CN202032544U - Invert pulverized-coal fired boiler arrangement structure for ultrahigh steam temperature steam parameter - Google Patents
Invert pulverized-coal fired boiler arrangement structure for ultrahigh steam temperature steam parameter Download PDFInfo
- Publication number
- CN202032544U CN202032544U CN2011201048067U CN201120104806U CN202032544U CN 202032544 U CN202032544 U CN 202032544U CN 2011201048067 U CN2011201048067 U CN 2011201048067U CN 201120104806 U CN201120104806 U CN 201120104806U CN 202032544 U CN202032544 U CN 202032544U
- Authority
- CN
- China
- Prior art keywords
- heating surface
- flue
- furnace
- steam
- pulverized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003245 coal Substances 0.000 title claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 93
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000003546 flue gas Substances 0.000 claims abstract description 42
- 238000001816 cooling Methods 0.000 claims description 27
- 239000002893 slag Substances 0.000 claims description 16
- 238000001704 evaporation Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000001174 ascending effect Effects 0.000 abstract description 19
- 230000017525 heat dissipation Effects 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000003303 reheating Methods 0.000 description 13
- 238000010248 power generation Methods 0.000 description 12
- 230000008020 evaporation Effects 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Abstract
一种适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构,包括上部或/和顶部设有燃烧器、底部出口设置有排渣口的炉膛,炉膛同中部上行烟道相导通,该中部上行烟道的顶部和尾部下行烟道的顶部水平导通,所述的炉膛内部下方设置有屏式受热面,所述的中部上行烟道内设置有省煤器、过热器管组和再热器管组形成的对流受热面,所述的尾部下行烟道内自上而下设置有脱硝系统和空气预热器;通过将炉膛出口、炉膛出口水平烟道等布置在锅炉下部,使炉膛出口的高温烟气处于较低标高处,使高温过热器和高温再热器布置在较低标高处,从而减小了管道沿程阻力和散热损失、提高了发电机组效率,使发电机组采用超高汽温蒸汽参数,和/或采用二次再热系统成为可能。
An inverted pulverized coal boiler layout structure suitable for ultra-high steam temperature steam parameters, including a furnace with a burner on the upper part or/and top and a slagging outlet at the bottom outlet. The furnace is connected to the upward flue in the middle. The top of the ascending flue in the middle is connected horizontally with the top of the descending flue in the tail. A panel-type heating surface is provided under the inside of the furnace, and an economizer, a superheater tube group and a reheater are arranged in the ascending flue in the middle. The convection heating surface formed by the tube group, the tail descending flue is equipped with a denitrification system and an air preheater from top to bottom; by arranging the furnace outlet and the horizontal flue of the furnace outlet at the lower part of the boiler, the furnace outlet The high-temperature flue gas is at a lower elevation, so that the high-temperature superheater and high-temperature reheater are arranged at a lower elevation, thereby reducing the resistance and heat dissipation loss along the pipeline, improving the efficiency of the generator set, and making the generator set adopt ultra-high steam Warm steam parameters, and/or the use of a double reheat system becomes possible.
Description
技术领域 technical field
本实用新型涉及锅炉设备领域,具体涉及一种适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构。 The utility model relates to the field of boiler equipment, in particular to an arrangement structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters. the
背景技术 Background technique
煤粉锅炉发电机组,作为火力发电的核心技术,经历了一百多年的发展历程。从亚临界到超临界,再到超超临界,我国燃煤火电技术在近几年中更是得到了迅猛发展。大力发展超超临界燃煤火电技术,提高机组效率,是当前实现节能减排、降低二氧化碳排放的最经济有效的途径。 Pulverized coal boiler generator set, as the core technology of thermal power generation, has experienced more than 100 years of development. From subcritical to supercritical, and then to ultra-supercritical, my country's coal-fired thermal power technology has developed rapidly in recent years. Vigorously developing ultra-supercritical coal-fired thermal power technology and improving unit efficiency are the most economical and effective ways to achieve energy conservation, emission reduction, and carbon dioxide emission reduction. the
