CN209659177U - Synchronous rectification switch converter - Google Patents
Synchronous rectification switch converter Download PDFInfo
- Publication number
- CN209659177U CN209659177U CN201821947952.4U CN201821947952U CN209659177U CN 209659177 U CN209659177 U CN 209659177U CN 201821947952 U CN201821947952 U CN 201821947952U CN 209659177 U CN209659177 U CN 209659177U
- Authority
- CN
- China
- Prior art keywords
- power supply
- supply voltage
- voltage
- module
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 58
- 230000000295 complement effect Effects 0.000 claims abstract description 5
- 230000000087 stabilizing effect Effects 0.000 claims description 40
- 239000003990 capacitor Substances 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 10
- 230000006641 stabilisation Effects 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 4
- 102100036285 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Human genes 0.000 description 18
- 101000875403 Homo sapiens 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial Proteins 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 3
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本实用新型提出了一种同步整流开关变换器。该同步整流开关变换器包括:主电路,包括主开关管和整流开关管,所述主开关管和所述整流开关管彼此互补导通和断开,用于将直流输入电压转换成直流输出电压;以及控制电路,与所述主电路相连接,用于向主开关管和整流开关管分别提供第一开关控制信号和第二开关控制信号,其中,所述控制电路在启动期间采用所述直流输入电压产生第一内部供电电压,在启动之后采用第一外部供电电压产生所述第一内部供电电压,所述第一外部供电电压小于所述直流输入电压。该同步整流开关变换器的控制电路的内部供电方式采用新的架构,在启动之后供电端从高压输入端转移至低压输出端,从而降低了功耗,提高了系统效率。
The utility model provides a synchronous rectification switching converter. The synchronous rectification switching converter includes: a main circuit, including a main switching tube and a rectifying switching tube, the main switching tube and the rectifying switching tube are turned on and off complementary to each other, and are used to convert a DC input voltage into a DC output voltage and a control circuit, connected to the main circuit, for providing a first switch control signal and a second switch control signal to the main switch tube and the rectifier switch tube respectively, wherein the control circuit uses the direct current during start-up The input voltage generates a first internal power supply voltage, and a first external power supply voltage is used to generate the first internal power supply voltage after startup, and the first external power supply voltage is smaller than the DC input voltage. The internal power supply mode of the control circuit of the synchronous rectification switching converter adopts a new architecture, and the power supply end is transferred from the high-voltage input end to the low-voltage output end after startup, thereby reducing power consumption and improving system efficiency.
Description
技术领域technical field
本实用新型涉及电力电子技术,具体地,涉及一种同步整流开关变换器。The utility model relates to power electronic technology, in particular to a synchronous rectification switching converter.
背景技术Background technique
开关变换器是现代电子设备中实现电能变换的核心部件。开关变换器的控制模块产生预定占空比的脉冲信号,控制主开关管的导通和关断的时间比率,从而维持输出电压和/或电流稳定。在开关变换器的输出级,采用二极管对脉冲信号整流,采用输出电容对脉冲信号进行滤波,以获得平滑的直流输出电压。开关变换器的损耗主要包括主开关管的损耗、变压器损耗和整流二极管的损耗。在开关变换器工作于低电压、大电流输出状态时,二极管的导通压降相对较高,导致整流损耗过高。Switching converters are the core components for realizing power conversion in modern electronic equipment. The control module of the switching converter generates a pulse signal with a predetermined duty ratio to control the time ratio of the main switching transistor being turned on and off, so as to maintain the output voltage and/or current stability. In the output stage of the switching converter, a diode is used to rectify the pulse signal, and an output capacitor is used to filter the pulse signal to obtain a smooth DC output voltage. The loss of the switching converter mainly includes the loss of the main switching tube, the loss of the transformer and the loss of the rectifier diode. When the switching converter works in a low-voltage, high-current output state, the conduction voltage drop of the diode is relatively high, resulting in high rectification loss.
为了提高开关变换器的效率,可以采用同步整流技术,其中,采用整流开关管代替二极管,该整流开关管与主开关管同步地切换导通和断开状态,从而对脉冲信号进行整流。整流开关管的导通电阻很低,从而可以减小整流损耗。在同步整流技术中,控制电路提供主开关管和整流开关管的开关控制信号,从而实现采用主开关管控制主电路的电能传输,采用整流开关管控制输出级的整流过程。控制电路自身的供电来自直流输入电压VIN,经过低压差线性稳压器产生更低的供电电压VDD。In order to improve the efficiency of the switching converter, a synchronous rectification technology can be used, wherein a rectifier switch tube is used instead of a diode, and the rectifier switch tube switches on and off states synchronously with the main switch tube to rectify the pulse signal. The on-resistance of the rectifier switch tube is very low, which can reduce the rectification loss. In the synchronous rectification technology, the control circuit provides the switch control signals of the main switching tube and the rectifying switching tube, so that the main switching tube is used to control the power transmission of the main circuit, and the rectifying switching tube is used to control the rectification process of the output stage. The power supply of the control circuit itself comes from the DC input voltage VIN, which generates a lower power supply voltage VDD through the low-dropout linear regulator.
在大功率应用中,主开关管和整流开关管例如均为N型MOS(金属氧化物半导体)功率管。控制电路对主开关管的驱动需要自举供电,该自举供电的电压产生于供电电压VDD。控制电路针对主开关管的驱动部分功耗电流达到数毫安,甚至更高,结果导致控制电路的功耗过大,使得开关变换器的效率降低。In high power applications, the main switch tube and the rectifier switch tube are, for example, N-type MOS (metal oxide semiconductor) power tubes. The driving of the main switching tube by the control circuit requires a bootstrap power supply, and the voltage of the bootstrap power supply is generated from the power supply voltage VDD. The power consumption current of the driving part of the control circuit for the main switching tube reaches several milliamperes, or even higher, resulting in excessive power consumption of the control circuit, which reduces the efficiency of the switching converter.
因此,期望进一步改进同步整流开关变换器中用于控制电路的供电电路以提高系统效率。Therefore, it is desired to further improve the power supply circuit for the control circuit in the synchronous rectification switching converter to improve the system efficiency.
实用新型内容Utility model content
有鉴于此,本实用新型的目的在于提供一种同步整流开关变换器,其中,利用同步整流器输出电压为内部控制器提供供电电压,从而降低控制电路的功耗以提高开关变换器的系统效率。In view of this, the purpose of this utility model is to provide a synchronous rectification switching converter, wherein the output voltage of the synchronous rectifier is used to provide a power supply voltage for the internal controller, thereby reducing the power consumption of the control circuit and improving the system efficiency of the switching converter.
根据本实用新型的第一方面,提供一种同步整流开关变换器,包括:主电路,包括主开关管和整流开关管,所述主开关管和所述整流开关管彼此互补导通和断开,用于将直流输入电压转换成直流输出电压;以及控制电路,与所述主电路相连接,用于向主开关管和整流开关管分别提供第一开关控制信号和第二开关控制信号,其中,所述控制电路在启动期间采用所述直流输入电压产生第一内部供电电压,在启动之后采用第一外部供电电压产生所述第一内部供电电压,所述第一外部供电电压小于所述直流输入电压。According to the first aspect of the present invention, there is provided a synchronous rectification switching converter, including: a main circuit, including a main switching tube and a rectifying switching tube, and the main switching tube and the rectifying switching tube are turned on and off complementary to each other , for converting a DC input voltage into a DC output voltage; and a control circuit, connected to the main circuit, for providing a first switch control signal and a second switch control signal to the main switch tube and the rectifier switch tube respectively, wherein , the control circuit uses the DC input voltage to generate a first internal power supply voltage during startup, and uses a first external power supply voltage to generate the first internal power supply voltage after startup, and the first external power supply voltage is lower than the DC Input voltage.
