Nothing Special   »   [go: up one dir, main page]

CN203054407U - Touch three-dimensional (3D) display module and touch 3D display device - Google Patents

Touch three-dimensional (3D) display module and touch 3D display device Download PDF

Info

Publication number
CN203054407U
CN203054407U CN 201320049578 CN201320049578U CN203054407U CN 203054407 U CN203054407 U CN 203054407U CN 201320049578 CN201320049578 CN 201320049578 CN 201320049578 U CN201320049578 U CN 201320049578U CN 203054407 U CN203054407 U CN 203054407U
Authority
CN
China
Prior art keywords
touch
electrode
liquid crystal
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 201320049578
Other languages
Chinese (zh)
Inventor
杨盛际
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Original Assignee
Beijing BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing BOE Optoelectronics Technology Co Ltd filed Critical Beijing BOE Optoelectronics Technology Co Ltd
Priority to CN 201320049578 priority Critical patent/CN203054407U/en
Application granted granted Critical
Publication of CN203054407U publication Critical patent/CN203054407U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

The utility model provides a touch three-dimensional (3D) display module and a touch 3D display device to solve the problems that in the prior art, the thickness of a Touch + touch 3D display module is big, and meanwhile the touch 3D display module and the touch 3D display device can reduce technical processes and production cost. The touch 3D display module comprises a first touch electrode, a first electrode, and an insulating layer, wherein the first touch electrode is arranged on a first substrate, the first electrode is arranged between the first substrate and a liquid crystal layer, the insulating layer is arranged between the first electrode and the liquid crystal layer, a second electrode and a second touch electrode are both arranged between the insulating layer and the liquid crystal layer and are distributed in a mutually separated mode. In a power-on process, the first touch electrode and the second touch electrode act to achieve a touch function, liquid crystal molecules in an area under the second electrode deflect, liquid crystal molecules in an area under the second touch electrode do not deflect, and therefore a 3D function is achieved.