目前,亚临界一次再热火电机组发电效率为37%左右,超临界一次再热火电机组发电效率为41%左右,而主蒸汽和再热蒸汽温度为600℃的超超临界一次再热火电机组发电效率可以达到44%左右。倘若进一步提高蒸汽参数,机组发电效率有望实现进一步的提高,当主蒸汽和再热蒸汽温度达到700℃及以上时的超高汽温蒸汽参数时,一次再热火电机组发电效率有望达到48.5%以上,而二次再热火电机组发电效率更是有望达到51%以上。因此,国内外均在积极开展蒸汽温度达到甚至超过700℃的超高汽温蒸汽参数的先进超超临界火力发电机组技术。 At present, the power generation efficiency of subcritical thermal power units with primary reheating is about 37%, and that of supercritical thermal power units with primary reheating is about 41%. The power generation efficiency can reach about 44%. If the steam parameters are further improved, the power generation efficiency of the unit is expected to be further improved. When the temperature of the main steam and reheat steam reaches the ultra-high steam temperature steam parameters of 700°C and above, the power generation efficiency of the primary reheat thermal power unit is expected to reach more than 48.5%. The power generation efficiency of thermal power units with double reheating is expected to reach more than 51%. Therefore, both at home and abroad are actively developing advanced ultra-supercritical thermal power generation unit technology with ultra-high steam temperature steam parameters whose steam temperature reaches or even exceeds 700 °C. the
开发超高汽温蒸汽参数的火力发电机组,即主蒸汽和再热蒸汽温度达到700℃及以上的火力发电机组,面临许多重大技术问题。其中, 主要的技术难点有两个,一是开发可以满足超高汽温蒸汽参数的超超临界火力发电机组应用要求的高温合金材料,二是实现这样的机组系统的设计优化,降低造价。 The development of thermal power generation units with ultra-high steam temperature steam parameters, that is, thermal power generation units with main steam and reheat steam temperatures reaching 700°C and above, faces many major technical problems. Among them, there are two main technical difficulties, one is to develop superalloy materials that can meet the application requirements of ultra-supercritical thermal power generation units with ultra-high steam temperature steam parameters, and the other is to realize the design optimization of such unit systems and reduce the cost. the
国内外研究表明,最有可能用于超高汽温超超临界火力发电机组高温部件的高温合金材料主要为镍基合金。但这些镍基合金材料的价格非常高昂,是目前常规600℃等级的铁基耐热合金钢的10倍以上。按照目前常规火电机组的系统布置方式,若采用镍基合金材料,以2×1000MW超超临界机组为例,单是连接主蒸汽和再热蒸汽与汽轮机之间的高温“四大管道”,其价格就将由目前的约3亿元人民币增至约25亿元。加之锅炉及汽轮机高温部件采用耐热合金导致其造价的提高,最终使700℃等级的超超临界机组整体造价大大高于常规600℃等级火电机组,限制了超高蒸汽参数火电机组的应用和推广。 Researches at home and abroad have shown that the superalloy materials that are most likely to be used for high-temperature components of ultra-high steam temperature ultra-supercritical thermal power generation units are mainly nickel-based alloys. However, the price of these nickel-based alloy materials is very high, which is more than 10 times that of the current conventional 600°C grade iron-based heat-resistant alloy steel. According to the current system layout of conventional thermal power units, if nickel-based alloy materials are used, taking a 2×1000MW ultra-supercritical unit as an example, only the high-temperature "four major pipelines" connecting the main steam and reheat steam to the steam turbine, the other The price will increase from the current about 300 million yuan to about 2.5 billion yuan. In addition, the use of heat-resistant alloys for high-temperature parts of boilers and steam turbines leads to an increase in their cost, which ultimately makes the overall cost of 700°C class ultra-supercritical units much higher than conventional 600°C class thermal power units, limiting the application and promotion of ultra-high steam parameter thermal power units . the
此外,常规主汽和再热蒸汽温度600℃及以下的火电机组,虽然既可以采用蒸汽一次再热,也可以采用蒸汽二次再热,并且采用二次再热可以较大幅度提高机组效率,但是,目前我国大型火电机组均采用一次再热系统,国外也仅有少量大型火电机组采用二次再热系统。这是因为采用二次再热后,机组系统复杂性较之一次再热系统增加,投资也有较大增长,从而限制了二次再热系统的应用。若能通过优化机组系统设计,降低采用二次再热系统的复杂性和造价,将大大提高大型火电机组采用二次再热系统的现实可行性。 In addition, thermal power units with conventional main steam and reheat steam temperatures of 600°C or below can use either primary steam reheating or secondary reheating of steam, and the use of secondary reheating can greatly improve unit efficiency. However, at present, all large thermal power units in my country use the primary reheat system, and only a small number of large thermal power units abroad use the secondary reheat system. This is because the complexity of the unit system increases compared with the primary reheat system after the secondary reheat is adopted, and the investment also increases greatly, thus limiting the application of the secondary reheat system. If the complexity and cost of using the double reheat system can be reduced by optimizing the design of the unit system, the practical feasibility of using the double reheat system for large thermal power units will be greatly improved. the
