CN1936621A - Nuclear magnetic resonance and transient electromagnetic combined instrument and method - Google Patents
Nuclear magnetic resonance and transient electromagnetic combined instrument and method Download PDFInfo
- Publication number
- CN1936621A CN1936621A CN 200610017226 CN200610017226A CN1936621A CN 1936621 A CN1936621 A CN 1936621A CN 200610017226 CN200610017226 CN 200610017226 CN 200610017226 A CN200610017226 A CN 200610017226A CN 1936621 A CN1936621 A CN 1936621A
- Authority
- CN
- China
- Prior art keywords
- transient electromagnetic
- magnetic resonance
- nuclear magnetic
- signal
- transmitting coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001052 transient effect Effects 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000005481 NMR spectroscopy Methods 0.000 title claims abstract description 45
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 4
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 14
- 230000002159 abnormal effect Effects 0.000 abstract description 13
- 230000006870 function Effects 0.000 abstract description 3
- 239000003990 capacitor Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004441 surface measurement Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开一种地球物理勘探设备及方法,是将核磁共振与瞬变电磁组合成一体的核磁共振与瞬变电磁联用仪及其方法。首先将联用仪选择在瞬变电磁工作模式下,在测线上铺设发射线圈和接收线圈,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出低电阻率点,并对低电阻率异常测点标定;再将联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常目的层的真伪。用一套设备实现两种仪器的功能,减少了设备投资,发挥了两种仪器各自优点,提高了探测效率和精度。
The invention discloses a geophysical exploration equipment and method, which is a combined nuclear magnetic resonance and transient electromagnetic instrument and a method thereof which combine nuclear magnetic resonance and transient electromagnetic into one. First of all, select the combined instrument in the transient electromagnetic working mode, lay the transmitting coil and receiving coil on the measuring line, and measure each measuring point in the measuring area. After the measurement is completed, conduct preliminary processing on the transient electromagnetic data. Find the low-resistivity point, and calibrate the abnormal low-resistivity measurement point; then switch the coupler to the NMR working mode, and lay the transmitting coil around the calibrated abnormal measurement point for NMR measurement work, in order to The measured data or graphics are compared with the abnormal resistivity measured by transient electromagnetic to judge the authenticity of the abnormal target layer of resistivity measured by transient electromagnetic. Using one set of equipment to realize the functions of the two instruments reduces equipment investment, brings into play the respective advantages of the two instruments, and improves detection efficiency and accuracy.
Description
技术领域technical field
本发明涉及一种地球物理勘探设备及方法,尤其是将核磁共振与瞬变电磁组合成一体的地球物理勘探设备及方法。The invention relates to a geophysical prospecting device and method, in particular to a geophysical prospecting device and method combining nuclear magnetic resonance and transient electromagnetics.
背景技术Background technique
核磁共振方法(Surface Nuclear Magnetic Resonance Method,简称SNMR方法),瞬变电磁方法(Transient Electromagnetic Method,简称TEM)。NMR method (Surface Nuclear Magnetic Resonance Method, referred to as SNMR method), transient electromagnetic method (Transient Electromagnetic Method, referred to as TEM).