Description

Touch-control 3D display module assembly and touch-control 3D display device
Technical Field
The utility model relates to a liquid crystal display technology field especially relates to a touch-control 3D module and touch-control 3D display device.
Background
The principle of 3D (Three-Dimensional), i.e., Three-Dimensional graphics, is that the left and right eyes receive images at different angles at the same time, thereby simulating a real binocular touch 3D effect.
In the stereogram correlation technique, an Active-Barrier (Active-Barrier) touch 3D technique is implemented by manufacturing a series of vertical stripes with a direction of 90 ° by using a liquid crystal layer and a polarizer, and forming a vertical fine stripe pattern, called a parallax Barrier, by light of the stripes. By using the parallax barrier, when an image which is to be seen by a left eye is displayed on the liquid crystal screen in a three-dimensional display mode, the right eye is shielded by the opaque stripes; similarly, when an image to be seen by the right eye is displayed on the liquid crystal screen, the opaque stripes can block the left eye. By separating the visual images of the left eye and the right eye, the viewer sees the touch 3D image. The technology is compatible with the LCD liquid crystal process, and therefore, has advantages in mass productivity and cost.
At present, 3D products mostly have a single display function, while 3D and Touch technology products bring the tailored experience to consumers, so that the degree of pursuing the products is higher and higher, and under the promotion of the large demand market, the integrated products of the two are also concerned and actively developed by a plurality of module manufacturers. At present, most of integrated products of the two display modules adopt an Add On Touch +3D display module, the structure of which is shown in fig. 1, and as can be seen from fig. 1, the Add On Touch +3D display module comprises a first electrode layer 11, a second electrode layer 12 and a Touch electrode layer 13, wherein the Touch electrode layer comprises the second Touch electrode layer and the first Touch electrode layer, that is, the Add On Touch +3D display module has at least 4 layers of electrodes, and more electrode layers can reduce the light transmittance of the whole liquid crystal grating and influence the display effect; moreover, since the electrodes are disposed on the second substrate, the conductive adhesive is required to conduct the voltage signal, and the alignment marks are also required to be disposed on the two substrates, so as to be used for the cartridge accurately, which increases the complexity of the manufacturing and increases the manufacturing cost; secondly, the Add On Touch +3D display module has a relatively thick thickness, which will affect the transmittance and display effect of the 3D and the whole LCD display module.
SUMMERY OF THE UTILITY MODEL
The embodiment of the utility model provides a Touch-control 3D module and Touch-control 3D display device for the thickness of Touch +3D display module is thicker among the solution prior art, the lower problem of luminousness, can reduce technology processing procedure, reduction in production cost simultaneously.
The embodiment of the utility model provides a touch-control 3D display module assembly, touch-control 3D display module assembly includes polaroid, first touch-control electrode, first base plate, first electrode, insulating layer, second electrode, second touch-control electrode, liquid crystal layer and second base plate; wherein,
the first substrate and the second substrate are oppositely arranged;
the liquid crystal layer is positioned between the first substrate and the second substrate;
the polaroid is positioned above the liquid crystal layer;
the first touch electrode is positioned above the first substrate and back to one side of the second substrate;
the first electrode is positioned between the first substrate and the liquid crystal layer;
the insulating layer is positioned between the first electrode and the liquid crystal layer;
the second electrode and the second touch electrode are both positioned between the insulating layer and the liquid crystal layer and are distributed at intervals;
when the power is on, the first touch electrode and the second touch electrode act to realize a touch function; liquid crystal molecules in the area below the second electrode deflect, and liquid crystal molecules in the area below the second touch electrode do not deflect, so that the 3D function is realized.
Preferably, the first touch electrode is a strip electrode, and is perpendicular to the second touch electrode in a non-coplanar manner.
Preferably, the second electrodes are domain-shaped, the width of each second electrode is half of the width of the unit pixel, and each second electrode is composed of at least two second sub-electrodes.
Furthermore, the second touch electrode is positioned in an interval area between two adjacent second electrodes and is perpendicular to the opposite surface of the first touch electrode;
the second touch electrode is composed of at least two second touch sub-electrodes parallel to each other, and any one end of all the second touch sub-electrodes on each second touch electrode is conducted through a metal wire.
The first electrode is a strip electrode, and the width of the first electrode is the same as that of the second electrode corresponding to the lower part of the first electrode.
The embodiment of the utility model provides a touch-control 3D display device, this touch-control 3D display device include display panel with touch-control 3D display module assembly.