因此,如何优化机组系统的设计,减少高温材料耗量,对于实现超高汽温超超临界机组的应用与推广,促进蒸汽二次再热系统在大型 火电机组的应用,提高机组的发电效率,起着至关重要的作用。 Therefore, how to optimize the design of the unit system and reduce the consumption of high-temperature materials plays an important role in the application and promotion of ultra-high steam temperature ultra-supercritical units, promote the application of steam secondary reheating systems in large thermal power units, and improve the power generation efficiency of units. Crucial role. the
专利号为200720069418.3的“一种新型汽轮发电机组”公布了一种通过将汽轮发电机组高、低轴系错落布置,从而减少二次再热机组高温高压蒸汽管道的长度和成本的方法,是解决这一问题的另一种思路。但是由于高压缸及发电机组成的高置轴系需要布置在80米左右的高度,会导致较严重的震动等问题,需要解决支撑和基础等重大技术难题,该布置方式尚无法得到应用。 Patent No. 200720069418.3 "A New Type of Turbogenerator Set" discloses a method for reducing the length and cost of the high-temperature and high-pressure steam pipelines of the secondary reheating unit by arranging the high and low shafts of the turbogenerator set in random order. It is another way of thinking to solve this problem. However, since the high-mounted shaft system composed of high-pressure cylinders and generators needs to be arranged at a height of about 80 meters, it will cause serious vibration and other problems, and major technical problems such as support and foundation need to be solved. This arrangement method has not yet been applied. the
目前,国内外煤粉锅炉普遍采用的布置形式以“π”形炉、塔式炉为主,少量采用“T”形炉。其中,“π”形炉是目前国内大中型火电机组最常采用的锅炉布置形式,其特点是锅炉由炉膛和一个尾部烟道构成,一部分受热面布置在水平烟道及尾部烟道竖井当中。采用“π”形布置锅炉,其炉膛高度相对塔式炉矮,对强烈地震地区以及大风地区有利,造价也低。但是由于烟气涡流和扰动较剧烈,烟气流动的均匀性较差,容易导致受热面受热不均,从而引起较大的温度偏差;并且燃用劣质燃料时,锅炉磨损较为严重。 At present, the commonly used layout forms of pulverized coal boilers at home and abroad are mainly "π" shaped furnaces and tower furnaces, and a small amount of "T" shaped furnaces are used. Among them, the "π"-shaped furnace is currently the most commonly used boiler arrangement for large and medium-sized thermal power units in China. Its characteristic is that the boiler is composed of a furnace and a tail flue, and part of the heating surface is arranged in the horizontal flue and the tail flue shaft. The boiler is arranged in a "π" shape, and its furnace height is shorter than that of the tower furnace, which is beneficial to strong earthquake areas and windy areas, and the cost is also low. However, due to the severe flue gas vortex and disturbance, the uniformity of the flue gas flow is poor, which easily leads to uneven heating of the heating surface, resulting in large temperature deviations; and when burning inferior fuel, the boiler wears more seriously. the
而塔形炉则将所有受热面均布置在炉膛上方,尾部垂直烟道不布置受热面,相对“π”形炉占地面积小,适合厂区用地紧张的工程。塔式锅炉由于烟气向上流动,烟气中的粉尘在重力作用下流速减慢或者向下沉降,因此对受热面的磨损大大降低。并且烟气流动的均匀性较好,受热面及工质的温度偏差较小。另外塔形锅炉架构简单,锅炉膨胀中心和密封设计容易处理,布置紧凑。因此,对于超超临界机组,塔式炉具有一定的优势。 In the tower furnace, all heating surfaces are arranged above the furnace, and no heating surface is arranged in the vertical flue at the tail. Compared with the "π" type furnace, the floor space is small, and it is suitable for projects with tight land use in the factory area. Due to the upward flow of the flue gas in the tower boiler, the dust in the flue gas slows down or settles down under the action of gravity, so the wear on the heating surface is greatly reduced. And the uniformity of flue gas flow is good, and the temperature deviation of the heating surface and working fluid is small. In addition, the structure of the tower boiler is simple, the boiler expansion center and sealing design are easy to handle, and the layout is compact. Therefore, for ultra-supercritical units, tower furnaces have certain advantages. the
“T”形炉则是将尾部烟道分成尺寸完全一样的两个对流竖井烟道,对称地布置在炉膛两侧,以解决“π”形炉尾部受热面布置困难问题,也可使炉膛出口烟窗高度减小,减小烟气沿高度的热偏差,并且竖井内的烟气流速可降低,减少磨损。但占地面积比“π”型布置更大,汽水管道连接系统复杂,金属消耗量大,成本高,国内应用较少。 The "T" shaped furnace divides the tail flue into two convective shaft flues of exactly the same size, which are symmetrically arranged on both sides of the furnace to solve the problem of difficult arrangement of the heating surface at the tail of the "π" shaped furnace, and also to make the furnace outlet The height of the chimney is reduced, reducing the thermal deviation of the flue gas along the height, and the flue gas flow rate in the shaft can be reduced to reduce wear. However, the occupied area is larger than that of the "π" type layout, the soda pipeline connection system is complicated, the metal consumption is large, the cost is high, and the domestic application is less. the