优选地,所述控制电路包括:供电模块,接收所述直流输入电压和所述第一外部供电电压,分别产生第一供电电压和第二供电电压,以及将所述第一供电电压和所述第二供电电压之一作为所述第一内部供电电压;以及第一控制模块和第二控制模块,分别与所述供电模块相连接,以获得所述第一内部供电电压,以及分别产生所述第一开关控制信号和所述第二开关控制信号。Preferably, the control circuit includes: a power supply module, which receives the DC input voltage and the first external power supply voltage, generates a first power supply voltage and a second power supply voltage respectively, and converts the first power supply voltage and the One of the second power supply voltages is used as the first internal power supply voltage; and a first control module and a second control module are respectively connected to the power supply modules to obtain the first internal power supply voltage, and respectively generate the The first switch control signal and the second switch control signal.
优选地,所述供电模块包括用于接收所述直流输入电压的第一输入端、用于接收所述第一外部供电电压的第二输入端、以及提供所述第一内部供电电压的输出端,所述供电模块还包括:选择器,用于选择所述第一供电电压和所述第二供电电压之一;第一稳压模块,连接在所述第一输入端和所述选择器之间;以及第二稳压模块,连接在所述第二输入端和所述选择器之间。Preferably, the power supply module includes a first input terminal for receiving the DC input voltage, a second input terminal for receiving the first external power supply voltage, and an output terminal for providing the first internal power supply voltage , the power supply module further includes: a selector for selecting one of the first power supply voltage and the second power supply voltage; a first voltage stabilizing module connected between the first input terminal and the selector between; and a second voltage stabilizing module connected between the second input terminal and the selector.
优选地,在所述第二供电电压满足所述控制电路内部的电路元件需求时,所述选择器禁用所述第一稳压模块。Preferably, the selector disables the first voltage stabilizing module when the second supply voltage meets the requirements of circuit elements inside the control circuit.
优选地,所述供电电路还包括:欠压检测模块,连接在所述第二输入端和所述第一稳压模块之间,其中,在所述第一外部供电电压小于预定参考值时,所述欠压检测模块重新启用所述第一稳压模块。Preferably, the power supply circuit further includes: an undervoltage detection module connected between the second input terminal and the first voltage stabilization module, wherein when the first external power supply voltage is lower than a predetermined reference value, The undervoltage detection module re-enables the first voltage stabilization module.
优选地,所述第二输入端连接至所述主电路的输出端,以接收所述直流输出电压,所述供电模块将所述直流输出电压作为所述第一外部供电电压。Preferably, the second input terminal is connected to the output terminal of the main circuit to receive the DC output voltage, and the power supply module uses the DC output voltage as the first external power supply voltage.
优选地,还包括连接在所述第二输入端和地之间的第一电容。Preferably, it further includes a first capacitor connected between the second input terminal and ground.
优选地,所述控制电路包括:供电模块,接收所述直流输入电压、所述第一外部供电电压和第二外部供电电压,采用所述直流输入电压产生第一供电电压,采用所述第一外部供电电压产生第二供电电压,将所述第一供电电压和所述第二供电电压之一作为所述第一内部供电电压,以及采用所述第二外部供电电压产生第二内部供电电压;以及第一控制模块和第二控制模块,分别与所述供电模块相连接,以获得所述第一内部供电电压和所述第二内部供电电压,以及分别产生所述第一开关控制信号和所述第二开关控制信号。Preferably, the control circuit includes: a power supply module, receiving the DC input voltage, the first external power supply voltage and the second external power supply voltage, using the DC input voltage to generate a first power supply voltage, and using the first external power supply voltage generating a second supply voltage from an external supply voltage, using one of the first supply voltage and the second supply voltage as the first internal supply voltage, and generating a second internal supply voltage using the second external supply voltage; And a first control module and a second control module, respectively connected to the power supply module, to obtain the first internal power supply voltage and the second internal power supply voltage, and generate the first switch control signal and the The second switch control signal.
优选地,所述供电模块包括用于接收所述直流输入电压的第一输入端、用于接收所述第一外部供电电压的第二输入端、用于接收所述第二外部供电电压的第三输入端、提供所述第一内部供电电压的第一输出端、提供所述第二内部供电电压的第二输出端、以及连接至所述主开关管和所述整流开关管的中间节点的浮地端,所述供电模块还包括:高压启动模块,连接在所述第一输入端和所述浮地端之间,用于产生所述第一供电电压;选择器,连接至所述第二输入端和所述浮地端,采用所述第一外部供电电压作为所述第二供电电压,选择所述第一供电电压和所述第二供电电压之一作为所述第一内部供电电压,以及在所述第一输出端提供所述第一内部供电电压;以及稳压模块,连接在所述第三输入端和所述第二输出端之间,采用所述第二外部供电电压产生所述第二内部供电电压。Preferably, the power supply module includes a first input end for receiving the DC input voltage, a second input end for receiving the first external power supply voltage, and a first input end for receiving the second external power supply voltage. Three input terminals, a first output terminal providing the first internal power supply voltage, a second output terminal providing the second internal power supply voltage, and an intermediate node connected to the main switching tube and the rectifying switching tube The floating terminal, the power supply module further includes: a high-voltage starting module, connected between the first input terminal and the floating terminal, and used to generate the first power supply voltage; a selector connected to the first The two input terminals and the floating terminal adopt the first external power supply voltage as the second power supply voltage, and select one of the first power supply voltage and the second power supply voltage as the first internal power supply voltage , and provide the first internal power supply voltage at the first output terminal; and a voltage stabilizing module, connected between the third input terminal and the second output terminal, using the second external power supply voltage to generate The second internal supply voltage.
优选地,所述第二输入端和所述第三输入端连接至所述主电路的输出端,以接收所述直流输出电压,所述供电模块将所述直流输出电压作为所述第一外部供电电压和所述第二外部供电电压。Preferably, the second input terminal and the third input terminal are connected to the output terminal of the main circuit to receive the DC output voltage, and the power supply module uses the DC output voltage as the first external supply voltage and the second external supply voltage.
优选地,还包括:二极管,所述二极管的阳极连接至所述主电路的输出端,阴极连接至所述第二输入端;以及第一电容,连接在所述第二输入端和所述浮地之间。Preferably, it also includes: a diode, the anode of the diode is connected to the output terminal of the main circuit, and the cathode is connected to the second input terminal; and a first capacitor is connected between the second input terminal and the floating between the ground.
优选地,还包括:第二电容,连接在所述第三输入端和地之间。Preferably, it further includes: a second capacitor connected between the third input terminal and ground.
优选地,所述主开关管和所述整流开关管串联连接在所述主电路的输入端和地之间,所述主电路还包括:电感,连接在所述主开关管和所述整流开关管的中间节点和所述主电路的输出端之间;以及输出电容,连接在所述主电路的输出端和地之间。Preferably, the main switching tube and the rectifying switching tube are connected in series between the input terminal of the main circuit and ground, and the main circuit further includes: an inductor connected between the main switching tube and the rectifying switch between the intermediate node of the tube and the output terminal of the main circuit; and an output capacitor connected between the output terminal of the main circuit and ground.