The embodiment of the utility model provides a touch-control 3D display module assembly, including first base plate, second base plate, polaroid, liquid crystal layer, first touch-control electrode, first electrode, insulating layer, second electrode and second touch-control electrode; the polaroid is positioned above the first touch electrode; the first touch electrode is positioned above the first substrate and back to one side of the second substrate; the first electrode is positioned below the first substrate and faces one side of the second substrate; the insulating layer is positioned below the first electrode and used for insulating the first electrode from the second electrode; the second electrode and the second touch electrode are both positioned below the insulating layer and are distributed at intervals; the multi-point touch function is realized through the first substrate and the first touch electrode and the second touch electrode which are insulated by the insulating layer, so that the touch sensitivity and the signal-to-noise ratio are greatly improved; when the second electrode is connected with a liquid crystal driving signal, liquid crystal molecules in the area below the second electrode deflect to form a bright field, and the bright field and a dark field below the second touch electrode jointly form a touch 3D grating. Because the grating is only formed on the first substrate and the grating is formed by the second electrode and the second touch electrode together, the number of layers of the electrodes is reduced, the thickness of the display module is reduced, and the light transmittance of the whole grating is improved; meanwhile, the first touch electrode, the second touch electrode, the first electrode and the second electrode are all located on the first substrate, so that an electric signal does not need to be conducted by using a conductive adhesive, and an alignment mark does not need to be arranged on the second substrate, so that the preparation process is simplified, and the production cost is reduced.
Drawings
FIG. 1 is a diagram of a prior art Add On Touch +3D display module;
fig. 2 is a cross-sectional structure diagram of a touch 3D display module according to an embodiment of the present invention;
fig. 3 is a three-dimensional structure diagram of a touch 3D display module according to an embodiment of the present invention;
fig. 4 is a schematic diagram illustrating the shape and position distribution of the first touch electrode and the second touch electrode according to an embodiment of the present invention;
fig. 5 is a schematic view of the distribution of all electrodes of the first substrate according to an embodiment of the present invention;
fig. 6 is a distribution diagram of the corresponding region under the second electrode and the corresponding region interval under the second touch electrode according to an embodiment of the present invention;
fig. 7 is a schematic diagram illustrating a display and touch principle of a touch 3D display module according to an embodiment of the present invention;
fig. 8 to 12 are schematic diagrams of steps of manufacturing the touch 3D display module according to an embodiment of the present invention.
Detailed Description
The embodiment of the utility model provides a Touch-control 3D module and Touch-control 3D display device for solve the problem that Touch + Touch-control 3D display module's thickness is thicker among the prior art, can reduce technology processing procedure, reduction in production cost simultaneously.
The embodiment of the utility model provides a touch-control 3D display module assembly, touch-control 3D display module assembly includes polaroid, first touch-control electrode, first base plate, first electrode, insulating layer, second electrode, second touch-control electrode, liquid crystal layer and second base plate; the first substrate and the second substrate are oppositely arranged; the liquid crystal layer is positioned between the first substrate and the second substrate; the polaroid is positioned above the liquid crystal layer; the first touch electrode is positioned above the first substrate and back to one side of the second substrate; the first electrode is positioned between the first substrate and the liquid crystal layer; the insulating layer is positioned between the first electrode and the liquid crystal layer; the second electrode and the second touch electrode are arranged on the same layer, are positioned between the insulating layer and the liquid crystal layer and are distributed at intervals; when the power is on, the first touch electrode and the second touch electrode act together to realize the touch function; liquid crystal molecules in the area below the second electrode deflect, and liquid crystal molecules in the area below the second touch electrode do not deflect, so that the 3D function is realized.
Preferably, the first touch electrode is a strip electrode, the width of the strip electrode is 5-6 mm, and the strip electrode is perpendicular to the opposite surface of the second touch electrode.
The second electrodes are in a domain shape, the width of each second electrode is half of the width of the unit pixel, and each second electrode is composed of at least two second sub-electrodes; the unit pixel width is equal to the sum of the width of the second electrode and the width of the interval between the adjacent second electrodes; the second sub-electrode can be in the shape of a strip, a wave or a sawtooth.
The second touch electrode is positioned in an interval area between two adjacent second electrodes and is perpendicular to the different surface of the first touch electrode.
Meanwhile, the second touch electrode is composed of at least two second touch sub-electrodes which are parallel to each other, and any one end of all the second touch sub-electrodes on each second touch electrode is conducted through a metal wire.
Further, the width of the second electrode is the same as the width of the spacing region between two adjacent pixels.