US6177794公开了一种了利用宏观表现出的核磁共振现象来寻找存在核磁共振现象的地下液体矿产的新技术,运用一组相位可控的接收天线阵列以及井中的接收天线来比较精确地测定地下存在核磁共振现象的液体,该方法利用地面上和地下的线圈组合同时接收信号,用来对核磁共振信号进行良好接收,可以实现对地下石油,水等矿产资源的探测。CN01278229公布了一种核磁共振地下水层探测仪,包括信号检测器,其特征在于,该信号检测器的一输入端连接一第一开关,该第一开关的号端串接一变速电阻器,该变速电阻器的另端串接第二和第三两开关,第二开关的另端串接一限流电阻,并依序串接有整流器和发电机,该发电机的另端与信号检测器的另一端连接,其中该第二和第三两开关之间接有一第一电容器,该第一电容器的另端与信号检测器的另一端连接,该第一开关与变速电阻器之间接有一线圈,该线圈的另端与信号检测器的另一端连接,该信号检测器的两端之间有一电容器。该发明将核磁共振的方法应用与地下水层的探测中,设计了适用于找水的核磁共振探测仪器。上述发明的核磁共振仪及其方法具有较高的测量精度,单点测量精确,但都有一个共同的不足,那就是测量每一个点的时间较长,耗费较多,难以实现线上测量或面上测量。US6177794 discloses a new technology for finding underground liquid minerals with nuclear magnetic resonance phenomenon by using macroscopically manifested nuclear magnetic resonance phenomenon, using a group of phase-controllable receiving antenna arrays and receiving antennas in wells to more accurately measure the presence of underground liquid minerals. The liquid of nuclear magnetic resonance phenomenon, this method uses the coil combination on the ground and underground to receive signals at the same time, which is used to receive nuclear magnetic resonance signals well, and can realize the detection of mineral resources such as underground oil and water. CN01278229 discloses a nuclear magnetic resonance underground water layer detector, including a signal detector, characterized in that an input end of the signal detector is connected to a first switch, and the number end of the first switch is connected in series with a variable speed resistor. The other end of the variable speed resistor is connected in series with the second and third switches, the other end of the second switch is connected in series with a current limiting resistor, and a rectifier and a generator are connected in series in sequence, and the other end of the generator is connected with the signal detector The other end is connected, wherein a first capacitor is connected between the second and third switches, the other end of the first capacitor is connected to the other end of the signal detector, a coil is connected between the first switch and the variable speed resistor, The other end of the coil is connected with the other end of the signal detector, and there is a capacitor between the two ends of the signal detector. The invention applies the nuclear magnetic resonance method to the detection of underground water layers, and designs a nuclear magnetic resonance detection instrument suitable for finding water. The nuclear magnetic resonance instrument and its method of the above-mentioned invention have high measurement accuracy and accurate single-point measurement, but they all have a common deficiency, that is, it takes a long time to measure each point and consumes a lot of money, and it is difficult to realize online measurement or Surface measurement.
US7053622公布了一种用来测量地下信息并成像的瞬变电磁探测装置,该方法通过发射激发场,在地面用一系列分布的记录器记录电磁信号的衰减情况,从而对地下信息进行探测,多点同时测量,可以对各个点的记录数据产生的漂移进行校正,提高探测的精度和灵敏度,可以用于地下水的探测。CN88221167公布了一种微机电法勘探装置,由曲线模拟电路,浮点放大电路,主放大器逻辑控制电路,模数转换器和微机组成。该方法精度高,自动进行数据采集和处理,且速度快。适用于激发极化法、瞬变电磁法,各种直流电阻率法、自然电场法以及其它接地供电与线圈供电的电法勘探方法。CN01257200公开了一种野外大功率电源的产生方法,该方法将直流低压电源经振荡器逆变成低压高频的交流电流,该低压高频电流经升压后形成高压高频交流电流,高压高频交流电流经整流后形成高压直流电源作为存贮电容电源,存贮电容电源经电子开关控制向供电回路供电。该实用新型的优点是可以获得很大的瞬时电流,而电源的平均功率消耗却不大,通过多个充放电电容的组合,达到多个波形的叠加的效果,从而达到增大勘探深度,应用于找水实际中,可以提高仪器的探测灵敏度。上述发明的瞬变电磁仪及其方法,能够方便快捷地直接获得地下某一定层位的电阻率值,测试成本较低,但目的层的精确程度没有核磁共振方法好,往往发生低电阻率值的地方不一定是目的层。比如在找水工作中,经常发生低电阻率区不一定是蓄水最佳地段,甚至没有水,这就需要采用其他补助手段和方法进一步确定。如果首先采用瞬变电磁进行面上测量,找出低电阻率异常区,再用核磁共振进行准确定位,将大大提高寻找目的层的准确度。但用两台设备投资太大,测量时要做许多重复工作,既浪费资金,也浪费人力和时间。US7053622 discloses a transient electromagnetic detection device for measuring underground information and imaging. This method uses a series of distributed recorders on the ground to record the attenuation of electromagnetic signals by emitting an excitation field, so as to detect underground information. Simultaneous measurement of points can correct the drift generated by the recorded data of each point, improve the detection accuracy and sensitivity, and can be used for groundwater detection. CN88221167 discloses a MEMS prospecting device, which is composed of a curve simulation circuit, a floating-point amplifier circuit, a main amplifier logic control circuit, an analog-to-digital converter and a microcomputer. The method has high precision, automatic data collection and processing, and fast speed. It is suitable for induced polarization method, transient electromagnetic method, various DC resistivity methods, natural electric field method and other electrical exploration methods of ground power supply and coil power supply. CN01257200 discloses a method for generating