优选地,所述主开关管和所述整流开关管分别为选自金属氧化物半导体场效应管、绝缘栅双极晶体管和双极晶体管的任一种。Preferably, the main switching transistor and the rectifying switching transistor are any one selected from metal oxide semiconductor field effect transistors, insulated gate bipolar transistors and bipolar transistors.
根据本实用新型的第二方面,提供一种用于同步整流开关变换器的控制方法,所述同步整流开关变换器的主电路包括主开关管和整流开关管,所述控制方法包括:产生第一内部供电电压;采用第一内部供电电压进行控制电路的供电,以产生第一开关控制信号和第二开关控制信号;采用所述第一开关控制信号控制所述主开关管的导通状态;以及采用所述第二开关控制信号控制所述整流开关管的导通状态,使得所述主开关管和所述整流开关管彼此互补导通和断开,用于将直流输入电压转换成直流输出电压,其中,在启动期间,采用直流输入电压产生所述第一内部供电电压,在启动之后,采用第一外部供电电压产生所述第一内部供电电压,所述第一外部供电电压小于所述直流输入电压。According to the second aspect of the utility model, a control method for a synchronous rectification switching converter is provided, the main circuit of the synchronous rectification switching converter includes a main switching tube and a rectifying switching tube, and the control method includes: generating a first An internal power supply voltage; using the first internal power supply voltage to supply power to the control circuit to generate a first switch control signal and a second switch control signal; using the first switch control signal to control the conduction state of the main switch tube; and using the second switch control signal to control the conduction state of the rectifier switch, so that the main switch and the rectifier switch are turned on and off complementary to each other, so as to convert the DC input voltage into a DC output voltage, wherein during start-up, the first internal supply voltage is generated using a DC input voltage, and after start-up, the first internal supply voltage is generated using a first external supply voltage, the first external supply voltage being less than the DC input voltage.
优选地,所述产生第一内部供电电压的步骤包括:采用所述直流输入电压产生第一供电电压;采用所述第一外部供电电压产生第二供电电压;以及选择所述第一供电电压和所述第二供电电压之一作为所述第一内部供电电压。Preferably, the step of generating a first internal power supply voltage includes: using the DC input voltage to generate a first power supply voltage; using the first external power supply voltage to generate a second power supply voltage; and selecting the first power supply voltage and One of the second supply voltages is used as the first internal supply voltage.
优选地,在所述第二供电电压满足所述控制电路内部的电路元件需求时,禁用产生第一供电电压的功能。Preferably, when the second supply voltage meets the requirements of circuit elements inside the control circuit, the function of generating the first supply voltage is disabled.
优选地,在所述第一外部供电电压小于预定参考值时,重新启用产生第一供电电压的功能。Preferably, when the first external power supply voltage is lower than a predetermined reference value, the function of generating the first power supply voltage is reactivated.
优选地,将所述直流输出电压作为所述第一外部供电电压。Preferably, the DC output voltage is used as the first external power supply voltage.
优选地,所述产生第一内部供电电压的步骤包括:采用所述直流输入电压产生第一供电电压;采用所述第一外部供电电压产生第二供电电压;以及选择所述第一供电电压和所述第二供电电压之一作为所述第一内部供电电压。Preferably, the step of generating a first internal power supply voltage includes: using the DC input voltage to generate a first power supply voltage; using the first external power supply voltage to generate a second power supply voltage; and selecting the first power supply voltage and One of the second supply voltages is used as the first internal supply voltage.
优选地,还包括:采用第二外部供电电压产生第二内部供电电压。Preferably, the method further includes: generating a second internal power supply voltage by using a second external power supply voltage.
优选地,将所述直流输出电压作为所述第一外部供电电压和所述第二外部供电电压。Preferably, the DC output voltage is used as the first external power supply voltage and the second external power supply voltage.
优选地,所述主开关管和所述整流开关管分别为选自金属氧化物半导体场效应管、绝缘栅双极晶体管和双极晶体管的任一种。Preferably, the main switching transistor and the rectifying switching transistor are any one selected from metal oxide semiconductor field effect transistors, insulated gate bipolar transistors and bipolar transistors.
根据本实用新型实施例的同步整流开关变换器,控制电路的内部供电方式采用新的架构,在启动期间控制电路的供电端从高压输入端获得功耗电流,在启动之后控制电路的供电端从高压输入端转移至低压输出端,从而降低了功耗,提高了系统效率。According to the synchronous rectification switching converter of the embodiment of the utility model, the internal power supply mode of the control circuit adopts a new architecture, the power supply terminal of the control circuit obtains power consumption current from the high voltage input terminal during startup, and the power supply terminal of the control circuit obtains power consumption current from the high voltage input terminal after startup. The high-voltage input is diverted to the low-voltage output, reducing power consumption and improving system efficiency.
附图说明Description of drawings
通过以下参照附图对本实用新型实施例的描述,本实用新型的上述以及其他目的、特征和优点将更为清楚。Through the following description of the embodiments of the present invention with reference to the accompanying drawings, the above and other objects, features and advantages of the present invention will be more clear.
图1示出根据现有技术的同步整流开关变换器控制电路的示意性框图。Fig. 1 shows a schematic block diagram of a control circuit of a synchronous rectification switching converter according to the prior art.
图2示出根据本实用新型第一实施例的同步整流开关变换器控制电路的示意性框图。Fig. 2 shows a schematic block diagram of the control circuit of the synchronous rectification switching converter according to the first embodiment of the present invention.
图3示出根据本实用新型第二实施例的同步整流开关变换器的示意性框图。Fig. 3 shows a schematic block diagram of a synchronous rectification switching converter according to a second embodiment of the present invention.
图4a至4c分别示出图3所示同步整流开关变换器中的稳压模块、选择器和欠压检测模块的示意性电路图。4a to 4c respectively show schematic circuit diagrams of a voltage stabilizing module, a selector and an undervoltage detecting module in the synchronous rectifying switching converter shown in FIG. 3 .
图5示出根据本实用新型第三实施例的同步整流开关变换器的示意性框图。Fig. 5 shows a schematic block diagram of a synchronous rectification switching converter according to a third embodiment of the present invention.
图6示出图5所示同步整流开关变换器中的稳压模块的示意性电路图。FIG. 6 shows a schematic circuit diagram of a voltage stabilizing module in the synchronous rectification switching converter shown in FIG. 5 .
具体实施方式Detailed ways
以下将参照附图更详细地描述本实用新型的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。Various embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. In the various drawings, the same elements are denoted by the same or similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale.
在本申请中,开关管是在导通状态提供电流路径的晶体管,包括选自金属氧化物半导体场效应管、绝缘栅双极晶体管和双极晶体管的任一种。开关管的第一端和第二端分别是电流路径上的高电位端和低电位端,控制端用于接收驱动信号以控制开关管的导通和关断。In the present application, the switch transistor is a transistor that provides a current path in the on state, including any one selected from metal oxide semiconductor field effect transistors, insulated gate bipolar transistors and bipolar transistors. The first end and the second end of the switch tube are respectively high potential end and low potential end on the current path, and the control end is used to receive a driving signal to control the switch tube to be turned on and off.