The first electrode is a strip electrode, and the width of the first electrode is the same as that of the second electrode corresponding to the lower part of the first electrode.
In addition, the touch 3D display module further comprises a liquid crystal layer filled between the first substrate and the second substrate, when the liquid crystal layer is powered on, liquid crystal molecules in an area below the second electrode deflect, and liquid crystal molecules in an area below the second touch electrode do not deflect, so that a 3D function is realized.
Fig. 2 is a cross-sectional structure diagram of a touch 3D display module according to an embodiment of the present invention, and fig. 3 is a perspective view of the touch 3D display module; as can be seen from fig. 2, the touch 3D display module includes a first substrate 21, a second substrate 22, a first touch electrode 23, a first electrode 24, an insulating layer 25, a second electrode 26, a second touch electrode 27, a liquid crystal layer 28, and a polarizer 29; wherein,
with reference to fig. 2 and fig. 3, it can be seen that the first touch electrode 23 is located above the first substrate and on a side opposite to the second substrate; specifically, the first touch electrode 23 is a strip electrode, and has a width of 5 to 6 μm, and is perpendicular to the opposite surface of the second touch electrode 27.
The first electrode 24 is a strip-shaped electrode, is parallel to the opposite surface of the second electrode, has the same width as the second electrode, and is half of the width of the unit pixel; when the touch control 3D display module works, the first electrode is grounded and forms mutual capacitance with the second electrode; meanwhile, the first electrode 24 serves as a shielding layer to shield the electric signal emitted by the second electrode below, so that the first touch electrode is not affected when the second electrode below is connected with the liquid crystal driving signal.
The insulating layer 25 is located between the first electrode 24 and the second electrode 26 and the second touch electrode 27, and is used for insulating the first electrode 24 from the second electrode 26.
The second electrode 26 and the second touch electrode 27 are both located on the insulating layer and are distributed at intervals; the second electrodes 26 are located below the first electrodes, the width of each second electrode is half of that of a unit pixel, the second electrodes are in a domain shape, and each second electrode is composed of at least two second sub-electrodes; specifically, as shown in fig. 2 and 3, each second electrode is composed of three second sub-electrodes, a slit exists between every two second sub-electrodes, and the widths of all the slits composed of the second sub-electrodes are the same; the second electrode 26 is used for connecting a liquid crystal driving signal, and forms an electric field below the second electrode 26 together with the first electrode 24 to drive liquid crystal molecules in a region below the second electrode to deflect, so that light emitted by the liquid crystal display is transmitted to form a bright field, or the light emitted by the liquid crystal display is prevented from being transmitted to form a dark field.
Specifically, as can be seen from fig. 3, the second touch electrode 27 is located in the spacing region between two adjacent second electrodes, is perpendicular to the opposite surface of the first touch electrode 23, and forms a mutual capacitance at the intersection of the opposite surface and the first touch electrode 23, and the shape and position distribution relationship thereof are shown in fig. 4.
Meanwhile, the second touch electrode 27 is composed of at least two second touch sub-electrodes parallel to each other, specifically, as shown in fig. 4, each second touch electrode includes 7 second touch sub-electrodes, and any one end of all the second touch sub-electrodes on each second touch electrode is conducted through the layer of metal wire, so that the overall display effect of the liquid crystal panel is ensured.
Further, the width of the second electrode is the same as the width of the spacing region between two adjacent second electrodes.
Specifically, the second electrode 26 and the second touch electrode 27 are arranged in the same layer, that is, the second electrode 26 and the second touch electrode 27 are prepared in a one-step composition process, so that the number of layers of electrodes in the touch 3D module can be reduced, the thickness of the touch 3D module is effectively reduced, and the light transmittance is improved.
In an implementation, the first touch electrode 23, the first electrode 24, the second electrode 26, and the second touch electrode 27 may be made of ITO (Indium Tin oxide) having a conductive transparent material.
Further, the routing distribution relationship of the first touch electrode 23, the first electrode 24, the second electrode 26 and the second touch electrode 27 on the first substrate is shown in fig. 5, and as is apparent from fig. 5, the first touch electrode 23 is perpendicular to the other three electrodes, and the first electrode 24 is parallel to the second electrode 26 and the second touch electrode 27.
Meanwhile, the touch 3D display module further includes a liquid crystal layer 28 filled between the first substrate and the second substrate, when the liquid crystal layer is powered on, liquid crystal molecules in a region below the second electrode 26 deflect, and liquid crystal molecules in a region below the second touch electrode 27 do not deflect, so that a 3D function is realized.
In addition, the touch 3D module further includes a polarizer 29 disposed above the first touch electrode 23.
The light transmission axes of the polarizer 29 and the polarizer 210 located above the liquid crystal display are parallel or perpendicular to each other;
