically, as shown in fig. 2 and 3, each second electrode is composed of three second sub-electrodes, a slit exists between every two second sub-electrodes, and the widths of all the slits composed of the second sub-electrodes are the same; the second electrode 26 is used for connecting a liquid crystal driving signal, and forms an electric field below the second electrode 26 together with the first electrode 24 to drive liquid crystal molecules in a region below the second electrode to deflect, so that light emitted by the liquid crystal display is transmitted to form a bright field, or the light emitted by the liquid crystal display is prevented from being transmitted to form a dark field.
Specifically, as can be seen from fig. 3, the second touch electrode 27 is located in the spacing region between two adjacent second electrodes, is perpendicular to the opposite surface of the first touch electrode 23, and forms a mutual capacitance at the intersection of the opposite surface and the first touch electrode 23, and the shape and position distribution relationship thereof are shown in fig. 4.
Meanwhile, the second touch electrode 27 is composed of at least two second touch sub-electrodes parallel to each other, specifically, as shown in fig. 4, each second touch electrode includes 7 second touch sub-electrodes, and any one end of all the second touch sub-electrodes on each second touch electrode is conducted through the layer of metal wire, so that the overall display effect of the liquid crystal panel is ensured.
Further, the width of the second electrode is the same as the width of the spacing region between two adjacent second electrodes.
Specifically, the second electrode 26 and the second touch electrode 27 are arranged in the same layer, that is, the second electrode 26 and the second touch electrode 27 are prepared in a one-step composition process, so that the number of layers of electrodes in the touch 3D module can be reduced, the thickness of the touch 3D module is effectively reduced, and the light transmittance is improved.
In an implementation, the first touch electrode 23, the first electrode 24, the second electrode 26, and the second touch electrode 27 may be made of ITO (Indium Tin oxide) having a conductive transparent material.
Further, the routing distribution relationship of the first touch electrode 23, the first electrode 24, the second electrode 26 and the second touch electrode 27 on the first substrate is shown in fig. 5, and as is apparent from fig. 5, the first touch electrode 23 is perpendicular to the other three electrodes, and the first electrode 24 is parallel to the second electrode 26 and the second touch electrode 27.
Meanwhile, the touch 3D display module further includes a liquid crystal layer 28 filled between the first substrate and the second substrate, when the liquid crystal layer is powered on, liquid crystal molecules in a region below the second electrode 26 deflect, and liquid crystal molecules in a region below the second touch electrode 27 do not deflect, so that a 3D function is realized.
In addition, the touch 3D module further includes a polarizer 29 disposed above the first touch electrode 23.
The light transmission axes of the polarizer 29 and the polarizer 210 located above the liquid crystal display are parallel or perpendicular to each other;
specifically, when the light transmission axes of the polarizers 29 and 210 are parallel to each other, the liquid crystal molecules are horizontally aligned when not energized, the liquid crystal layer 28 has no retardation effect on the polarized light passing through the polarizer 210, and the polarized light passing through the liquid crystal layer 28 is in the same direction as the light transmission axis of the polarizer 29, so that a bright field is formed in both the area a corresponding to below the second electrode and the area B corresponding to below the second touch electrode; when the touch screen is powered on, the liquid crystal layer 28 in the area a corresponding to the lower part of the second electrode horizontally deflects, the liquid crystal layer 28 has a retardation effect on the polarized light passing through the polarizer 210, and the polarized light passing through the liquid crystal layer 28 and the polarizer 29 have different transmission axis directions, so that a dark field is formed in the area a corresponding to the lower part of the second electrode, while the area B corresponding to the lower part of the second touch electrode is still a bright field, and the bright field and the dark field together form the touch 3D grating.