下面结合附图和实施例对本实用新型进一步说明。Below in conjunction with accompanying drawing and embodiment the utility model is further described.
图1示出根据现有技术的同步整流开关变换器控制电路的示意性框图。在图1中未示出同步整流开关变换器的主电路。该主电路包括主开关管和整流开关管,用于将直流输入电压VIN转换成直流输出电压VOUT。控制电路100包括供电模块110、第一控制模块120和第二控制模块130。Fig. 1 shows a schematic block diagram of a control circuit of a synchronous rectification switching converter according to the prior art. The main circuit of the synchronous rectification switching converter is not shown in FIG. 1 . The main circuit includes a main switching tube and a rectifying switching tube for converting the DC input voltage VIN into a DC output voltage VOUT. The control circuit 100 includes a power supply module 110 , a first control module 120 and a second control module 130 .
供电模块110包括稳压模块111,例如是低压差线性稳压器(LDO)。稳压模块111接收直流输入电压VIN,并且产生电压值较低的供电电压VDD。The power supply module 110 includes a voltage stabilizing module 111 , such as a low dropout linear regulator (LDO). The voltage stabilizing module 111 receives a DC input voltage VIN and generates a power supply voltage VDD with a lower voltage value.
第一控制模块120和第二控制模块130与供电模块110相连接,以获得供电电压VDD。第一控制模块120和第二控制模块130例如分别包括反馈环路、误差放大电路、逻辑电路和驱动电路,根据直流输出电压VOUT的反馈信号产生第一开关控制信号VG1和第二开关控制信号VG2。The first control module 120 and the second control module 130 are connected to the power supply module 110 to obtain a supply voltage VDD. The first control module 120 and the second control module 130 include, for example, a feedback loop, an error amplifier circuit, a logic circuit, and a driving circuit, respectively, and generate a first switch control signal VG1 and a second switch control signal VG2 according to a feedback signal of the DC output voltage VOUT .
该控制电路100采用直流输入电压产生供电电压VDD,用于主开关管的第一控制模块120的功耗电流达到数毫安,甚至更高,结果导致控制电路的功耗过大,使得开关变换器的效率降低。The control circuit 100 adopts a DC input voltage to generate a power supply voltage VDD, and the power consumption current of the first control module 120 used for the main switching tube reaches several milliamperes, or even higher, resulting in excessive power consumption of the control circuit, making the switch conversion The efficiency of the device is reduced.
图2示出根据本实用新型第一实施例的同步整流开关变换器控制电路的示意性框图。在图2中未示出同步整流开关变换器的主电路。如下文所述,该主电路包括主开关管和整流开关管,用于将直流输入电压VIN转换成直流输出电压VOUT。控制电路200包括供电模块210、第一控制模块220和第二控制模块230。Fig. 2 shows a schematic block diagram of the control circuit of the synchronous rectification switching converter according to the first embodiment of the present invention. The main circuit of the synchronous rectification switching converter is not shown in FIG. 2 . As described below, the main circuit includes a main switching tube and a rectifying switching tube for converting the DC input voltage VIN into a DC output voltage VOUT. The control circuit 200 includes a power supply module 210 , a first control module 220 and a second control module 230 .
供电模块210包括第一稳压模块211、第二稳压模块212、以及选择器213。第一稳压模块211例如是低压差线性稳压器(LDO)。供电模块210的第一输入端接收直流输入电压VIN,第二输入端接收外部供电电压VCC,输出端提供内部供电电压。The power supply module 210 includes a first voltage stabilizing module 211 , a second voltage stabilizing module 212 , and a selector 213 . The first voltage stabilizing module 211 is, for example, a low dropout linear regulator (LDO). The first input terminal of the power supply module 210 receives a DC input voltage VIN, the second input terminal receives an external power supply voltage VCC, and the output terminal provides an internal power supply voltage.
在供电模块210中,第一稳压模块211接收直流输入电压VIN,并且产生电压值较低的第一供电电压VDD1。第二稳压模块212例如是低压差线性稳压器(LDO)。第二稳压模块212接收外部供电电压VCC,并且产生电压值较低的第二供电电压VDD2。选择器213与第一稳压模块211和第二稳压模块212相连接,分别接收第一供电电压VDD1和第二供电电压VDD2,并且选择其一作为内部供电电压VDD。In the power supply module 210, the first voltage stabilization module 211 receives the DC input voltage VIN, and generates a first power supply voltage VDD1 with a lower voltage value. The second voltage stabilizing module 212 is, for example, a low dropout linear regulator (LDO). The second voltage stabilizing module 212 receives the external power supply voltage VCC, and generates a second power supply voltage VDD2 with a lower voltage value. The selector 213 is connected with the first voltage stabilizing module 211 and the second voltage stabilizing module 212, respectively receives the first power supply voltage VDD1 and the second power supply voltage VDD2, and selects one of them as the internal power supply voltage VDD.
第一控制模块220和第二控制模块230与供电模块210相连接,以获得内部供电电压VDD。第一控制模块220和第二控制模块230例如分别包括反馈环路、误差放大电路、逻辑电路和驱动电路,根据直流输出电压VOUT的反馈信号产生第一开关控制信号VG1和第二开关控制信号VG2。第一控制模块220和第二控制模块230的至少一部分电路元件需要内部供电电压VDD才能正常工作。The first control module 220 and the second control module 230 are connected to the power supply module 210 to obtain an internal power supply voltage VDD. The first control module 220 and the second control module 230 include, for example, a feedback loop, an error amplifier circuit, a logic circuit and a driving circuit, respectively, and generate the first switch control signal VG1 and the second switch control signal VG2 according to the feedback signal of the DC output voltage VOUT . At least some circuit components of the first control module 220 and the second control module 230 need the internal power supply voltage VDD to work normally.
在启动期间,系统上电。控制电路200中的供电模块210获得直流输入电压VIN,第一稳压模块211产生第一供电电压VDD1。在启动之后,控制电路200中的供电模块210还可以获得外部供电电压VCC,第二稳压模块212根据外部供电电压VCC产生第二供电电压VDD2。该外部供电电压VCC小于直流输入电压VIN,但大于维持控制电路200正常工作所需的内部供电电压VDD。During startup, the system is powered on. The power supply module 210 in the control circuit 200 obtains a DC input voltage VIN, and the first voltage stabilization module 211 generates a first power supply voltage VDD1. After startup, the power supply module 210 in the control circuit 200 can also obtain an external power supply voltage VCC, and the second voltage stabilizing module 212 generates a second power supply voltage VDD2 according to the external power supply voltage VCC. The external power supply voltage VCC is lower than the DC input voltage VIN, but higher than the internal power supply voltage VDD required to maintain the normal operation of the control circuit 200 .
在本申请中,外部供电电压VCC表示从控制电路200外部获得的直流电压,例如是来自开关变换器的输出级的直流输出电压VOUT。该内部供电电压VDD表示用于控制电路200内部电路元件(例如误差放大电路、逻辑电路和驱动电路)的正常工作所需的供电电压。In this application, the external power supply voltage VCC refers to a DC voltage obtained from the outside of the control circuit 200 , such as the DC output voltage VOUT from the output stage of the switching converter. The internal power supply voltage VDD represents the power supply voltage required for the normal operation of the internal circuit components of the control circuit 200 (such as error amplifier circuit, logic circuit and driving circuit).