specifically, when the light transmission axes of the polarizers 29 and 210 are parallel to each other, the liquid crystal molecules are horizontally aligned when not energized, the liquid crystal layer 28 has no retardation effect on the polarized light passing through the polarizer 210, and the polarized light passing through the liquid crystal layer 28 is in the same direction as the light transmission axis of the polarizer 29, so that a bright field is formed in both the area a corresponding to below the second electrode and the area B corresponding to below the second touch electrode; when the touch screen is powered on, the liquid crystal layer 28 in the area a corresponding to the lower part of the second electrode horizontally deflects, the liquid crystal layer 28 has a retardation effect on the polarized light passing through the polarizer 210, and the polarized light passing through the liquid crystal layer 28 and the polarizer 29 have different transmission axis directions, so that a dark field is formed in the area a corresponding to the lower part of the second electrode, while the area B corresponding to the lower part of the second touch electrode is still a bright field, and the bright field and the dark field together form the touch 3D grating.
In contrast, when the light transmission axes of the polarizers 29 and 210 are perpendicular to each other, the liquid crystal layer 28 is horizontally aligned when not energized, the liquid crystal layer 28 has a retardation effect on the polarized light passing through the polarizer 210, and the polarized light passing through the liquid crystal layer 28 is not in accordance with the light transmission axis direction of the polarizer 29, so that dark fields are formed in both the region a corresponding to below the second electrode and the region B corresponding to below the second touch electrode; when the touch control panel is powered on, the liquid crystal layer 28 in the area A corresponding to the lower part of the second electrode horizontally deflects, the liquid crystal layer 28 has no delay effect on the polarized light passing through the polarizing plate 210, the polarized light passing through the liquid crystal layer 28 and the polarized light passing through the polarizing plate 29 have the same transmission axis direction, so that a bright field is formed in the area A corresponding to the lower part of the second electrode, the area B corresponding to the lower part of the second touch control electrode is still a dark field, and the bright field and the dark field jointly form the touch control 3D grating.
Specifically, as shown in fig. 6, the width a of the area a under the second electrode is the same as the width B of the area B under the second touch electrode, so that a touch 3D grating with uniform brightness can be formed; the width a of the area A corresponding to the lower part of the second electrode and the width B of the area B corresponding to the lower part of the second touch electrode are half of a unit pixel composed of RGB sub-pixels, so that when an image which is seen by a left eye is displayed on the liquid crystal screen, the right eye can be shielded by the opaque stripes; similarly, when an image that should be seen by the right eye is displayed on the liquid crystal screen, the left eye is shielded by the opaque stripes, and the three-dimensional display effect is realized by separating the visible images of the left eye and the right eye.
Through above can, the embodiment of the utility model provides a touch-control 3D display module assembly, when realizing its touch-control function, the use is double-deck touch-control electrode, and first touch-control electrode 23 and second touch-control electrode 27 set up at two-layer promptly, are provided with first base plate and insulating layer in the middle of the two, as shown in fig. 7, first touch-control electrode 23 and second touch-control electrode 27 are different face perpendicular, form induction capacitance in the crossing department of the different face of two electrodes, and its work and display principle are as follows:
when the second touch electrode 27 is connected to the touch driving signal, the external circuit detects a voltage signal coupled from the first touch electrode 23 through the sensing capacitor, and meanwhile, when a human body touches the touch screen, the capacitance of the human body is superimposed on the sensing capacitor, and the capacitance value of the sensing capacitor changes, so that the voltage signal generated by the sensing capacitor on the first touch electrode 23 changes; according to the change of the voltage signal, the position of the contact can be determined, and the touch function is realized.
The embodiment of the utility model provides a manufacturing method of touch-control 3D display module assembly, this method includes:
forming a first electrode under the first substrate at a side facing the second substrate;
forming an insulating layer on the first electrode, and forming a via hole on the insulating layer;
manufacturing a second electrode and a second touch electrode on the insulating layer in the same layer;
manufacturing a first touch electrode on one side, back to the second substrate, above the first substrate;
forming a polarizer on the first touch electrode;
the first substrate and the second substrate are aligned with each other, and a liquid crystal layer is injected between the first substrate and the second substrate.
Further, the forming of the first electrode on the side facing the second substrate below the first substrate specifically includes:
and manufacturing a metal wire on one side facing the second substrate below the first substrate, and forming a first electrode on the metal wire so that one end of the first electrode is directly connected with the metal wire.