a high-power power supply in the field. The method converts a DC low-voltage power supply into a low-voltage and high-frequency AC current through an oscillator. The low-voltage and high-frequency current is boosted to form a high-voltage and high-frequency AC current. The high-frequency AC current is rectified to form a high-voltage DC power supply as a storage capacitor power supply, and the storage capacitor power supply is controlled by an electronic switch to supply power to the power supply circuit. The advantage of this utility model is that it can obtain a large instantaneous current, but the average power consumption of the power supply is not large. Through the combination of multiple charging and discharging capacitors, the effect of superimposing multiple waveforms can be achieved, thereby increasing the exploration depth. In the practice of finding water, the detection sensitivity of the instrument can be improved. The transient electromagnetic instrument and method of the above invention can directly obtain the resistivity value of a certain underground layer conveniently and quickly, and the test cost is low, but the accuracy of the target layer is not as good as that of the nuclear magnetic resonance method, and low resistivity values often occur. The place is not necessarily the target layer. For example, in the work of finding water, it often happens that low-resistivity areas are not necessarily the best areas for water storage, or even have no water, which requires other subsidy means and methods to be further determined. If the transient electromagnetic field is first used for surface measurement to find out the low resistivity anomaly area, and then the nuclear magnetic resonance is used for accurate positioning, the accuracy of finding the target layer will be greatly improved. However, it is too much investment to use two devices, and a lot of repeated work is required during the measurement, which not only wastes money, but also wastes manpower and time.
发明内容Contents of the invention
本发明的目的就是针对上述现有技术的不足,提供一种融合核磁共振和瞬变电磁两种仪器,且能够发挥各自优点的核磁共振与瞬变电磁联用仪及其方法。The purpose of the present invention is to address the shortcomings of the above-mentioned prior art, to provide a combined nuclear magnetic resonance and transient electromagnetic instrument and a method thereof that can take advantage of their respective advantages.
本发明的目的是通过以下方式实现的:The purpose of the present invention is achieved in the following manner:
计算机1通过串口或USB口与主控单元2连接,发射控制单元3通过数据总线与大功率电源4连接,通过交互信号线与H桥路5连接、通过控制线与切换开关6连接,大功率电源4经H桥路5与切换开关6连接,主控单元2通过SPI串行接口与发射控制单元3、接收控制单元15连接;The
——瞬变电磁工作模式:H桥路5输出端直接与发射线圈8两端连接产生瞬变电磁信号,接收线圈12将瞬变电磁信号送入宽带放大单元13进行信号调理后再送给信号采集单元14和接收控制单元15;——Transient electromagnetic working mode: the output end of the H-
——核磁共振工作模式:H桥路5的两个桥臂输出端与配谐电容7和发射线圈8连接,选频放大单元11通过继电器10与发射线圈8连接,并将信号送入信号采集单元14和接收控制单元15,两个二极管9自身反向连接,并与谐振电容7连接。——NMR working mode: the output ends of the two bridge arms of the H-
核磁共振与瞬变电磁联用仪及其方法,按以下方法步骤工作:The coupled nuclear magnetic resonance and transient electromagnetic apparatus and its method work according to the following method steps:
a.将核磁共振与瞬变电磁联用仪选择在瞬变电磁工作模式下,采用大回线的方式,围绕每一个测点铺设发射线圈8和放置接收线圈12,利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低点,并对电阻率偏低的异常测点标定;a. Select the combined nuclear magnetic resonance and transient electromagnetic instrument in the transient electromagnetic working mode, adopt the method of large loop, lay the transmitting
b.将核磁共振与瞬变电磁联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈8进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常是否是目的层的真伪;b. Switch the combined nuclear magnetic resonance and transient electromagnetic instrument to the nuclear magnetic resonance working mode, and lay the transmitting
c.保持发射线圈8和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线;c. Keep the transmitting
d.对每一个出现低阻异常的测点均重复步骤b和步骤c的过程,直到所有异常测点都用两种物探方法测量完毕。d. Repeat the process of step b and step c for each measuring point with low resistance anomaly, until all abnormal measuring points are measured by the two geophysical methods.
有益效果:Beneficial effect:
用一套设备实现两种仪器的功能,减少了设备投资,发挥了两种仪器各自的优点,同时克服了瞬变电磁仪器发射电流小、信噪比低、抗干扰能力差的缺点,改善了仪器信噪比,提高了探测效率和精度。Using one set of equipment to realize the functions of the two instruments reduces equipment investment and brings into play the respective advantages of the two instruments. At the same time, it overcomes the shortcomings of transient electromagnetic instruments such as small emission current, low signal-to-noise ratio, and poor anti-interference ability. The signal-to-noise ratio of the instrument improves the detection efficiency and accuracy.