选择器213检测第一供电电压VDD1和第二供电电压VDD2。在第一供电电压VDD1和第二供电电压VDD2之一有效时,选择器213选择该有效的供电电压作为内部供电电压VDD。在第一供电电压VDD1和第二供电电压VDD2均有效时,选择器213选择第二供电电压VDD2作为内部供电电压VDD。由于用于产生第二供电电压VDD2的外部供电电压VCC小于用于产生第一供电电压VDD1的直流输入电压VIN,因此,在将第二供电电压VDD2作为内部供电电压VDD时,可以减小第一控制模块220和第二控制模块230的功耗。The selector 213 detects the first power supply voltage VDD1 and the second power supply voltage VDD2. When one of the first power supply voltage VDD1 and the second power supply voltage VDD2 is valid, the selector 213 selects the valid power supply voltage as the internal power supply voltage VDD. When both the first power supply voltage VDD1 and the second power supply voltage VDD2 are valid, the selector 213 selects the second power supply voltage VDD2 as the internal power supply voltage VDD. Since the external power supply voltage VCC used to generate the second power supply voltage VDD2 is smaller than the DC input voltage VIN used to generate the first power supply voltage VDD1, when the second power supply voltage VDD2 is used as the internal power supply voltage VDD, the first Power consumption of the control module 220 and the second control module 230 .
应当注意,第二稳压模块212只是优选的电路模块,主要取决于外部供电电压VCC是否能够直接满足第一控制模块220和第二控制模块230的要求。如果满足要求,可以省去第二稳压模块212,直接采用外部供电电压VCC作为内部供电电压进行供电。It should be noted that the second voltage stabilizing module 212 is only a preferred circuit module, which mainly depends on whether the external power supply voltage VCC can directly meet the requirements of the first control module 220 and the second control module 230 . If the requirements are met, the second voltage stabilizing module 212 can be omitted, and the external power supply voltage VCC can be directly used as the internal power supply voltage for power supply.
优选地,在选择器213选择第二供电电压VDD2作为内部供电电压时,选择器213禁用第一稳压模块211,使得第一稳压模块211停止工作,进一步降低功耗和提供系统效率。Preferably, when the selector 213 selects the second power supply voltage VDD2 as the internal power supply voltage, the selector 213 disables the first voltage stabilizing module 211 so that the first voltage stabilizing module 211 stops working, further reducing power consumption and improving system efficiency.
优选地,供电模块210还包括欠压检测模块214,用于检测外部供电电压VCC。该欠压检测模块214与第一稳压模块211相连接。进一步地,该欠压检测模块211接收外部供电电压VCC,在所述外部供电电压VCC小于预定参考值时,欠压检测模块214重新启用第一稳压模块211以产生第一供电电压VDD1。选择器213选择第一供电电压VDD1作为内部供电电压。Preferably, the power supply module 210 further includes an undervoltage detection module 214 for detecting the external power supply voltage VCC. The undervoltage detection module 214 is connected with the first voltage stabilization module 211 . Further, the undervoltage detection module 211 receives an external power supply voltage VCC, and when the external power supply voltage VCC is lower than a predetermined reference value, the undervoltage detection module 214 re-enables the first voltage stabilizing module 211 to generate the first power supply voltage VDD1. The selector 213 selects the first power supply voltage VDD1 as the internal power supply voltage.
根据该实施例的控制电路,供电模块从直流输入电压和外部供电电压中选择其一产生内部供电电压,在外部供电电压可以满足控制电路内部的电路元件需求时,采用外部供电电压产生内部供电电压。该外部供电电压小于直流输入电压,从而在采用外部供电电压时可以节省控制电路自身的功耗以及提供系统效率。According to the control circuit of this embodiment, the power supply module selects one of the DC input voltage and the external power supply voltage to generate the internal power supply voltage, and when the external power supply voltage can meet the requirements of the circuit components inside the control circuit, the external power supply voltage is used to generate the internal power supply voltage . The external power supply voltage is lower than the DC input voltage, so that the power consumption of the control circuit itself can be saved and the system efficiency can be improved when the external power supply voltage is adopted.
图3示出根据本实用新型第二实施例的同步整流开关变换器的示意性框图。该同步整流开关变换器300包括主电路和控制电路。Fig. 3 shows a schematic block diagram of a synchronous rectification switching converter according to a second embodiment of the present invention. The synchronous rectification switching converter 300 includes a main circuit and a control circuit.
如图所示,同步整流开关变换器300为高压buck同步整流拓扑。主电路包括主开关管M1和整流开关管M2、电感L1和输出电容Co。主开关管M1和整流开关管M2串联连接在输入端和地之间。电感L1连接在主开关管M1和整流开关管M2的中间节点和输出电容Co的第一端之间,输出电容Co的第二端接地。在输出电容Co的两端提供直流输出电压VOUT。As shown in the figure, the synchronous rectification switching converter 300 is a high voltage buck synchronous rectification topology. The main circuit includes a main switching tube M1, a rectifying switching tube M2, an inductor L1 and an output capacitor Co. The main switching tube M1 and the rectifying switching tube M2 are connected in series between the input terminal and the ground. The inductor L1 is connected between the middle node of the main switching tube M1 and the rectifying switching tube M2 and the first end of the output capacitor Co, and the second end of the output capacitor Co is grounded. A DC output voltage VOUT is provided across the output capacitor Co.
控制电路200包括供电模块210、第一控制模块220和第二控制模块230。供电模块210的第一输入端与同步整流开关变换器300的输入端相连接,以获得直流输入电压VIN,第二输入端与同步整流开关变换器300的输出端相连接,以获得直流输出电压VOUT,作为供电模块210的外部供电电压VCC。The control circuit 200 includes a power supply module 210 , a first control module 220 and a second control module 230 . The first input terminal of the power supply module 210 is connected to the input terminal of the synchronous rectification switching converter 300 to obtain a DC input voltage VIN, and the second input terminal is connected to the output terminal of the synchronous rectification switching converter 300 to obtain a DC output voltage VOUT is used as the external power supply voltage VCC of the power supply module 210 .
在启动期间,系统上电。同步整流开关变换器300的控制电路只能获得直流输入电压VIN。控制电路中的供电模块210根据直流输入电压VIN产生第一供电电压VDD1,作为控制电路的内部供电电压VDD。控制电路中的第一控制模块220和第二控制模块230获得内部供电电压VDD之后开始工作,分别提供第一开关控制信号VG1和第二开关控制信号VG2,从而进入正常工作状态。During startup, the system is powered on. The control circuit of the synchronous rectification switching converter 300 can only obtain the DC input voltage VIN. The power supply module 210 in the control circuit generates the first power supply voltage VDD1 according to the DC input voltage VIN as the internal power supply voltage VDD of the control circuit. The first control module 220 and the second control module 230 in the control circuit start to work after obtaining the internal power supply voltage VDD, and provide the first switch control signal VG1 and the second switch control signal VG2 respectively, thereby entering a normal working state.