Forming a via hole on the insulating layer specifically includes:
and forming a first via hole and a second via hole in the position, corresponding to the metal wire, on the insulating layer by using a photomask development process, so that the second electrode is connected with the metal wire through the first via hole, and the second touch electrode is connected with the metal wire through the second via hole.
The manufacturing of the first touch electrode on the first substrate and on the side opposite to the second substrate specifically includes:
manufacturing a metal wire on one side, back to the second substrate, above the first substrate, and forming a first touch electrode perpendicular to the opposite surface of the second touch electrode on the metal wire, so that the first touch electrode is directly connected with the metal wire;
the width of the first touch electrode is the same as that of the first electrode.
Forming a metal layer on one side, facing the second substrate, above the first substrate, and manufacturing a metal wire; and all the right sides of the first electrodes are directly connected with the metal wires.
The embodiment of the utility model provides a touch-control 3D display module's preparation technology can include following several steps:
a first step of forming a metal layer on a side facing the second substrate 22 above the first substrate 21, and forming a metal line 81 by a patterning process such as exposure using a mask, as shown in fig. 8;
second, a first electrode layer is formed on one side of the first substrate 21 where the metal lines 81 are formed, a plurality of first electrodes 24 are formed through a patterning process, and the right sides of all the first electrodes 24 are directly connected to the metal lines 81, as shown in fig. 9;
thirdly, an insulating layer 25 is made of transparent insulating materials such as silicon dioxide on the first electrode layer and used for insulating 26 the first electrode 24 from the second electrode; etching the insulating layer 25 to form a plurality of via holes, as shown in fig. 10, where the via holes include a first via hole 101 for conducting the second electrode and a second via hole 102 for conducting the touch electrode;
a fourth step of simultaneously forming a second electrode 26 and a second touch electrode 27 on the insulating layer 25 by a one-step patterning process, wherein the second electrode 26 is connected to the metal line 81 through a via 101, and the second touch electrode 27 is connected to the metal line 81 through a via 102, as shown in fig. 11;
fifthly, manufacturing a metal wire on one side of the upper substrate 21, which is opposite to the second substrate 22, and then manufacturing a first touch electrode 23, so that the first touch electrode is directly connected with the metal wire;
sixthly, to the box with first base plate and second base plate to pour into the liquid crystal layer into between first base plate and second base plate, form the embodiment of the utility model provides a touch-control 3D display module assembly, as shown in fig. 12.
The embodiment of the utility model provides a touch-control 3D display device, this touch-control 3D display device include touch-control 3D display module assembly and display panel.
Meanwhile, the display panel can be a liquid crystal display panel, and can also be other display devices such as plasma PDP, cathode ray CRT and the like; it should be noted that, as in the 3D display device provided in the embodiment of the present invention, the display panel used is a liquid crystal display panel, and since the polarizer is disposed above the liquid crystal display panel, the polarizer does not need to be added; if there is no polarizer above the display panel, a polarizer needs to be disposed between the 3D display module and the display panel.
To sum up, the embodiment of the present invention provides a touch 3D display module and a touch 3D display device, where the touch 3D display module includes a first substrate, a second substrate, a polarizer, a liquid crystal layer, a first touch electrode, a first electrode, an insulating layer, a second electrode, and a second touch electrode; the first touch electrode is positioned above the first substrate and back to one side of the second substrate; the first electrode is positioned below the first substrate and faces one side of the second substrate; the insulating layer is positioned below the first electrode and used for insulating the first electrode from the second electrode; the second electrode and the second touch electrode are both positioned below the insulating layer and are distributed at intervals, a multi-point touch function is realized through the first substrate and the first touch electrode and the second touch electrode which are insulated by the insulating layer, and the touch sensitivity and the signal-to-noise ratio are greatly improved; when the second electrode is connected with a liquid crystal driving signal, liquid crystal molecules in a region below the second electrode deflect to form a bright field, the bright field and a dark field below the second touch electrode form a touch control 3D grating together, and the grating is only formed on the first substrate and is formed by the second electrode and the second touch electrode together, so that the number of layers of the electrodes is reduced, the thickness of a display module is reduced, and the light transmittance of the whole grating is improved; meanwhile, all the electrodes are positioned on the first substrate, so that an electric signal does not need to be conducted by using a conductive adhesive, and an alignment mark does not need to be arranged on the second substrate, so that the preparation process is simplified, and the production cost is reduced.
It will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (7)