附图及附图说明Drawings and Description of Drawings
图1是核磁共振与瞬变电磁联用仪结构框图Figure 1 is a structural block diagram of the nuclear magnetic resonance and transient electromagnetic instrument
图2是大功率电源4结构框图Fig. 2 is a structural block diagram of high-
图3是附图1中6、7、8、9、10、连接关系图Fig. 3 is 6, 7, 8, 9, 10, connection relationship diagram in accompanying
图4是选频放大单元11结构框图Fig. 4 is a structural block diagram of the frequency
图5是宽带放大单元13结构框图Fig. 5 is a structural block diagram of
图6是信号采集单元14结构框图Fig. 6 is a structural block diagram of
1计算机,2主控单元,3发射控制单元,4大功率电源,5 H桥路,6工作模式切换开关,7配谐电容,8发射线圈,9二极管,10继电器,11选频放大单元,12接收线圈,13宽带放大单元,14信号采集单元,15接收控制单元,1 computer, 2 main control unit, 3 launch control unit, 4 high-power power supply, 5 H bridge circuit, 6 working mode switch, 7 matching capacitor, 8 transmitting coil, 9 diode, 10 relay, 11 frequency selection amplifier unit, 12 receiving coil, 13 broadband amplification unit, 14 signal acquisition unit, 15 receiving control unit,
具体实施方式Detailed ways
下面结合附图和实施例作进一步详细说明:Below in conjunction with accompanying drawing and embodiment describe in further detail:
计算机1通过串口或USB口与主控单元2连接,发射控制单元3通过数据总线与大功率电源4连接,通过交互信号线与H桥路5连接、通过控制线与切换开关6连接,大功率电源4经H桥路5与切换开关6连接,主控单元2通过SPI串行接口与发射控制单元3、接收控制单元15连接;The
瞬变电磁工作模式:H桥路5输出端直接与发射线圈8两端连接产生瞬变电磁信号,接收线圈12将瞬变电磁信号送入宽带放大单元13进行信号调理后再送给信号采集单元14和接收控制单元15;Transient electromagnetic working mode: the output end of the H-
核磁共振工作模式:H桥路5的两个桥臂输出端与配谐电容7和发射线圈8连接,选频放大单元11通过继电器10与发射线圈8连接,并将信号送入信号采集单元14和接收控制单元15,两个二极管9自身反向连接,并与谐振电容7连接。NMR working mode: the output terminals of the two bridge arms of the H-
核磁共振与瞬变电磁联用仪及其方法,按以下方法步骤工作:The coupled nuclear magnetic resonance and transient electromagnetic apparatus and its method work according to the following method steps:
a.将核磁共振与瞬变电磁联用仪选择在瞬变电磁工作模式下,采用大回线的方式,围绕每一个测点铺设发射线圈8和放置接收线圈12,利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低点,并对电阻率偏低的异常测点标定;a. Select the combined nuclear magnetic resonance and transient electromagnetic instrument in the transient electromagnetic working mode, adopt the method of large loop, lay the transmitting
b.将核磁共振与瞬变电磁联用仪切换到核磁共振工作模式下,并以已标定的异常测点为中心铺设发射线圈8进行核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测的电阻率异常是否是目的层的真伪;b. Switch the combined nuclear magnetic resonance and transient electromagnetic instrument to the nuclear magnetic resonance working mode, and lay the transmitting
c.保持发射线圈8和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线;c. Keep the transmitting
d.对每一个出现低阻异常的测点均重复步骤b和步骤c的过程,直到所有异常测点都用两种物探方法测量完毕。d. Repeat the process of step b and step c for each measuring point with low resistance anomaly, until all abnormal measuring points are measured by the two geophysical methods.