无论锅炉采用那种布置形式,烟气在炉膛内均从下向上流动,并且因传热的需要,高温受热面需要布置在烟气温度较高的区域,而高温烟气区域根据炉型的不同,所在位置的标高为50~80米以上,从而导致由高温受热面出口联箱至汽轮机之间的高温蒸汽连接管道很长,成本较大,限制了二次再热等技术的采用。在蒸汽温度提高到700℃等级的超高汽温蒸汽参数情况下,由于高温蒸汽连接管道的单位重量材料价格大幅升高,因此,如何降低高温蒸汽连接管道长度和造价成为一个需要解决的关键技术问题。 Regardless of the layout of the boiler, the flue gas flows from bottom to top in the furnace, and due to the need for heat transfer, the high-temperature heating surface needs to be arranged in the area with high flue gas temperature, and the high-temperature flue gas area depends on the furnace type. , the elevation of the location is more than 50-80 meters, which results in a very long high-temperature steam connecting pipe from the outlet header of the high-temperature heating surface to the steam turbine, and the cost is relatively high, which limits the adoption of technologies such as secondary reheating. When the steam temperature increases to 700°C and the ultra-high steam temperature steam parameters, because the material price per unit weight of the high-temperature steam connection pipe increases significantly, how to reduce the length and cost of the high-temperature steam connection pipe becomes a key technology that needs to be solved question. the
发明内容 Contents of the invention
为了克服上述现有技术存在的不足,本实用新型的目的在于提供一种适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构,使高温过热器和高温再热器布置在较低标高处,从而减小了管道沿程阻力和散热损失、提高了发电机组效率,使发电机组采用超高汽温蒸汽参数,和/或采用二次再热系统成为可能。 In order to overcome the deficiencies in the prior art above, the purpose of this utility model is to provide an inverted pulverized coal boiler layout structure suitable for ultra-high steam temperature steam parameters, so that the high-temperature superheater and high-temperature reheater are arranged at a lower elevation , thereby reducing the resistance and heat loss along the pipeline, improving the efficiency of the generating set, making it possible for the generating set to adopt ultra-high steam temperature steam parameters, and/or adopt a secondary reheating system. the
为了达到上述目的,本实用新型所采用的技术方案是: In order to achieve the above object, the technical solution adopted in the utility model is:
一种适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构,包括底部出口设置有排渣口1的炉膛4,所述的炉膛4的侧壁下部开有炉膛 烟气出口201,炉膛烟气出口201同炉膛出口水平烟道12的一端相导通,炉膛出口水平烟道12的另一端同中部上行烟道14相导通,该中部上行烟道14的顶部和尾部下行烟道22的顶部水平导通;所述的炉膛4内部下方设置有屏式受热面2,所述的中部上行烟道14内设置有省煤器13、过热器管组8和再热器管组9形成的对流受热面,其中末级过热器和末级再热器分别通过高温蒸汽管道20与汽轮机25中对应的高压缸103和中压缸组107相导通,所述的尾部下行烟道22内自上而下设置有脱硝系统21和空气预热器23,另外所述的尾部下行烟道22的侧壁下方设置尾部烟气出口24。
An inverted pulverized coal boiler layout structure suitable for ultra-high steam temperature steam parameters, including a
所述的炉膛4侧壁的炉膛烟气出口201上方为折焰角202。
Above the furnace
所述的炉膛4的侧壁上方设置墙式燃烧器5。
A
所述的炉膛4的顶部设置顶式燃烧器6。
A
所述的位于中部上行烟道14中的对流受热面,采用串联或者并联的布置形式,当采用并联布置时,将对流受热面的省煤器13、过热器管组8和再热器管组9分成两个以上的对流受热面分组,对流受热面与对流受热面之间设置有分隔墙18,分隔墙18之后设置有烟气挡板15。
The convection heating surface located in the middle
所述的炉膛4的四周由水冷壁3包覆而成,所述的水冷壁3为螺旋管圈水冷壁、内螺纹垂直管水冷壁、普通垂直管水冷壁或者为螺旋管圈水冷壁、内螺纹垂直管水冷壁以及普通垂直管水冷壁三者的两两组合,并且水冷工质在水冷壁中的总体流动方向为从上到下流动或者从下到上流动。
The surroundings of the
所述的屏式受热面2为过热蒸汽受热面、为再热蒸汽受热面、蒸发受热面或者为过热蒸汽受热面、再热蒸汽受热面以及蒸发受热面三者的组合。
The
所述的中部上行烟道14由包墙受热面7包覆而成。
The middle ascending
所述的排渣口1的下方设置有排渣机19。
A
所述的中部上行烟道14的底部设置有第一排灰口101,所述的尾部下行烟道22的底部设置有第二排灰口102。
The bottom of the middle ascending
本实用新型具有以下有益效果: The utility model has the following beneficial effects:
1、由于燃烧器置于炉膛4的侧壁上方或炉膛4的顶部,屏式受热面2布置在炉膛4的下部,同时在炉膛4的下部开有炉膛烟气出口201,从而实现了炉膛4的倒置,使炉膛出口的高温烟气处于较低标高处,使高温过热器和高温再热器布置在较低标高处成为可能,从而减少了蒸汽管道系统中连接锅炉与汽轮机25之间昂贵的高温蒸汽管道20的长度,降低了超高汽温蒸汽参数的煤粉锅炉的制造成本,同时减小了管道沿程阻力和散热损失、提高了发电机组效率,使发电机组采用超高汽温蒸汽参数成为可能。
1. Since the burner is placed above the side wall of the
2、由于减少了高温蒸汽管道系统中连接锅炉与汽轮机25之间昂贵的高温蒸汽管道20的长度,简化了高温蒸汽管道20的布置,因此便于采用超高汽温蒸汽参数和较高汽温的机组采用蒸汽二次再热系统。
2. Since the length of the expensive high-
3、过热器管组8和再热器管组9主要布置在上行烟道中,烟气中的粉尘在重力作用下流速减慢或者向下沉降,因此对对流受热面的 磨损降低。
3. The
4、脱硝系统21和空气预热器23布置在尾部下行烟道22中,从而有效解决了脱硝系统21在“π”形炉中,因空间限制而难于布置的问题。
4. The
附图说明 Description of drawings
图1为本实用新型的实施例1中的适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构的示意图,内部的箭头代表烟气流动方向。
Fig. 1 is a schematic diagram of the arrangement structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters in
图2为本实用新型的实施例2中的适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构的示意图,内部的箭头代表烟气流动方向。 Fig. 2 is a schematic diagram of the arrangement structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters in Example 2 of the present utility model, and the arrows inside represent the flue gas flow direction. the