在启动之后的正常工作期间,同步整流开关变换器300的主开关管M1和整流开关管M2互补导通和断开。在主开关管导通阶段,整流开关管M2断开,直流输入电压VIN经由开关管M1对电感L1和输出电容Co充电,以及对负载供电。在主开关管M1断开阶段,整流开关管M2导通,电感L1经由整流开关管M2对电容Co充电,以及对负载供电。输出电容Co用于获得平滑的直流电压。该同步整流开关变换器300的直流输出电压VOUT小于直流输入电压VIN。During normal operation after start-up, the main switching tube M1 and the rectifying switching tube M2 of the synchronous rectifying switching converter 300 are turned on and off complementary. When the main switch is turned on, the rectifier switch M2 is turned off, and the DC input voltage VIN charges the inductor L1 and the output capacitor Co through the switch M1, and supplies power to the load. When the main switching tube M1 is turned off, the rectifying switching tube M2 is turned on, and the inductor L1 charges the capacitor Co through the rectifying switching tube M2 and supplies power to the load. The output capacitor Co is used to obtain a smooth DC voltage. The DC output voltage VOUT of the synchronous rectification switching converter 300 is smaller than the DC input voltage VIN.
同步整流开关变换器300的控制电路可以同时获得直流输入电压VIN和直流输出电压VOUT。控制电路中的供电模块210根据直流输出电压VOUT产生第二供电电压VDD2,作为控制电路的内部供电电压VDD。控制电路中的第一控制模块220和第二控制模块230获得内部供电电压VDD之后开始工作,分别提供第一开关控制信号VG1和第二开关控制信号VG2,从而维持正常工作状态。The control circuit of the synchronous rectification switching converter 300 can simultaneously obtain the DC input voltage VIN and the DC output voltage VOUT. The power supply module 210 in the control circuit generates the second power supply voltage VDD2 according to the DC output voltage VOUT as the internal power supply voltage VDD of the control circuit. The first control module 220 and the second control module 230 in the control circuit start to work after obtaining the internal power supply voltage VDD, and provide the first switch control signal VG1 and the second switch control signal VG2 respectively, so as to maintain a normal working state.
根据该实施例的同步整流开关变换器,在启动期间根据直流输入电压VIN产生控制电路的内部供电电压,在正常工作期间根据直流输出电压VOUT产生控制电路的内部供电电压。由于直流输出电压VOUT小于直流输入电压,因此在正常工作期间可以降低控制电路自身的功耗,从而提供系统效率。优选地,在正常工作期间禁用供电模块中的第一稳压模块,以进一步减小控制电路自身的功耗。由于开关变换器本身效率很高,因此,等效到同步整流开关变换器的输入端的电流非常小,因而整体效率明显提高。According to the synchronous rectification switching converter of this embodiment, the internal power supply voltage of the control circuit is generated according to the DC input voltage VIN during start-up, and the internal power supply voltage of the control circuit is generated according to the DC output voltage VOUT during normal operation. Since the DC output voltage VOUT is smaller than the DC input voltage, the power consumption of the control circuit itself can be reduced during normal operation, thereby improving system efficiency. Preferably, the first voltage stabilizing module in the power supply module is disabled during normal operation, so as to further reduce the power consumption of the control circuit itself. Since the efficiency of the switching converter itself is very high, the current equivalent to the input terminal of the synchronous rectification switching converter is very small, so the overall efficiency is obviously improved.
图4a至4c分别示出图3所示同步整流开关变换器中的稳压模块、选择器和欠压检测模块的示意性电路图。4a to 4c respectively show schematic circuit diagrams of a voltage stabilizing module, a selector and an undervoltage detecting module in the synchronous rectifying switching converter shown in FIG. 3 .
稳压模块212和211的电路结构相同,以稳压模块211为例进行说明。稳压模块211例如是低压差线性稳压器(LDO),包括运算放大器AMP、晶体管M11、电阻R11和R12。运算放大器AMP的同相输入端接收基准电压VBG,反相输出端接收第一供电电压VDD1的反馈信号,输出端连接至晶体管M11的控制端。晶体管M11、电阻R11和R12串联连接在直流输入电压VIN的输入端和地之间。在晶体管M11和电阻R11的中间节点提供第一供电电压VDD1,在电阻R11和R12的中间节点提供第一供电电压VDD1的反馈信号。该稳压模块211利用反馈环路维持第一供电电压VDD1为稳压输出。The voltage stabilizing modules 212 and 211 have the same circuit structure, and the voltage stabilizing module 211 is taken as an example for illustration. The voltage stabilizing module 211 is, for example, a low dropout linear regulator (LDO), including an operational amplifier AMP, a transistor M11, resistors R11 and R12. The non-inverting input terminal of the operational amplifier AMP receives the reference voltage VBG, the inverting output terminal receives the feedback signal of the first power supply voltage VDD1, and the output terminal is connected to the control terminal of the transistor M11. The transistor M11, the resistors R11 and R12 are connected in series between the input terminal of the DC input voltage VIN and the ground. The intermediate node of the transistor M11 and the resistor R11 provides a first supply voltage VDD1, and the intermediate node of the resistors R11 and R12 provides a feedback signal of the first supply voltage VDD1. The voltage stabilizing module 211 uses a feedback loop to maintain the first power supply voltage VDD1 as a regulated output.
选择器213包括二极管D31和D32,二者的阳极分别接收第一供电电压VDD1和第二供电电压VDD2,阴极连接至公共节点以提供内部供电电压VDD。The selector 213 includes diodes D31 and D32, the anodes of which receive the first power supply voltage VDD1 and the second power supply voltage VDD2 respectively, and the cathodes of both are connected to a common node to provide an internal power supply voltage VDD.
欠压检测模块214包括比较器CMP、电阻R41和R42。电阻器R41和R42串联连接在外部供电电压VCC的输入端和地之间,以获得外部供电电压VCC的采样信号。比较器CMP的同相输入端接收采样信号,反相输入端接收参考信号VREF,输出端提供切换信号VSW。在外部供电电压VCC小于预定参考值时,欠压检测模块214产生的信号用于重新启用稳压模块211。The undervoltage detection module 214 includes a comparator CMP, resistors R41 and R42. Resistors R41 and R42 are connected in series between the input terminal of the external power supply voltage VCC and the ground to obtain a sampling signal of the external power supply voltage VCC. The non-inverting input terminal of the comparator CMP receives the sampling signal, the inverting input terminal receives the reference signal VREF, and the output terminal provides the switching signal VSW. When the external power supply voltage VCC is lower than a predetermined reference value, the signal generated by the undervoltage detection module 214 is used to re-enable the voltage regulation module 211 .
图5示出根据本实用新型第三实施例的同步整流开关变换器的示意性框图。该同步整流开关变换器400包括主电路和供电模块410。控制电路包括供电模块410、第一控制模块420和第二控制模块430。Fig. 5 shows a schematic block diagram of a synchronous rectification switching converter according to a third embodiment of the present invention. The synchronous rectification switching converter 400 includes a main circuit and a power supply module 410 . The control circuit includes a power supply module 410 , a first control module 420 and a second control module 430 .
如图所示,同步整流开关变换器400为浮地的高压buck同步整流拓扑。主电路包括主开关管M1和整流开关管M2、电感L1和输出电容Co。主开关管M1和整流开关管M2串联连接在输入端和地之间。电感L1连接在主开关管M1和整流开关管M2的中间节点和输出电容Co的第一端之间,输出电容Co的第二端接地。在输出电容Co的两端提供直流输出电压VOUT。As shown in the figure, the synchronous rectification switching converter 400 is a floating high-voltage buck synchronous rectification topology. The main circuit includes a main switching tube M1, a rectifying switching tube M2, an inductor L1 and an output capacitor Co. The main switching tube M1 and the rectifying switching tube M2 are connected in series between the input terminal and the ground. The inductor L1 is connected between the middle node of the main switching tube M1 and the rectifying switching tube M2 and the first end of the output capacitor Co, and the second end of the output capacitor Co is grounded. A DC output voltage VOUT is provided across the output capacitor Co.