计算机1与主控单元2通过串口或者USB接口进行连接,用来进行控制指令和探测数据的传输,仪器系统由主控单元2协调发射控制单元3和接收控制单元15的工作并控制工作模式的切换。主控单元2与发射控制单元3及接收控制单元15通过SPI串行接口进行通讯,速率为500kbit/s.The
信号发射部分由发射控制单元3、大功率电源4、H桥路5、切换开关6、配谐电容7和发射线圈8构成;发射控制单元3由具有PWM输出能力的单片机和相关逻辑电路组成,主要完成大功率电源4的充电控制、H桥路5驱动信号产生、发射机状态监测和工作模式切换。发射控制单元3通过对大功率电源4的电压进行检测,控制大功率电源4中电容的充电,为发射机提供大功率瞬时电源。The signal transmission part is composed of a
5VDC-DC变换器给发射控制单元3提供工作电源,发射控制单元3通过ADC实时监测大容量电容的电压情况,当电容电压不满足要求时,发射控制单元3通过DAC产生控制信号,调整升压DC-DC变换器的输出电压,给大容量电容充电,使大容量电容两端电压保持在一个稳定的值,为发射机提供大功率发射电源。The 5VDC-DC converter provides working power for the
发射控制单元3给驱动电路提供两路逻辑相反并具有一定死区时间的TTL电平的控制信号;驱动电路将该控制信号经过转换,驱动H桥路5;H桥路5由两个桥臂构成,每个桥臂分别有两个大功率IGBT开关管,H桥路5工作在1KHz-3KHz的开关频率下,工作电流为200A左右,用来将大功率电源4提供的直流电源逆变成交流电。The
工作模式切换开关6由发射控制单元3控制,用来对发射模式进行切换。其信号通路为7→9→8→10→11,硬件上,H桥路5的两个桥臂输出端接到由配谐电容7和发射线圈8组成的谐振回路两端,接收端选频放大单元11通过继电器10与发射线圈8连接。The working
瞬变电磁法信号流向:6→8→12→13,H桥路5输出端直接接至发射线圈8的两端,产生瞬变电磁信号,接收线圈12通过耦合接收瞬变电磁信号,接收线圈感应出的信号为微伏量级,该信号接到宽带放大单元13进行信号调理。Transient electromagnetic signal flow direction: 6→8→12→13, the output terminal of H-
附图3中,C1,C2为配谐电容7,L1为发射线圈8,D1为反向对接的二极管9,用来泄放发射线圈中的剩余能量,k1,k2为切换发射模式的切换开关6,k3为接收信号切换开关10。In accompanying drawing 3, C1, C2 is the matching
具体的工作模式切换过程如下:当系统工作在核磁共振的模式下时,发射控制单元3控制开关k1切换至两端,开关k2闭合,接收控制单元15控制k3打开,配谐电容7 C1,C2和二极管9 D1,发射线圈8 L1组成谐振回路,发射大功率正弦信号。当系统停止发射后,经过40-70ms的延时,待发射线圈8中的剩余能量泄放完毕后,接收控制单元15控制开关k3闭合,将发射线圈8作为接收线圈和选频放大单元11连接起来,完成对核磁信号的接收。而当系统需要切换为瞬变电磁法工作模式时,开关k1切换至一端,开关k2打开,开关k3打开。此时,发射线圈8作为H桥路的负载直接接到H桥路5的两端,谐振电容7 C1,C2和二极管9 D1未接入发射主电路中,发射机利用发射线圈8发射大功率瞬变电磁信号。接收端采用大回线的方式,不动发射线圈8,利用瞬变电磁接收线圈12实现对瞬变电磁接收信号的接收,并经过宽带浮点放大单元13对信号进行预处理,完成对瞬变电磁信号的采集。The specific working mode switching process is as follows: when the system works in the nuclear magnetic resonance mode, the transmitting
选频放大单元11由核磁共振阻抗匹配网络、核磁共振前置放大器、LC选频放大器、工频陷波器和后级放大器组成。选频放大单元11的中心频率可以在1kHz-3kHz范围内调整,中心频率处放大倍数为40万倍。对核磁共振前置放大器和阻抗匹配网络的电源与后级放大电路的电源间加入一个高性能的电源滤波器,减少不同级放大电路产生的传扰。The frequency-
宽带放大单元13由瞬变电磁阻抗匹配网络、瞬变电磁前置放大器、宽带滤波器、工频陷波器和后级放大器构成。宽带放大单元13的电源分配方式和选频放大单元11分配方式相同。瞬变电磁阻抗匹配网络可以保证在数十赫兹到数十千赫兹范围内为放大电路和接收线圈提供良好的阻抗匹配。瞬变电磁前置放大器采用输入阻抗高,低噪声,低失调电压的仪用放大器芯片,降低仪器系统的噪声。The
信号采集单元14,基于核磁共振信号和瞬变电磁信号对采样率和采样精度的要求,信号采集单元14采样率为1MHz,采样精度为16bit。The
前端放大器采集回来的信号为单端交流信号,而系统采用的AD只能采集直流双端差分信号,单端转双端模块完成信号转换功能,转换后信号送入AD采集模块中,由于采样率较高,信号采集单元14采用CPLD+FIFO的方法对高速采集来数据进行缓冲存储,然后由接收控制单元15将FIFO中数据读取并送入存储器中。The signal collected by the front-end amplifier is a single-ended AC signal, and the AD used in the system can only collect DC double-ended differential signals. The single-ended to double-ended module completes the signal conversion function, and the converted signal is sent to the AD acquisition module. Due to the sampling rate Higher, the
核磁共振与瞬变电磁联用仪野外具体工作方法:The specific working methods of the nuclear magnetic resonance and transient electromagnetic instrument in the field:
在一个地下条件未知的测区,在进行探测前,首先按照一定距离将测区平面划分为多条测线,并根据需要将每条测线划分若干个测点。In a survey area with unknown underground conditions, before the detection, the plane of the survey area is firstly divided into multiple survey lines according to a certain distance, and each survey line is divided into several survey points as required.