1. A touch 3D display module is characterized by comprising a polarizer, a first touch electrode, a first substrate, a first electrode, an insulating layer, a second electrode, a second touch electrode, a liquid crystal layer and a second substrate; wherein,
the first substrate and the second substrate are oppositely arranged;
the liquid crystal layer is positioned between the first substrate and the second substrate;
the polaroid is positioned above the liquid crystal layer;
the first touch electrode is positioned above the first substrate and on one side back to the second substrate;
the first electrode is positioned between the first substrate and the liquid crystal layer;
the insulating layer is positioned between the first electrode and the liquid crystal layer;
the second electrode and the second touch electrode are both positioned between the insulating layer and the liquid crystal layer and are distributed at intervals;
when the power is on, the first touch electrode and the second touch electrode act to realize a touch function; liquid crystal molecules in the area below the second electrode deflect, and liquid crystal molecules in the area below the second touch electrode do not deflect, so that the 3D function is realized.
2. The touch 3D display module as recited in claim 1, wherein the first touch electrodes are stripe electrodes perpendicular to the second touch electrodes.
3. The touch 3D display module of claim 2, wherein the second electrodes are domain-shaped, and each second electrode is formed by at least two second sub-electrodes, and has a width half of a unit pixel width.
4. The touch 3D display module as recited in claim 3, wherein the second touch electrode is located in a spacing region between two adjacent second electrodes and perpendicular to the first touch electrode.
5. The touch-sensitive 3D display module according to claim 4, wherein the second touch electrode comprises at least two parallel second touch sub-electrodes, and any one of the ends of all the second touch sub-electrodes on each second touch electrode is connected through a metal wire.
6. The touch 3D display module of claim 1, wherein the first electrodes are strip-shaped electrodes having a width equal to a width of the corresponding second electrodes below the first electrodes.
7. A touch 3D display device, wherein the touch 3D display device comprises a display panel and the touch 3D display module set defined in any one of claims 1 to 6.
CN 201320049578 2013-01-29 2013-01-29 Touch three-dimensional (3D) display module and touch 3D display device Expired - Lifetime CN203054407U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320049578 CN203054407U (en) 2013-01-29 2013-01-29 Touch three-dimensional (3D) display module and touch 3D display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320049578 CN203054407U (en) 2013-01-29 2013-01-29 Touch three-dimensional (3D) display module and touch 3D display device

Publications (1)

Publication Number Publication Date
CN203054407U true CN203054407U (en) 2013-07-10

Family

ID=48737342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320049578 Expired - Lifetime CN203054407U (en) 2013-01-29 2013-01-29 Touch three-dimensional (3D) display module and touch 3D display device

Country Status (1)

Country Link
CN (1) CN203054407U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091909A (en) * 2013-01-29 2013-05-08 北京京东方光电科技有限公司 Touch control three dimensional (3D) display module, preparation method thereof and touch control 3D display device
CN103529584A (en) * 2013-10-30 2014-01-22 北京京东方光电科技有限公司 Naked eye 3D (Three Dimensional) touch device and production method thereof and display device
WO2015100918A1 (en) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 Display device and method for preparation thereof
US9569047B2 (en) 2013-12-31 2017-02-14 Boe Technology Group Co., Ltd. Display device and method for preparing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091909A (en) * 2013-01-29 2013-05-08 北京京东方光电科技有限公司 Touch control three dimensional (3D) display module, preparation method thereof and touch control 3D display device
CN103091909B (en) * 2013-01-29 2015-10-14 北京京东方光电科技有限公司 A kind of touch-control 3D shows module and preparation method thereof and touch-control 3D display device
US9261993B2 (en) 2013-01-29 2016-02-16 Beijing Boe Optoelectronics Technology Co., Ltd. Touch liquid crystal grating, manufacturing method thereof and touch 3D display device
CN103529584A (en) * 2013-10-30 2014-01-22 北京京东方光电科技有限公司 Naked eye 3D (Three Dimensional) touch device and production method thereof and display device
WO2015062246A1 (en) * 2013-10-30 2015-05-07 京东方科技集团股份有限公司 Naked-eye 3d touch control device and manufacturing method therefor, and display device
CN103529584B (en) * 2013-10-30 2016-04-13 北京京东方光电科技有限公司 A kind of bore hole 3D contactor control device and manufacture method thereof and display device
WO2015100918A1 (en) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 Display device and method for preparation thereof
US9569047B2 (en) 2013-12-31 2017-02-14 Boe Technology Group Co., Ltd. Display device and method for preparing the same

Similar Documents

Publication Publication Date Title
CN103091909B (en) A kind of touch-control 3D shows module and preparation method thereof and touch-control 3D display device
JP5714890B2 (en) 3D image flat panel display with built-in touch screen panel
EP2703876B1 (en) Touch liquid crystal grating, 3d touch display device and driving method of touch liquid crystal grating
CN103116233B (en) A kind of touch LCD optical grating construction and 3D touch display unit
US9075469B2 (en) Stereoscopic liquid crystal display device having touch panel and method for manufacturing the same
US9280014B2 (en) Liquid crystal display device with touch function
WO2015129112A1 (en) Lcd device
CN103293726A (en) Liquid crystal box, 3D touch display device and control method thereof
CN102830839B (en) A kind of 3D touch display
WO2014153916A1 (en) Liquid crystal grating, 3d touch display device, and method for driving liquid crystal grating
CN103529584B (en) A kind of bore hole 3D contactor control device and manufacture method thereof and display device
CN203054407U (en) Touch three-dimensional (3D) display module and touch 3D display device
TW201530408A (en) Transparent electrode layer, touch panel and electronic device
JP2012113520A (en) Display device
CN106154657B (en) 3D display device and preparation method thereof
CN203241674U (en) Contact type naked eye three dimensional (3D) optical grating and display device
US9535290B2 (en) Parallax barrier and display device
CN104503166B (en) The lens jacket and its electrode structure of naked eye three-dimensional touch control display apparatus
KR101294438B1 (en) Display device, input device and optical panel
US9996200B2 (en) Touch screen, display device and manufacturing method thereof usable for realizing 3D display
CN103324001B (en) A kind of touch bore hole 3D grating and display device
WO2013088804A1 (en) Display device
CN206057762U (en) A kind of 3D display devices
KR101926523B1 (en) Liquid crystal display device having touch and three dementional display functions and method for driving the same
CN104122693A (en) Naked-eye 3D display

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BEIJING BOE PHOTOELECTRICITY SCIENCE + TECHNOLOGY

Effective date: 20150630

Owner name: JINGDONGFANG SCIENCE AND TECHNOLOGY GROUP CO., LTD

Free format text: FORMER OWNER: BEIJING BOE PHOTOELECTRICITY SCIENCE + TECHNOLOGY CO., LTD.

Effective date: 20150630

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150630

Address after: 100015 Jiuxianqiao Road, Beijing, No. 10, No.

Patentee after: BOE TECHNOLOGY GROUP Co.,Ltd.

Patentee after: BEIJING BOE OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

Address before: 100176 Beijing city in Western Daxing District economic and Technological Development Zone, Road No. 8

Patentee before: BEIJING BOE OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20130710