图3为本实用新型的实施例3中的适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构的示意图,内部的箭头代表烟气流动方向。
Fig. 3 is a schematic diagram of the layout structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters in
图4为本实用新型的实施例4中的适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构的示意图,内部的箭头代表烟气流动方向。
Fig. 4 is a schematic diagram of the layout structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters in
具体实施方式 Detailed ways
下面结合附图和实施例对本实用新型作更详细的说明。 Below in conjunction with accompanying drawing and embodiment the utility model is described in more detail. the
实施例1: Example 1:
如图1所示,适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构,包括底部出口设置有排渣口1的炉膛4,所述的炉膛4的侧壁下部开有炉膛烟气出口201,炉膛烟气出口201同炉膛出口水平烟道12的一端相导通,炉膛出口水平烟道12的另一端同中部上行烟道14相导通,该中部上行烟道14的顶部和尾部下行烟道22的顶部水平导通;所述的炉膛4内部下方设置有屏式受热面2,所述的中部上行烟道14 内设置有省煤器13、过热器管组8和再热器管组9形成的对流受热面,过热器并再热器中的末级过热器和末级再热器分别通过高温蒸汽管道20与汽轮机25中对应的高压缸103和中压缸组107相导通,所述的尾部下行烟道22内自上而下设置有脱硝系统21和空气预热器23,另外所述的尾部下行烟道22的侧壁下方设置尾部烟气出口24。所述的炉膛4侧壁的炉膛烟气出口201上方为折焰角202。所述的炉膛4的侧壁上方设置墙式燃烧器5。所述的炉膛4的顶部设置顶式燃烧器6。所述的位于中部上行烟道14中的对流受热面采用并联布置,将对流受热面的省煤器13、过热器管组8和再热器管组9分成三个对流受热面分组,对流受热面与对流受热面之间设置有分隔墙18,分隔墙18之后设置有烟气挡板15。所述的炉膛4的四周由水冷壁3包覆而成,所述的水冷壁3为螺旋管圈水冷壁、内螺纹垂直管水冷壁、普通垂直管水冷壁或者为螺旋管圈水冷壁、内螺纹垂直管水冷壁以及普通垂直管水冷壁三者的两两组合,并且水冷工质在水冷壁中的总体流动方向为从上到下流动或者从下到上流动。所述的屏式受热面2为过热蒸汽受热面、为再热蒸汽受热面、蒸发受热面或者为过热蒸汽受热面、再热蒸汽受热面以及蒸发受热面三者的组合。所述的中部上行烟道14由包墙受热面7包覆而成。所述的排渣口1的下方设置有排渣机19。所述的中部上行烟道14的底部设置有第一排灰口101,所述的尾部下行烟道22的底部设置有第二排灰口102。
As shown in Figure 1, the layout structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters includes a furnace 4 with a slag discharge port 1 at the bottom outlet, and a furnace flue gas outlet is opened at the lower part of the side wall of the furnace 4 201, the furnace flue gas outlet 201 is connected to one end of the horizontal flue 12 at the furnace outlet, and the other end of the horizontal flue 12 at the furnace outlet is connected to the middle upward flue 14, and the top and tail of the middle upward flue 14 go downward The top of the flue 22 is connected horizontally; the inside of the furnace 4 is provided with a panel heating surface 2, and the middle upward flue 14 is provided with an economizer 13, a superheater tube group 8 and a reheater tube The convective heating surface formed by group 9, the final superheater and the final reheater in the superheater and reheater are respectively connected to the corresponding high-pressure cylinder 103 and medium-pressure cylinder group 107 in the steam turbine 25 through the high-temperature steam pipeline 20 A denitrification system 21 and an air preheater 23 are arranged in the tail descending flue 22 from top to bottom, and a tail flue gas outlet 24 is arranged below the side wall of the tail descending flue 22 . Above the furnace
实施例2: Example 2:
如图2所示,适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结 构,包括底部出口设置有排渣口1的炉膛4,所述的炉膛4的侧壁下部开有炉膛烟气出口201,炉膛烟气出口201同炉膛出口水平烟道12的一端相导通,炉膛出口水平烟道12的另一端同中部上行烟道14相导通,该中部上行烟道14的顶部和尾部下行烟道22的顶部水平导通;所述的炉膛4内部下方设置有屏式受热面2,所述的中部上行烟道14内设置有省煤器13、过热器管组8和再热器管组9形成的对流受热面,其中末级过热器和末级再热器分别通过高温蒸汽管道20与汽轮机25中对应的高压缸103和中压缸组107相导通,所述的尾部下行烟道22内自上而下设置有脱硝系统21和空气预热器23,另外所述的尾部下行烟道22的侧壁下方设置尾部烟气出口24。所述的炉膛4侧壁的炉膛烟气出口201上方为折焰角202。所述的炉膛4的侧壁上方设置墙式燃烧器5。所述的位于中部上行烟道14中的对流受热面,采用串联的布置形式。所述的炉膛4的四周由水冷壁3包覆而成,所述的水冷壁3为螺旋管圈水冷壁、内螺纹垂直管水冷壁、普通垂直管水冷壁或者为螺旋管圈水冷壁、内螺纹垂直管水冷壁以及普通垂直管水冷壁三者的两两组合,并且水冷工质在水冷壁中的总体流动方向为从上到下流动或者从下到上流动。所述的屏式受热面2为过热蒸汽受热面、为再热蒸汽受热面、蒸发受热面或者为过热蒸汽受热面、再热蒸汽受热面以及蒸发受热面三者的组合。所述的中部上行烟道14由包墙受热面7包覆而成。所述的排渣口1的下方设置有排渣机19。所述的中部上行烟道14的底部设置有第一排灰口101,所述的尾部下行烟道22的底部设置有第二排灰口102。
As shown in Figure 2, the layout structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters includes a furnace 4 with a slag discharge port 1 at the bottom outlet, and the lower part of the side wall of the furnace 4 is provided with furnace flue gas Exit 201, the furnace flue gas outlet 201 is connected with one end of the furnace exit horizontal flue 12, the other end of the furnace exit horizontal flue 12 is connected with the middle upward flue 14, and the top and tail of the middle upward flue 14 The top of the down-going flue 22 is connected horizontally; the inside of the furnace 4 is provided with a panel-type heating surface 2 , and the middle part of the up-going flue 14 is provided with an economizer 13 , a superheater tube group 8 and a reheater The convective heating surface formed by the tube group 9, wherein the final stage superheater and the final stage reheater are respectively connected to the corresponding high-pressure cylinder 103 and medium-pressure cylinder group 107 in the steam turbine 25 through the high-temperature steam pipeline 20, and the tail part goes down A denitrification system 21 and an air preheater 23 are arranged in the flue 22 from top to bottom, and a tail flue gas outlet 24 is arranged below the side wall of the tail descending flue 22 . Above the furnace
实施例3: Example 3:
如图3所示,适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构,包括底部出口设置有排渣口1的炉膛4,所述的炉膛4的侧壁下部开有炉膛烟气出口201,炉膛烟气出口201同炉膛出口水平烟道12的一端相导通,炉膛出口水平烟道12的另一端同中部上行烟道14相导通,该中部上行烟道14的顶部和尾部下行烟道22的顶部水平导通;所述的炉膛4内部下方设置有屏式受热面2,所述的中部上行烟道14内设置有省煤器13、过热器管组8和再热器管组9形成的对流受热面,其中末级过热器和末级再热器分别通过高温蒸汽管道20与汽轮机25中对应的高压缸103和中压缸组107相导通,所述的尾部下行烟道22内自上而下设置有脱硝系统21和空气预热器23,另外所述的尾部下行烟道22的侧壁下方设置尾部烟气出口24。所述的炉膛4侧壁的炉膛烟气出口201上方为折焰角202。所述的炉膛4的侧壁上方设置墙式燃烧器5。所述的位于中部上行烟道14中的对流受热面,采用并联的布置形式,将对流受热面的省煤器13、过热器管组8和再热器管组9分成两个对流受热面分组,对流受热面与对流受热面之间设置有分隔墙18,分隔墙18之后设置有烟气挡板15。所述的炉膛4的四周由水冷壁3包覆而成,所述的水冷壁3为螺旋管圈水冷壁、内螺纹垂直管水冷壁、普通垂直管水冷壁或者为螺旋管圈水冷壁、内螺纹垂直管水冷壁以及普通垂直管水冷壁三者的两两组合,并且水冷工质在水冷壁中的总体流动方向为从上到下流动或者从下到上流动。所述的屏式受热面2为过热蒸汽受热面、为再热蒸汽受热面、蒸发受 热面或者为过热蒸汽受热面、再热蒸汽受热面以及蒸发受热面三者的组合。所述的中部上行烟道14由包墙受热面7包覆而成。所述的排渣口1的下方设置有排渣机19。所述的中部上行烟道14的底部设置有第一排灰口101,所述的尾部下行烟道22的底部设置有第二排灰口102。
As shown in Figure 3, the layout structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters includes a furnace 4 with a slag discharge port 1 at the bottom outlet, and a furnace flue gas outlet is opened at the lower part of the side wall of the furnace 4 201, the furnace flue gas outlet 201 is connected to one end of the horizontal flue 12 at the furnace outlet, and the other end of the horizontal flue 12 at the furnace outlet is connected to the middle upward flue 14, and the top and tail of the middle upward flue 14 go downward The top of the flue 22 is connected horizontally; the inner part of the furnace 4 is provided with a panel heating surface 2, and the middle upward flue 14 is provided with an economizer 13, a superheater tube group 8 and a reheater tube The convective heating surface formed by group 9, wherein the final stage superheater and final stage reheater are connected to the corresponding high-pressure cylinder 103 and medium-pressure cylinder group 107 in the steam turbine 25 through the high-temperature steam pipeline 20 respectively, and the tail descending smoke A denitrification system 21 and an air preheater 23 are arranged in the channel 22 from top to bottom, and a tail flue gas outlet 24 is provided under the side wall of the tail descending flue 22 . Above the furnace
实施例4: Example 4:
如图4所示,适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构,包括底部出口设置有排渣口1的炉膛4,所述的炉膛4的侧壁下部开有炉膛烟气出口201,炉膛烟气出口201同炉膛出口水平烟道12的一端相导通,炉膛出口水平烟道12的另一端同中部上行烟道14相导通,该中部上行烟道14的顶部和尾部下行烟道22的顶部水平导通;所述的炉膛4内部下方设置有屏式受热面2,所述的中部上行烟道14内设置有省煤器13、过热器管组8和再热器管组9形成的对流受热面,其中末级过热器和末级再热器分别通过高温蒸汽管道20与汽轮机25中对应的高压缸103和中压缸组107相导通,所述的尾部下行烟道22内自上而下设置有脱硝系统21和空气预热器23,另外所述的尾部下行烟道22的侧壁下方设置尾部烟气出口24。所述的炉膛4的侧壁上方设置墙式燃烧器5。所述的炉膛4的顶部设置顶式燃烧器6。所述的位于中部上行烟道14中的对流受热面,采用串联的布置形式。所述的炉膛4的四周由水冷壁3包覆而成,所述的水冷壁3为螺旋管圈水冷壁、内螺纹垂直管水冷壁、普通垂直管水冷壁或者为螺旋管圈水冷壁、内螺纹垂直管水冷壁以及普通垂直管水冷壁三者的两两 组合,并且水冷工质在水冷壁中的总体流动方向为从上到下流动或者从下到上流动。所述的屏式受热面2为过热蒸汽受热面、为再热蒸汽受热面、蒸发受热面或者为过热蒸汽受热面、再热蒸汽受热面以及蒸发受热面三者的组合。所述的中部上行烟道14由包墙受热面7包覆而成。所述的排渣口1的下方设置有排渣机19。所述的中部上行烟道14的底部设置有第一排灰口101,所述的尾部下行烟道22的底部设置有第二排灰口102。
As shown in Figure 4, the layout structure of an inverted pulverized coal boiler suitable for ultra-high steam temperature steam parameters includes a furnace 4 with a slag discharge port 1 at the bottom outlet, and a furnace flue gas outlet is opened at the lower part of the side wall of the furnace 4 201, the furnace flue gas outlet 201 is connected to one end of the horizontal flue 12 at the furnace outlet, and the other end of the horizontal flue 12 at the furnace outlet is connected to the middle upward flue 14, and the top and tail of the middle upward flue 14 go downward The top of the flue 22 is connected horizontally; the inner part of the furnace 4 is provided with a panel heating surface 2, and the middle upward flue 14 is provided with an economizer 13, a superheater tube group 8 and a reheater tube The convective heating surface formed by group 9, wherein the final stage superheater and final stage reheater are connected to the corresponding high-pressure cylinder 103 and medium-pressure cylinder group 107 in the steam turbine 25 through the high-temperature steam pipeline 20 respectively, and the tail descending smoke A denitrification system 21 and an air preheater 23 are arranged in the channel 22 from top to bottom, and a tail flue gas outlet 24 is provided under the side wall of the tail descending flue 22 . A
本实用新型的工作原理为:烟气在炉膛4内部从上向下流动,然后经由炉膛出口水平烟道12进入中部上行烟道14,烟气再经由中部上行烟道14内的对流受热面,从中部上行烟道14的顶部进入尾部下行烟道22,最后烟气依次通过脱硝系统21和空气预热器23后,从尾部烟气出口24中流出。
The working principle of the utility model is: the flue gas flows from top to bottom inside the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011201048067U CN202032544U (en) | 2011-04-11 | 2011-04-11 | Invert pulverized-coal fired boiler arrangement structure for ultrahigh steam temperature steam parameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011201048067U CN202032544U (en) | 2011-04-11 | 2011-04-11 | Invert pulverized-coal fired boiler arrangement structure for ultrahigh steam temperature steam parameter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202032544U true CN202032544U (en) | 2011-11-09 |
Family
ID=44894840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011201048067U Expired - Lifetime CN202032544U (en) | 2011-04-11 | 2011-04-11 | Invert pulverized-coal fired boiler arrangement structure for ultrahigh steam temperature steam parameter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202032544U (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102147105A (en) * | 2011-04-11 | 2011-08-10 | 中国华能集团清洁能源技术研究院有限公司 | Arrangement structure of inverted pulverized-coal fired boiler suitable for ultra-high steam temperature steam parameters |
CN102537937A (en) * | 2012-02-26 | 2012-07-04 | 哈尔滨锅炉厂有限责任公司 | Device for adjusting temperature of reheated steam of boiler by aid of three tail-flues |
CN102889570A (en) * | 2012-09-11 | 2013-01-23 | 上海锅炉厂有限公司 | Tower-type boiler with primary reheater and secondary reheater |
CN103017137A (en) * | 2012-12-27 | 2013-04-03 | 青岛胜利锅炉有限公司 | Low-temperature corrosion resisting structure of boiler |
CN103062747A (en) * | 2012-12-24 | 2013-04-24 | 杭州燃油锅炉有限公司 | Vertical type coal dust corner tube boiler |
CN103062748A (en) * | 2012-12-24 | 2013-04-24 | 杭州燃油锅炉有限公司 | Vertical type coal dust corner tube boiler |
CN103185343A (en) * | 2013-03-23 | 2013-07-03 | 安徽金鼎锅炉股份有限公司 | Hearth structure of incineration boiler |
CN103776020A (en) * | 2014-02-26 | 2014-05-07 | 章礼道 | Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas |
CN103807863A (en) * | 2014-01-24 | 2014-05-21 | 上海发电设备成套设计研究院 | Improved smoke temperature adjusting system for selective catalytic reduction |
CN103851603A (en) * | 2014-03-17 | 2014-06-11 | 山西新唐工程设计有限公司 | Compact distributed coal powder boiler with SCR (selective catalytic reduction device) |
CN104728823A (en) * | 2015-03-17 | 2015-06-24 | 西安热工研究院有限公司 | Novel supercritical carbon dioxide coal-fired boiler |
CN107676769A (en) * | 2017-09-28 | 2018-02-09 | 哈尔滨锅炉厂有限责任公司 | A kind of arrangement of U-shaped boiler and its unit suitable for ultra supercritical Large Copacity coal unit |
WO2021110020A1 (en) * | 2019-12-06 | 2021-06-10 | 江苏太湖锅炉股份有限公司 | Flue gas waste heat utilization system |
-
2011
- 2011-04-11 CN CN2011201048067U patent/CN202032544U/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102147105A (en) * | 2011-04-11 | 2011-08-10 | 中国华能集团清洁能源技术研究院有限公司 | Arrangement structure of inverted pulverized-coal fired boiler suitable for ultra-high steam temperature steam parameters |
WO2012139383A1 (en) * | 2011-04-11 | 2012-10-18 | 中国华能集团清洁能源技术研究院有限公司 | Inverted layout structure for pulverized coal boiler adapted to ultra-high temperature steam parameters |
US9488370B2 (en) | 2011-04-11 | 2016-11-08 | Huaneng Clean Energy Research Institute | Arrangement structure suitable for inverted pulverized coal boiler with ultra-high steam temperature steam parameters |
CN102537937A (en) * | 2012-02-26 | 2012-07-04 | 哈尔滨锅炉厂有限责任公司 | Device for adjusting temperature of reheated steam of boiler by aid of three tail-flues |
CN102889570B (en) * | 2012-09-11 | 2014-11-12 | 上海锅炉厂有限公司 | Tower-type boiler with primary reheater and secondary reheater |
CN102889570A (en) * | 2012-09-11 | 2013-01-23 | 上海锅炉厂有限公司 | Tower-type boiler with primary reheater and secondary reheater |
WO2014040491A1 (en) * | 2012-09-11 | 2014-03-20 | 上海锅炉厂有限公司 | Tower-type boiler with primary reheater and secondary reheater |
CN103062748A (en) * | 2012-12-24 | 2013-04-24 | 杭州燃油锅炉有限公司 | Vertical type coal dust corner tube boiler |
CN103062747A (en) * | 2012-12-24 | 2013-04-24 | 杭州燃油锅炉有限公司 | Vertical type coal dust corner tube boiler |
CN103017137A (en) * | 2012-12-27 | 2013-04-03 | 青岛胜利锅炉有限公司 | Low-temperature corrosion resisting structure of boiler |
CN103185343A (en) * | 2013-03-23 | 2013-07-03 | 安徽金鼎锅炉股份有限公司 | Hearth structure of incineration boiler |
CN103807863A (en) * | 2014-01-24 | 2014-05-21 | 上海发电设备成套设计研究院 | Improved smoke temperature adjusting system for selective catalytic reduction |
CN103807863B (en) * | 2014-01-24 | 2018-02-13 | 上海发电设备成套设计研究院 | A kind of cigarette temperature controlling system for SCR transformation |
CN103776020A (en) * | 2014-02-26 | 2014-05-07 | 章礼道 | Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas |
CN103776020B (en) * | 2014-02-26 | 2015-06-17 | 章礼道 | Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas |
CN103851603A (en) * | 2014-03-17 | 2014-06-11 | 山西新唐工程设计有限公司 | Compact distributed coal powder boiler with SCR (selective catalytic reduction device) |
CN104728823A (en) * | 2015-03-17 | 2015-06-24 | 西安热工研究院有限公司 | Novel supercritical carbon dioxide coal-fired boiler |
CN107676769A (en) * | 2017-09-28 | 2018-02-09 | 哈尔滨锅炉厂有限责任公司 | A kind of arrangement of U-shaped boiler and its unit suitable for ultra supercritical Large Copacity coal unit |
WO2021110020A1 (en) * | 2019-12-06 | 2021-06-10 | 江苏太湖锅炉股份有限公司 | Flue gas waste heat utilization system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202032544U (en) | Invert pulverized-coal fired boiler arrangement structure for ultrahigh steam temperature steam parameter | |
CN102147105A (en) | Arrangement structure of inverted pulverized-coal fired boiler suitable for ultra-high steam temperature steam parameters | |
CN102128443B (en) | Pulverized coal boiler suitable for ultrahigh steam temperature | |
CN103591575B (en) | 350MW supercritical circulating fluidized bed boiler and steam/water circulating method | |
CN207975627U (en) | It is suitable for using the 660MW grade ultra-supercritical boilers of high alkalinity coal | |
CN102297423A (en) | Membrane type water-cooled wall four-flue biomass circulating fluidized bed boiler | |
CN201954519U (en) | Pulverized-coal fired boiler applicable to ultrahigh steam temperature | |
CN104728823A (en) | Novel supercritical carbon dioxide coal-fired boiler | |
CN206469237U (en) | The subcritical gas boilers of 150MW of pure burning blast-furnace gas | |
CN103017153A (en) | 300MW subcritical circulating fluidized bed boiler and working method | |
CN111059546A (en) | High-parameter garbage waste heat boiler | |
CN107906498B (en) | Supercritical carbon dioxide circulating fluidized bed combustion coal boiler and its electricity generation system of driving | |
CN203656913U (en) | 350MW supercritical circulating fluidized bed boiler | |
CN107883365A (en) | A kind of supercritical carbon dioxide reheating coal fired power generation face-fired boiler system | |
CN105423268B (en) | A kind of triple channel station boiler for being applied to 700 DEG C of steam parameters | |
CN211667829U (en) | High-parameter garbage waste heat boiler | |
CN107676762A (en) | It is a kind of suitable for the novel horizontal boiler of ultra supercritical Large Copacity coal unit and its arrangement of unit | |
CN203203010U (en) | Boiler for yellow phosphorus tail gas combustion | |
CN113719816B (en) | A temperature-adjustable supercritical carbon dioxide boiler system with multiple flue structures | |
CN205191536U (en) | Three channels power plant boiler suitable for 700 DEG C steam condition | |
CN202791953U (en) | Water pipe type condensation superheating steam generator | |
CN202993180U (en) | 300MW subcritical circulating fluidized bed boiler | |
CN203744212U (en) | Small-capacity supercritical pressure fuel gas once-through boiler | |
CN104390202A (en) | L-shaped radiation boiler capable of reducing high-alkalinity coal combustion contamination | |
CN205351295U (en) | Coal -fired superheated boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20111109 Effective date of abandoning: 20130227 |
|
RGAV | Abandon patent right to avoid regrant |