步骤1:让联用仪器工作在瞬变电磁的模式下,采用大回线的方式,围绕每一个测点铺设发射线圈8,放置接收线圈12。利用瞬变电磁法探测快速的特点,对测区内每一个测点进行测量,测量完毕后,对瞬变电磁数据进行初步的处理,找出测区内电阻率偏低,并对电阻率偏低的异常测点标定;Step 1: Let the combined instrument work in the transient electromagnetic mode, and lay the transmitting
步骤2,将联用仪器切换到核磁共振工作模式,并以已标定的测点为中心铺设发射线圈8,进行定点的核磁共振测量工作,以测得数据或图形与瞬变电磁所测的电阻率异常进行比较,用以判断瞬变电磁所测得电阻率异常是否是目的层的真伪。
步骤3,保持发射线圈和其它测量条件不变,再将仪器切换到瞬变电磁的工作模式,对该点进行测量,获取其衰减曲线。Step 3: Keep the transmitting coil and other measurement conditions unchanged, then switch the instrument to the transient electromagnetic working mode, measure this point, and obtain its attenuation curve.
步骤4:对每一个出现低阻异常的测点均重复步骤2和步骤3的过程,直到所有测点都已经用两种物探方法测量完毕。Step 4: Repeat the process of
将测得的数据进行数据处理,可以用于对核磁共振数据的校正,并可以用于减弱低频天然场对探测结果的影响,提高探测的效率和结果准确度。Data processing of the measured data can be used to correct the NMR data, and can be used to weaken the influence of the low-frequency natural field on the detection results, and improve the detection efficiency and result accuracy.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100172268A CN100495074C (en) | 2006-10-08 | 2006-10-08 | Nuclear Magnetic Resonance and Transient Electromagnetic Instrument and Its Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100172268A CN100495074C (en) | 2006-10-08 | 2006-10-08 | Nuclear Magnetic Resonance and Transient Electromagnetic Instrument and Its Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1936621A true CN1936621A (en) | 2007-03-28 |
CN100495074C CN100495074C (en) | 2009-06-03 |
Family
ID=37954230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100172268A Expired - Fee Related CN100495074C (en) | 2006-10-08 | 2006-10-08 | Nuclear Magnetic Resonance and Transient Electromagnetic Instrument and Its Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100495074C (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096111A (en) * | 2010-12-07 | 2011-06-15 | 吉林大学 | Transmitting-receiving antenna separation type nuclear magnetic resonance water exploring device and water exploring method |
CN102183341A (en) * | 2011-02-18 | 2011-09-14 | 吉林大学 | Nuclear magnetic resonance detection meter and detection method of hidden troubles of dam leakage |
CN102323622A (en) * | 2011-06-15 | 2012-01-18 | 朱德兵 | Line array multi-channel synchronous transient electromagnetic directional detection method and device thereof |
CN102323621A (en) * | 2011-05-23 | 2012-01-18 | 杨光 | Transient Electromagnetic Instrument Intelligent Controller |
CN102684713A (en) * | 2012-06-05 | 2012-09-19 | 北京工业大学 | Emitting machine of electromagnetic detection instrument and emitting method thereof |
CN102681018A (en) * | 2011-03-10 | 2012-09-19 | 福州勘达源电子科技有限公司 | Transient electromagnetic instrument for mine and transient electromagnetic signal processing method |
CN102707659A (en) * | 2012-06-05 | 2012-10-03 | 北京工业大学 | Master control system of transient electromagnetic detecting instrument and use method of master control system |
CN103018781A (en) * | 2012-12-15 | 2013-04-03 | 吉林大学 | 2-dimensional/3-dimensional nuclear magnetic resonance and transient electromagnetism combination instrument and field work method |
CN103809206A (en) * | 2014-03-11 | 2014-05-21 | 吉林大学 | Underground water detection device and detection method based on combination of nuclear magnetic resonance and transient electromagnetic method |
CN104407391A (en) * | 2014-12-05 | 2015-03-11 | 吉林大学 | Magnetic source non-modulation type transmitter and control method thereof |
CN106154341A (en) * | 2016-06-21 | 2016-11-23 | 山东大学 | A kind of nuclear magnetic resonance, NMR and transient electromagnetic integrative detection instrument and method of work |
CN107843936A (en) * | 2016-09-19 | 2018-03-27 | 中国石油化工股份有限公司 | A kind of NMR signal launching technique and system |
CN109491296A (en) * | 2018-12-08 | 2019-03-19 | 余姚德诚科技咨询有限公司 | Field device switching platform |
US10310131B2 (en) | 2017-01-03 | 2019-06-04 | Jilin University | Surface nuclear magnetic resonance system excited by geoelectric field for groundwater detection and field detection method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2047792U (en) * | 1988-12-13 | 1989-11-15 | 西安地球物理地球化学勘探技术研究所 | Electrically prospecting instrument using microcomputer |
AU676075B2 (en) * | 1993-09-15 | 1997-02-27 | Broken Hill Proprietary Company Limited, The | SQUID detector for TEM prospecting |
AU3151997A (en) * | 1996-06-03 | 1998-01-05 | Samuel Roznitsky | Antenna system for nmr and mri apparatus |
US6177794B1 (en) * | 1997-05-13 | 2001-01-23 | The Regents Of The University Of California | Use of earth field spin echo NMR to search for liquid minerals |
CN2595079Y (en) * | 2001-10-22 | 2003-12-24 | 中南大学 | Assembled luminous field source for transient electromagnetic method |
CA2514609C (en) * | 2003-02-13 | 2012-11-06 | Kurt I. Sorensen | Measuring equipment and method for mapping the geology in an underground formation |
-
2006
- 2006-10-08 CN CNB2006100172268A patent/CN100495074C/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096111A (en) * | 2010-12-07 | 2011-06-15 | 吉林大学 | Transmitting-receiving antenna separation type nuclear magnetic resonance water exploring device and water exploring method |
CN102183341A (en) * | 2011-02-18 | 2011-09-14 | 吉林大学 | Nuclear magnetic resonance detection meter and detection method of hidden troubles of dam leakage |
CN102183341B (en) * | 2011-02-18 | 2013-08-07 | 吉林大学 | Nuclear magnetic resonance detection meter and detection method of hidden troubles of dam leakage |
CN102681018B (en) * | 2011-03-10 | 2015-04-22 | 福州勘达源电子科技有限公司 | Transient electromagnetic instrument for mine and transient electromagnetic signal processing method |
CN102681018A (en) * | 2011-03-10 | 2012-09-19 | 福州勘达源电子科技有限公司 | Transient electromagnetic instrument for mine and transient electromagnetic signal processing method |
CN102323621A (en) * | 2011-05-23 | 2012-01-18 | 杨光 | Transient Electromagnetic Instrument Intelligent Controller |
CN102323622A (en) * | 2011-06-15 | 2012-01-18 | 朱德兵 | Line array multi-channel synchronous transient electromagnetic directional detection method and device thereof |
CN102684713A (en) * | 2012-06-05 | 2012-09-19 | 北京工业大学 | Emitting machine of electromagnetic detection instrument and emitting method thereof |
CN102707659A (en) * | 2012-06-05 | 2012-10-03 | 北京工业大学 | Master control system of transient electromagnetic detecting instrument and use method of master control system |
CN103018781A (en) * | 2012-12-15 | 2013-04-03 | 吉林大学 | 2-dimensional/3-dimensional nuclear magnetic resonance and transient electromagnetism combination instrument and field work method |
CN103018781B (en) * | 2012-12-15 | 2016-03-09 | 吉林大学 | 2D/3D nuclear magnetic resonance and transient electromagnetic combined instrument and outdoor operation method |
CN103809206B (en) * | 2014-03-11 | 2017-08-25 | 吉林大学 | Nuclear magnetic resonance and transient electromagnetic combined use underground water detection device and detection method |
CN103809206A (en) * | 2014-03-11 | 2014-05-21 | 吉林大学 | Underground water detection device and detection method based on combination of nuclear magnetic resonance and transient electromagnetic method |
CN104407391A (en) * | 2014-12-05 | 2015-03-11 | 吉林大学 | Magnetic source non-modulation type transmitter and control method thereof |
CN104407391B (en) * | 2014-12-05 | 2017-02-22 | 吉林大学 | Magnetic source non-modulation type transmitter and control method thereof |
CN106154341A (en) * | 2016-06-21 | 2016-11-23 | 山东大学 | A kind of nuclear magnetic resonance, NMR and transient electromagnetic integrative detection instrument and method of work |
CN107843936A (en) * | 2016-09-19 | 2018-03-27 | 中国石油化工股份有限公司 | A kind of NMR signal launching technique and system |
CN107843936B (en) * | 2016-09-19 | 2019-12-13 | 中国石油化工股份有限公司 | Nuclear magnetic resonance signal transmitting method and system |
US10310131B2 (en) | 2017-01-03 | 2019-06-04 | Jilin University | Surface nuclear magnetic resonance system excited by geoelectric field for groundwater detection and field detection method |
CN109491296A (en) * | 2018-12-08 | 2019-03-19 | 余姚德诚科技咨询有限公司 | Field device switching platform |
CN109491296B (en) * | 2018-12-08 | 2022-03-22 | 湖南省机宜医疗设备有限公司 | Switching platform for field equipment |
Also Published As
Publication number | Publication date |
---|---|
CN100495074C (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1936621A (en) | Nuclear magnetic resonance and transient electromagnetic combined instrument and method | |
CN102053280B (en) | Nuclear magnetic resonance ground water detection system with reference coils and detection method | |
CN102012525B (en) | Distribution type multi-parameter deep electromagnetic section imaging system and measuring method thereof | |
CN102096111B (en) | Transmitting-receiving antenna separation type nuclear magnetic resonance water exploring device and water exploring method | |
CN104280780B (en) | Nuclear magnetic resonance and transient electromagnetic combined instrument and method of work | |
CN103955004B (en) | Four-channel nuclear magnetic resonance signal full-wave acquisition system and acquisition method | |
CN201673231U (en) | Fault testing apparatus of cable or pipeline | |
CN102565862B (en) | Gradient measurement method of transient electromagnetic response signal and observation device thereof | |
CN103884920B (en) | Automatic sweep-frequency type inductance measuring meter and measuring method | |
CN104280453B (en) | PCCP steel wire fracture of wire detecting systems | |
CN103018781B (en) | 2D/3D nuclear magnetic resonance and transient electromagnetic combined instrument and outdoor operation method | |
CN102096112A (en) | Array coil-based nuclear magnetic resonance ground water sounding instrument and field sounding method | |
CN104216021B (en) | Underground nuclear magnetic resonance exploration method based on step-by-step transmission | |
CN103344996A (en) | Series resonance mode nuclear magnetic resonance detection device and detection method | |
CN105717366A (en) | Online grounding resistance monitoring alarm and remote monitoring system | |
CN103033849A (en) | Multichannel nuclear magnetic resonance underground water detecting instrument and field work method thereof | |
CN104035137A (en) | Underground full-space transient electromagnetic detecting instrument and detection method | |
CN108303742A (en) | Novel high-density electrical method or ultra high density electric-method exploration device and exploitation method | |
CN109597134A (en) | Nuclear magnetic resonance underground water detecting device and its method based on adiabatic pulses excitaton source | |
CN111856601B (en) | Distributed magnetic resonance underground water detection device and detection method | |
CN102879462A (en) | Metal defect eddy current detection device and probe thereof | |
CN102183341A (en) | Nuclear magnetic resonance detection meter and detection method of hidden troubles of dam leakage | |
CN113866837B (en) | Electric source nuclear magnetic resonance and excited polarization combined device and detection method | |
CN204188570U (en) | PCCP steel wire yarn break inspect system | |
CN203745547U (en) | Automatic frequency sweep inductance measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090603 Termination date: 20141008 |
|
EXPY | Termination of patent right or utility model |