同步整流开关变换器400还包括二极管D1、电容C1和C2。The synchronous rectification switching converter 400 also includes a diode D1, capacitors C1 and C2.
电容C1的第一端连接至供电模块410的一个输入端,第二端连接至主开关管M1和整流开关管M2的中间节点。二极管D1的阳极连接至输出电容Co的第一端,阴极连接至电容C1的第一端。在正常工作期间,直流输出电压VOUT经由二极管D1提供至电容C1,经电容C1滤波后产生平滑的直流电压,作为供电模块410的第一外部供电电压VCC1。A first end of the capacitor C1 is connected to an input end of the power supply module 410 , and a second end is connected to an intermediate node between the main switching transistor M1 and the rectifying switching transistor M2 . The anode of the diode D1 is connected to the first terminal of the output capacitor Co, and the cathode is connected to the first terminal of the capacitor C1. During normal operation, the DC output voltage VOUT is provided to the capacitor C1 via the diode D1 , and a smooth DC voltage is generated after being filtered by the capacitor C1 , which is used as the first external power supply voltage VCC1 of the power supply module 410 .
电容C2的第一端连接至供电模块410的一个输入端,第二端接地,直流输出电压VOUT提供至电容C2,经电容C2滤波后产生平滑的直流电压,作为供电模块410的第二外部供电电压VCC2。The first end of the capacitor C2 is connected to an input end of the power supply module 410, and the second end is grounded, and the DC output voltage VOUT is provided to the capacitor C2, and a smooth DC voltage is generated after being filtered by the capacitor C2, which is used as the second external power supply of the power supply module 410 Voltage VCC2.
供电模块410包括高压启动模块411、稳压模块412和选择器413。供电模块410的第一输入端接收直流输入电压VIN,第二输入端接收第一外部供电电压VCC1,第三输入端接收第二外部供电电压VCC2,输出端提供内部供电电压VDD和VDD3。供电模块410还包括浮地端,连接至主开关管M1和整流开关管M2的中间节点。高压启动模块411连接在第一输入端和浮地端之间。稳压模块412连接在第三输入端和第二控制模块430之间。The power supply module 410 includes a high voltage starting module 411 , a voltage stabilizing module 412 and a selector 413 . The first input terminal of the power supply module 410 receives a DC input voltage VIN, the second input terminal receives a first external power supply voltage VCC1, the third input terminal receives a second external power supply voltage VCC2, and the output terminal provides internal power supply voltages VDD and VDD3. The power supply module 410 also includes a floating terminal connected to the middle node of the main switching transistor M1 and the rectifying switching transistor M2. The high voltage starting module 411 is connected between the first input terminal and the floating terminal. The voltage stabilizing module 412 is connected between the third input terminal and the second control module 430 .
在启动期间,供电模块410采用高压启动模块411从直流输入电压VIN产生第一供电电压VDD1。在启动之后的正常工作期间,供电模块410采用直流输出电压VOUT产生第二供电电压VDD2。选择器413分别接收第一供电电压VDD1和第二供电电压VDD2,并且选择其一作为内部供电电压VDD。在启动之后,稳压模块412才开始工作,稳压模块412采用直流输出电压VOUT产生第三供电电压VDD3。During startup, the power supply module 410 uses the high voltage startup module 411 to generate the first power supply voltage VDD1 from the DC input voltage VIN. During normal operation after startup, the power supply module 410 uses the DC output voltage VOUT to generate the second power supply voltage VDD2. The selector 413 receives the first power supply voltage VDD1 and the second power supply voltage VDD2 respectively, and selects one of them as the internal power supply voltage VDD. After starting, the voltage stabilizing module 412 starts to work, and the voltage stabilizing module 412 uses the DC output voltage VOUT to generate the third power supply voltage VDD3.
第一控制模块420与选择器413相连接,以获得内部供电电压VDD。第一控制模块420例如分别包括反馈环路、误差放大电路、逻辑电路和驱动电路,根据直流输出电压VOUT的反馈信号产生第一开关控制信号VG1。第一控制模块420的至少一部分电路元件需要内部供电电压VDD才能正常工作。The first control module 420 is connected to the selector 413 to obtain an internal power supply voltage VDD. The first control module 420 includes, for example, a feedback loop, an error amplifier circuit, a logic circuit and a driving circuit, and generates the first switch control signal VG1 according to the feedback signal of the DC output voltage VOUT. At least some circuit elements of the first control module 420 need the internal power supply voltage VDD to work normally.
第二控制模块430与稳压模块412相连接,以获得第三供电电压VDD3,作为内部供电电压。第二控制模块430例如分别包括反馈环路、误差放大电路、逻辑电路和驱动电路,根据直流输出电压VOUT的反馈信号产生第二开关控制信号VG2。第二控制模块430的至少一部分电路元件需要第三供电电压VDD3才能正常工作。The second control module 430 is connected with the voltage stabilizing module 412 to obtain a third power supply voltage VDD3 as an internal power supply voltage. The second control module 430 includes, for example, a feedback loop, an error amplifier circuit, a logic circuit and a driving circuit, and generates a second switch control signal VG2 according to the feedback signal of the DC output voltage VOUT. At least some circuit elements of the second control module 430 need the third power supply voltage VDD3 to work normally.
根据该实施例的同步整流开关变换器,在启动期间,高压启动模块411根据直流输入电压VIN产生第一供电电压VDD1,用于主开关管M1的控制模块420的内部供电电压VDD。在控制模块420正常工作之后,获得稳定的直流输出电压VOUT。在正常工作期间,直流输出电压VOUT经由二极管D1提供至电容C1,经电容C1滤波后产生平滑的直流电压,作为供电模块410的第一外部供电电压VCC1,供电模块410进一步根据直流输出电压VOUT产生第二供电电压VDD2,用于主开关管M1的控制模块420的内部供电电压。与此同时,供电模块410进一步根据直流输出电压VOUT产生第三供电电压VDD3,用于整流开关管M2的控制模块420的内部供电电压。According to the synchronous rectification switching converter of this embodiment, during start-up, the high-voltage start-up module 411 generates a first power supply voltage VDD1 according to the DC input voltage VIN, which is used as the internal power supply voltage VDD of the control module 420 of the main switch M1. After the control module 420 works normally, a stable DC output voltage VOUT is obtained. During normal operation, the DC output voltage VOUT is provided to the capacitor C1 through the diode D1, and a smooth DC voltage is generated after being filtered by the capacitor C1, which is used as the first external power supply voltage VCC1 of the power supply module 410, and the power supply module 410 further generates according to the DC output voltage VOUT The second power supply voltage VDD2 is used for the internal power supply voltage of the control module 420 of the main switch M1. At the same time, the power supply module 410 further generates a third power supply voltage VDD3 according to the DC output voltage VOUT, which is used to rectify the internal power supply voltage of the control module 420 of the switching transistor M2.
由于直流输出电压VOUT小于直流输入电压,因此在正常工作期间可以降低控制电路自身的功耗,从而提供系统效率。Since the DC output voltage VOUT is smaller than the DC input voltage, the power consumption of the control circuit itself can be reduced during normal operation, thereby improving system efficiency.