In contrast, when the light transmission axes of the polarizers 29 and 210 are perpendicular to each other, the liquid crystal layer 28 is horizontally aligned when not energized, the liquid crystal layer 28 has a retardation effect on the polarized light passing through the polarizer 210, and the polarized light passing through the liquid crystal layer 28 is not in accordance with the light transmission axis direction of the polarizer 29, so that dark fields are formed in both the region a corresponding to below the second electrode and the region B corresponding to below the second touch electrode; when the touch control panel is powered on, the liquid crystal layer 28 in the area A corresponding to the lower part of the second electrode horizontally deflects, the liquid crystal layer 28 has no delay effect on the polarized light passing through the polarizing plate 210, the polarized light passing through the liquid crystal layer 28 and the polarized light passing through the polarizing plate 29 have the same transmission axis direction, so that a bright field is formed in the area A corresponding to the lower part of the second electrode, the area B corresponding to the lower part of the second touch control electrode is still a dark field, and the bright field and the dark field jointly form the touch control 3D grating.
Specifically, as shown in fig. 6, the width a of the area a under the second electrode is the same as the width B of the area B under the second touch electrode, so that a touch 3D grating with uniform brightness can be formed; the width a of the area A corresponding to the lower part of the second electrode and the width B of the area B corresponding to the lower part of the second touch electrode are half of a unit pixel composed of RGB sub-pixels, so that when an image which is seen by a left eye is displayed on the liquid crystal screen, the right eye can be shielded by the opaque stripes; similarly, when an image that should be seen by the right eye is displayed on the liquid crystal screen, the left eye is shielded by the opaque stripes, and the three-dimensional display effect is realized by separating the visible images of the left eye and the right eye.
Through above can, the embodiment of the utility model provides a touch-control 3D display module assembly, when realizing its touch-control function, the use is double-deck touch-control electrode, and first touch-control electrode 23 and second touch-control electrode 27 set up at two-layer promptly, are provided with first base plate and insulating layer in the middle of the two, as shown in fig. 7, first touch-control electrode 23 and second touch-control electrode 27 are different face perpendicular, form induction capacitance in the crossing department of the different face of two electrodes, and its work and display principle are as follows:
when the second touch electrode 27 is connected to the touch driving signal, the external circuit detects a voltage signal coupled from the first touch electrode 23 through the sensing capacitor, and meanwhile, when a human body touches the touch screen, the capacitance of the human body is superimposed on the sensing capacitor, and the capacitance value of the sensing capacitor changes, so that the voltage signal generated by the sensing capacitor on the first touch electrode 23 changes; according to the change of the voltage signal, the position of the contact can be determined, and the touch function is realized.
The embodiment of the utility model provides a manufacturing method of touch-control 3D display module assembly, this method includes:
forming a first electrode under the first substrate at a side facing the second substrate;
forming an insulating layer on the first electrode, and forming a via hole on the insulating layer;
manufacturing a second electrode and a second touch electrode on the insulating layer in the same layer;
manufacturing a first touch electrode on one side, back to the second substrate, above the first substrate;
forming a polarizer on the first touch electrode;
the first substrate and the second substrate are aligned with each other, and a liquid crystal layer is injected between the first substrate and the second substrate.
Further, the forming of the first electrode on the side facing the second substrate below the first substrate specifically includes:
and manufacturing a metal wire on one side facing the second substrate below the first substrate, and forming a first electrode on the metal wire so that one end of the first electrode is directly connected with the metal wire.
Forming a via hole on the insulating layer specifically includes:
and forming a first via hole and a second via hole in the position, corresponding to the metal wire, on the insulating layer by using a photomask development process, so that the second electrode is connected with the metal wire through the first via hole, and the second touch electrode is connected with the metal wire through the second via hole.
The manufacturing of the first touch electrode on the first substrate and on the side opposite to the second substrate specifically includes:
manufacturing a metal wire on one side, back to the second substrate, above the first substrate, and forming a first touch electrode perpendicular to the opposite surface of the second touch electrode on the metal wire, so that the first touch electrode is directly connected with the metal wire;
the width of the first touch electrode is the same as that of the first electrode.
Forming a metal layer on one side, facing the second substrate, above the first substrate, and manufacturing a metal wire; and all the right sides of the first electrodes are directly connected with the metal wires.
The embodiment of the utility model provides a touch-control 3D display module's preparation technology can include following several steps:
a first step of forming a metal layer on a side facing the second substrate 22 above the first substrate 21, and forming a metal line 81 by a patterning process such as exposure using a mask, as shown in fig. 8;
second, a first electrode layer is formed on one side of the first substrate 21 where the metal lines 81 are formed, a plurality of first electrodes 24 are formed through a patterning process, and the right sides of all the first electrodes 24 are directly connected to the metal lines 81, as shown in fig. 9;
thirdly, an insulating layer 25 is made of transparent insulating materials such as silicon dioxide on the first electrode layer and used for insulating 26 the first electrode 24 from the second electrode; etching the insulating layer 25 to form a plurality of via holes, as shown in fig. 10, where the via holes include a first via hole 101 for conducting the second electrode and a second via hole 102 for conducting the touch electrode;
a fourth step of simultaneously forming a second electrode 26 and a second touch electrode 27 on the insulating layer 25 by a one-step patterning process, wherein the second electrode 26 is connected to the metal line 81 through a via 101, and the second touch electrode 27 is connected to the metal line 81 through a via 102, as shown in fig. 11;
fifthly, manufacturing a metal wire on one side of the upper substrate 21, which is opposite to the second substrate 22, and then manufacturing a first touch electrode 23, so that the first touch electrode is directly connected with the metal wire;
sixthly, to the box with first base plate and second base plate to pour into the liquid crystal layer into between first base plate and second base plate, form the embodiment of the utility model provides a touch-control 3D display module assembly, as shown in fig. 12.
The embodiment of the utility model provides a touch-control 3D display device, this touch-control 3D display device include touch-control 3D display module assembly and display panel.
Meanwhile, the display panel can be a liquid crystal display panel, and can also be other display devices such as plasma PDP, cathode ray CRT and the like; it should be noted that, as in the 3D display device provided in the embodiment of the present invention, the display panel used is a liquid crystal display panel, and since the polarizer is disposed above the liquid crystal display panel, the polarizer does not need to be added; if there is no polarizer above the display panel, a polarizer needs to be disposed between the 3D display module and the display panel.
To sum up, the embodiment of the present invention provides a touch 3D display module and a touch 3D display device, where the touch 3D display module includes a first substrate, a second substrate, a polarizer, a liquid crystal layer, a first touch electrode, a first electrode, an insulating layer, a second electrode, and a second touch electrode; the first touch electrode is positioned above the first substrate and back to one side of the second substrate; the first electrode is positioned below the first substrate and faces one side of the second substrate; the insulating layer is positioned below the first electrode and used for insulating the first electrode from the second electrode; the second electrode and the second touch electrode are both positioned below the insulating layer and are distributed at intervals, a multi-point touch function is realized through the first substrate and the first touch electrode and the second touch electrode which are insulated by the insulating layer, and the touch sensitivity and the signal-to-noise ratio are greatly improved; when the second electrode is connected with a liquid crystal driving signal, liquid crystal molecules in a region below the second electrode deflect to form a bright field, the bright field and a dark field below the second touch electrode form a touch control 3D grating together, and the grating is only formed on the first substrate and is formed by the second electrode and the second touch electrode together, so that the number of layers of the electrodes is reduced, the thickness of a display module is reduced, and the light transmittance of the whole grating is improved; meanwhile, all the electrodes are positioned on the first substrate, so that an electric signal does not need to be conducted by using a conductive adhesive, and an alignment mark does not need to be arranged on the second substrate, so that the preparation process is simplified, and the production cost is reduced.
It will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims and their equivalents, the present invention is also intended to include such modifications and variations.