图6示出图5所示同步整流开关变换器中的稳压模块的示意性电路图。FIG. 6 shows a schematic circuit diagram of a voltage stabilizing module in the synchronous rectification switching converter shown in FIG. 5 .
稳压模块412例如是低压差线性稳压器(LDO),包括运算放大器AMP、晶体管M21、电阻R21和R22。运算放大器AMP的同相输入端接收基准电压VBG,反相输出端接收第三供电电压VDD3的反馈信号,输出端连接至晶体管M21的控制端。晶体管M21、电阻R21和R22串联连接在第二外部供电电压VCC2的输入端和地之间。在晶体管M21和电阻R21的中间节点提供第三供电电压VDD3,在电阻R21和R22的中间节点提供第三供电电压VDD3的反馈信号。该稳压模块412利用反馈环路维持第三供电电压VDD3为稳压输出。The voltage stabilizing module 412 is, for example, a low dropout linear regulator (LDO), including an operational amplifier AMP, a transistor M21, resistors R21 and R22. The non-inverting input terminal of the operational amplifier AMP receives the reference voltage VBG, the inverting output terminal receives the feedback signal of the third power supply voltage VDD3, and the output terminal is connected to the control terminal of the transistor M21. The transistor M21, the resistors R21 and R22 are connected in series between the input terminal of the second external power supply voltage VCC2 and the ground. A third power supply voltage VDD3 is provided at the middle node of the transistor M21 and the resistor R21, and a feedback signal of the third power supply voltage VDD3 is provided at the middle node of the resistors R21 and R22. The voltage stabilizing module 412 uses a feedback loop to maintain the third power supply voltage VDD3 as a regulated output.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also items not expressly listed other elements, or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
依照本实用新型的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该实用新型仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本实用新型的原理和实际应用,从而使所属技术领域技术人员能很好地利用本实用新型以及在本实用新型基础上的修改使用。本实用新型仅受权利要求书及其全部范围和等效物的限制。Embodiments according to the present invention are as described above, and these embodiments do not exhaustively describe all details, nor limit the utility model to only the specific embodiments described. Obviously many modifications and variations are possible in light of the above description. This description selects and specifically describes these embodiments in order to better explain the principle and practical application of the utility model, so that those skilled in the art can make good use of the utility model and the modification and use on the basis of the utility model . The invention is to be limited only by the claims and their full scope and equivalents.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821947952.4U CN209659177U (en) | 2018-11-23 | 2018-11-23 | Synchronous rectification switch converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821947952.4U CN209659177U (en) | 2018-11-23 | 2018-11-23 | Synchronous rectification switch converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209659177U true CN209659177U (en) | 2019-11-19 |
Family
ID=68507966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201821947952.4U Withdrawn - After Issue CN209659177U (en) | 2018-11-23 | 2018-11-23 | Synchronous rectification switch converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209659177U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109450278A (en) * | 2018-11-23 | 2019-03-08 | 杭州士兰微电子股份有限公司 | Synchronous rectification switch converter and its control method |
CN111478605A (en) * | 2020-04-15 | 2020-07-31 | 深圳市稳先微电子有限公司 | Synchronous rectification control chip and AC-DC system |
CN111884172A (en) * | 2020-09-01 | 2020-11-03 | 上海爻火微电子有限公司 | Power Channel Circuits and Electronics |
US11239753B2 (en) | 2019-08-29 | 2022-02-01 | Hangzhou Silan Microelectronics Co., Ltd. | Switching converter, and control method and control circuit thereof |
CN115268542A (en) * | 2021-07-09 | 2022-11-01 | 台湾积体电路制造股份有限公司 | Input/output device, low dropout regulator circuit and operation method thereof |
-
2018
- 2018-11-23 CN CN201821947952.4U patent/CN209659177U/en not_active Withdrawn - After Issue
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109450278A (en) * | 2018-11-23 | 2019-03-08 | 杭州士兰微电子股份有限公司 | Synchronous rectification switch converter and its control method |
CN109450278B (en) * | 2018-11-23 | 2024-11-12 | 杭州士兰微电子股份有限公司 | Synchronous rectification switching converter and control method thereof |
US11239753B2 (en) | 2019-08-29 | 2022-02-01 | Hangzhou Silan Microelectronics Co., Ltd. | Switching converter, and control method and control circuit thereof |
CN111478605A (en) * | 2020-04-15 | 2020-07-31 | 深圳市稳先微电子有限公司 | Synchronous rectification control chip and AC-DC system |
CN111478605B (en) * | 2020-04-15 | 2021-07-06 | 深圳市稳先微电子有限公司 | Synchronous rectification control chip and AC-DC system |
CN111884172A (en) * | 2020-09-01 | 2020-11-03 | 上海爻火微电子有限公司 | Power Channel Circuits and Electronics |
CN115268542A (en) * | 2021-07-09 | 2022-11-01 | 台湾积体电路制造股份有限公司 | Input/output device, low dropout regulator circuit and operation method thereof |
CN115268542B (en) * | 2021-07-09 | 2024-01-30 | 台湾积体电路制造股份有限公司 | Input/output device, low dropout regulator circuit, and method of operating the same |
US11966241B2 (en) | 2021-07-09 | 2024-04-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Low dropout regulator circuits, input/output device, and methods for operating a low dropout regulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN209659177U (en) | Synchronous rectification switch converter | |
KR100630855B1 (en) | Circuit and method for controlling dc-dc converter | |
US7167028B2 (en) | Voltage detection circuit, power supply unit and semiconductor device | |
US7550955B2 (en) | Power supply circuit | |
US7336057B2 (en) | DC/DC converter | |
KR20070094486A (en) | Non-Isolated Step-Down DC-DC Converters | |
US12132402B2 (en) | Dynamic biasing circuit for main comparator to improve load-transient and line-transient performance of buck converter in 100% mode | |
US11532979B2 (en) | Dual supply low-side gate driver | |
US10924023B2 (en) | Control circuit having power limit for an AC-DC converter and integrated circuits thereof | |
CN114583984A (en) | Power supply circuit and power supply conversion system and control chip thereof | |
CN109450278B (en) | Synchronous rectification switching converter and control method thereof | |
US20070014063A1 (en) | Single pin multi-function signal detection method and structure therefor | |
CN112787505A (en) | DC-DC converter and control circuit and control method thereof | |
JP2003180073A (en) | Power supply circuit | |
CN211506286U (en) | Auxiliary power supply circuit with wide input voltage range | |
JP2023115577A (en) | Switching control circuit, power supply circuit | |
US20240235363A1 (en) | Control circuit and voltage regulating unit for switching power converter | |
US11955880B2 (en) | Overcurrent protection circuit, power supply control device, inverting type switching power supply | |
CN113179018B (en) | Multiphase DC-DC converter | |
JPH0654525A (en) | Dc/dc converter | |
JP2024027768A (en) | Power supply control device, and insulated dc/dc converter | |
CN116827109A (en) | Soft start circuit for power converter and power converter | |
CN118413086A (en) | Control circuit, switching circuit and control method of switching circuit of power transistor | |
TW202247560A (en) | Power regulator device | |
CN119134880A (en) | Start-up circuit and DC-DC converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20191119 Effective date of abandoning: 20241112 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20191119 Effective date of abandoning: 20241112 |
|
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |