Nothing Special   »   [go: up one dir, main page]

CN1968727A - 用于缓解压力的方法和装置 - Google Patents

用于缓解压力的方法和装置 Download PDF

Info

Publication number
CN1968727A
CN1968727A CNA2005800156790A CN200580015679A CN1968727A CN 1968727 A CN1968727 A CN 1968727A CN A2005800156790 A CNA2005800156790 A CN A2005800156790A CN 200580015679 A CN200580015679 A CN 200580015679A CN 1968727 A CN1968727 A CN 1968727A
Authority
CN
China
Prior art keywords
interval
heart rate
ripple
rsa
relevant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800156790A
Other languages
English (en)
Other versions
CN1968727B (zh
Inventor
M·伍德
A·福贝斯
K·里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips RS North America LLC
Original Assignee
HELICOR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HELICOR Inc filed Critical HELICOR Inc
Publication of CN1968727A publication Critical patent/CN1968727A/zh
Application granted granted Critical
Publication of CN1968727B publication Critical patent/CN1968727B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/288Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for artificial respiration or heart massage
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

提供了多种易于使用、节省成本的方法和装置,用于估计和治疗压力以及从而由压力引起或加重的疾病。更具体而言,提供了多种在呼吸期间识别RSA波的方法和装置,这些方法和装置为患者提供准实时RSA波信息。这种信息能够被用在生物反馈设置中,以通过实现节律呼吸模式来帮助患者降低压力水平。

Description

用于缓解压力的方法和装置
相关申请
本申请要求于2004年3月18日提交的同时待审的美国临时申请No.60/554,211的优先权和权益,上述申请被结合于此。
发明领域
本发明涉及估计和治疗压力和压力相关疾病(disorder)的方法和装置。更具体而言,本发明涉及通过提供有关呼吸性窦性心律不齐模式(pattern)的信息来增加副交感神经活性的生物反馈装置和方法。
背景信息
尽管存在许多减少压力的产品和服务,但是压力和压力相关疾病仍然导致了惊人的经济和非经济成本。据估计仅在美国,每年由工作压力在生产率、缺勤和营业额方面造成的损失接近3000亿美元。2002年,除了与工作直接相关的成本以外,使用抗抑郁和抗焦虑药物来尝试治疗压力和压力相关疾病的花费超过了170亿美元。每年在上述药物治疗上的花费继续保持着日益上升的趋势。
而且,由于伴随的健康问题直接或间接地源于潜在的压力疾病,所以压力导致显著而无法计算的花费。例如,研究已经表明,承受压力的人更容易患病毒性和非病毒性疾病。关于上述研究一个常见并且众所周知的例子是压力和呼吸道感染之间的关系。此外,如果患病的那些人也承受压力,那么他们的康复期会更长。
慢性压力能够损伤自主神经系统(ANS)的平衡和ANS的功能,从而导致各种压力相关的疾病。ANS的损伤导致变性疾病和过早死亡。例如,一项临床研究对14,025例45岁与64岁之间的健康男性和女性进行了单次两分钟的ANS测量。8年后,那些具有较低测量值的人具有高得多的发病率和死亡率。因为它涉及“全因死亡率”,所以三项其它研究(美国、丹麦和芬兰)也检查了ANS功能。在每一项研究中,低ANS功能均在患病和死亡之前出现,并且它预示着患病和死亡。差不多有数百项其他研究已经检查了ANS功能,因为它涉及象心脏病、糖尿病和中风这样的个体疾病。例如,英国政府启动了有关ANS功能和心脏病的研究。那些具有最低ANS功能的人在心脏病发作的死亡率上有大于1000%的增加。压力的非经济成本也是显著的,并且包括对家庭、朋友、邻居和同事关系的有害影响。
人体对压力的反应被称为“应激反应”,它涉及两个基本系统:自主神经系统和内分泌系统。ANS通常神经支配内脏的平滑肌,并且包括交感神经和副交感神经部分。简单说,交感神经部分负责调动能量以响应紧急情况(“搏斗或逃跑”)、表达情感或执行紧张的活动,而副交感神经部分用于施加镇定影响,从而平衡交感神经系统。
内分泌系统也涉及压力相关过程。尤其是,下丘脑-垂体肾上腺(HPA)轴在内分泌系统的应激反应中起着重要的作用。下丘脑分泌肽类激素以刺激垂体腺,垂体腺再分泌它自身的激素以刺激其它内分泌腺。肾上腺分泌皮质醇,该皮质醇调节能量的代谢和产生,并且调节自主神经系统中交感神经和副交感神经分支的反应。皮质醇的水平与个体应激反应的程度直接相关。
在20世纪70年代早期,Herbert Benson博士用文件证明了存在与“应激反应”相反的神经学和生理学状态。这种被称为“松弛反应”的状态已经被其他临床研究者证实。从自主神经系统的角度看,应激反应由交感神经分支的高活性来表征,而松弛反应由副交感神经分支的高活性来表征。根据定义诱发松弛反应中断了已激发的应激反应。因此,松弛反应的频繁活动能够防止应激源产生进行性(即慢性)压力。而且,松弛反应的频繁活动已经显示出逆转了许多由以前经受的慢性压力所造成的伤害(包括高血压)。
自主神经系统的两个分支(交感神经和副交感神经)的相互作用能够通过检查在各个连续心跳之间发生的小的变化来表征。当个体休息时,由副交感神经分支引起心跳与心跳之间的时间变化(variation)。这种变化将根据个体的呼吸模式而增大和减小。吸气时,副交感神经分支被抑制,并且心率将开始上升。呼气时,副交感神经分支参与进来,并且使心率下降。变化的心率和呼吸之间的这种关系被称为呼吸性窦性心律不齐(RSA)。RSA测量是心率升降程度的数学计算。当升降越大时,副交感神经系统的活性就越大。换句话说,更大的RSA指示更大的副交感神经活性。如前所述,充分增加副交感神经的活性将身体转换到松弛反应中,从而中断任何先前存在的应激反应。
包括有创和无创技术和过程在内的许多尝试已经被做出以激发松弛反应来治疗或控制压力。例如,在减轻或控制压力的尝试中,针灸、处方和非处方药物治疗、以及心理治疗已经全部被使用。然而,这些治疗均涉及在金钱和时间上的显著花费。而且,这些治疗通常不能达到完满的疗效,有时几乎没有疗效。疗效通常是难以估计的,并且常常仅是暂时的。此外,药物治疗经常有不期望的副作用,一些甚至有上瘾的危险。而且,即使使用了所有可用的备选方案,压力仍然对超过80%的就诊者有(直接或间接的)影响。
因此,需要用于估计和治疗压力的方法和装置,其中这样的方法和装置是有效的、无创的、使用简单并且便宜的。而且,显然需要不具有有害的副作用或不产生上瘾危险的方法和装置。
发明概要
本发明提供多种易于使用、节省成本的方法和装置,用于估计和治疗压力以及从而由压力引起或加重的疾病。更具体而言,本发明提供多种方法和装置,用于识别个体RSA波并且向患者提供准实时RSA波信息。例如,这种信息能够被用在生物反馈设置中,以帮助患者降低压力水平并实现节律呼吸。
因此,本发明的一个典型实施例提供多种用于减少人类患者压力的便携式手持生物反馈装置。
本发明的另一个典型实施例提供多种便携式手持生物反馈装置,该装置包含光体积描记(PPG)传感器和显示屏,以向患者提供有关他们RSA波的准实时信息。
本发明的另一个典型实施例提供一种方法和装置,用于训练患者通过达到接近每分钟6次呼吸的呼吸频率来降低压力水平。
本发明的又一个典型实施例提供多种用于检测和校正与RSA波有关的错误数据的方法和使用这些方法的装置。
本发明的另一个典型实施例提供多种用于调节便携式生物反馈装置的显示屏上的缩放的方法和使用这些方法的装置。
本发明的又一个典型实施例通过分析RSA波识别包括深度、速率和体积在内的呼吸模式,并提供上述内容的显示。
附图简述
图1说明了由呼吸性窦性心律不齐(RSA)引起的典型心率变异性(HRV)模式。
图2说明了RSA波的典型序列,并识别出若干搏动峰。
图3说明了RSA波的典型序列,并计算出在连续搏动峰之间的心搏间期(IBI)。
图4a-d分别识别出典型的顶点、底点、上升过渡点和下降过渡点。
图5说明了典型的连续的上升和下降过渡点。
图6说明了用于识别顶点的典型方法。
图7说明了用于识别底点的典型方法。
图8(a)-(b)描述了根据本发明的典型实施例在数据集中发现RSA波的典型过程的典型处理流程。
图9说明了在数据集中识别RSA波的典型过程。
图10说明了典型的双峰波。
图11说明了校正来自典型的双峰波的数据的典型方法。
图12说明了压力计的典型显示。
图13说明了根据本发明的装置的典型实施例,并识别了电源开关的可能位置。
图14说明了能够从患者手指中采集数据的PPG传感器的典型位置。
图15a-b说明了当患者手指在PPG传感器中时患者握住典型装置的备选方法。
图16说明了倒计时计的典型显示。
图17说明了典型平均脉搏率以及脉搏率随时间变化的典型显示。
图18说明了错误消息的典型显示。
图19说明了倒计时器的典型实施例。
图20提供了其呼吸随着时间放慢的患者的RSA波的典型图示。
图21提供了其随着时间进行更深呼吸的患者的RSA波的典型图示。
图22说明了与节律呼吸一致的典型RSA模式。
图23提供了波频率为6的患者的一种典型显示。
图24提供了波频率为6的患者的另一种典型显示。
图25说明了患者对话期分数(session score)的典型显示。
图26说明了患者呼吸深度增大时的典型显示,并且在每一次大约10秒的期间中产生相对较大的波。
图27说明了呼吸引导开关的典型位置,该开关用于启动本发明典型装置中的呼吸引导功能。
图28a-b说明了用呼吸条引导呼吸的典型显示,该呼吸条上升以引导吸气以及下降以引导呼气。
图29说明了对话期汇总屏幕的典型显示。
图30说明了本发明典型装置的一种备选的形状因数。
图31a-b分别说明了尺寸大得足以显示正确数据和错误数据的显示器以及只有错误数据可辨别的小型便携式装置的显示器。
图32说明了一系列典型的搏动峰。
图33a-b分别说明了典型的假阳性搏动峰和典型的假阴性搏动峰。
图34描述了在典型纠错模式期间使用的典型纠错方法的典型处理流程。
图35说明了可以用于确定患者何时达到节律呼吸的典型波特征。
图36-37描述了根据本发明的典型实施例与用户进行交互的典型顶层过程的典型处理流程。
图38-42描述了根据本发明的典型实施例处理被测脉搏的典型过程的典型处理流程。
图43-45描述了根据本发明的典型实施例对被测脉搏的序列进行纠错的典型过程的典型处理流程。
图46-47描述了根据本发明的典型实施例对被测脉搏的序列进行检错的典型过程的典型处理流程。
图48描述了根据本发明的典型实施例初始化被测脉搏范围的典型过程的典型处理流程。
图49-50描述了根据本发明的典型实施例在被测脉搏的序列中处理RSA波的典型过程的典型处理流程。
图51-53描述了根据本发明的典型实施例在被测脉搏的序列中处理RSA波长以确定用户的压力水平的典型过程的典型处理流程。
图54描述了根据本发明的典型实施例为RSA波分配波长的典型过程的典型处理流程。
图55描述了根据本发明的典型实施例能够在其中实施软件过程的典型系统。
详细说明
研究表明,受控呼吸能够改变交感神经和副交感神经分支的平衡。三个特定呼吸分量相互作用确定副交感神经支配的量。这三个分量包括频率、潮气量和呼气/吸气比。通常,通过降低呼吸频率、增大潮气量和/或增大呼气/吸气比,能够增大副交感神经活性。因此,改变这三个变量有可能增强副交感神经活性,使其足以有效地诱发松弛反应,且符合无创、简单、便宜、没有消极副作用的要求。
一般来讲,生物反馈方法和装置包括多个训练过程,这些训练过程允许患者促进行为或活动的变化,以便改善或保持一种或多种生理功能。随着时间的逝去,患者经过生物反馈方法和装置的训练以对这些功能实行更强的控制。与治疗中施加于患者的其它治疗形式相对比,生物反馈方法和装置允许患者逐渐将训练过程融入到几乎自动的反应中。
本发明涉及为经受压力和压力相关疾病的患者提供生物反馈信息和训练的方法和装置。上述生物反馈信息和训练可以基于呼吸性窦性心律不齐模式和能够影响上述模式的呼吸的分析。
现在还不知道仅使用RSA数据集来识别自然呼吸期间的个体RSA波的方法。为了使RSA波与呼吸相关联,心率和呼吸速率信息通常被分开收集和绘制。本发明的一个方面包括在RSA数据集中识别个体波。本发明的另一个方面包括使用上述波型为患者提供基于心率数据的准实时呼吸反馈信息。减轻或充分控制压力水平的装置也能够基于波型分析和呼吸反馈而被提供。
波型识别
在本发明的一个典型实施例中,通过在逐心跳的基础上测量患者的脉搏率,开始呼吸性窦性心律不齐波型的识别和分析。在医学文献中非常确认的是,人体心率以及因此的脉搏率以类似于波的方式持续不断地上下波动(图1)。这些波被称为心率变异性(HRV)波。当人身体不动和休息时,HRV波和人的呼吸有关。这些静息HRV波在医学上被称为呼吸性窦性心律不齐或RSA波,因为这些波的大小和形状与人的呼吸的频率、节律和深度有关。只要人每分钟呼吸4-15次,这些波的频率就将基本上和呼吸频率匹配。大多数个体在这个范围内呼吸,但是甚至当人在这个范围外呼吸时,波频率仍然为呼吸频率提供了接近的近似值。
尽管在医学文献中通过可视化分析已经非常确认波和呼吸之间的相关性,但是还不存在在心搏数据集中识别个体波的自动方法。本发明的一个典型实施例包括在心搏数据集中识别每一个体波的新方法。
例如,两个连续搏动峰之间的时间量(峰峰时间)(以毫秒计)被称为pp间期(pp)(图2)。在本发明的典型实施例中,一种装置记录连续的pp间期。对pp间期点的描述也适用于rr间期(在心电图或ECG中连续R波之间的间期)、pp间期的任何导出值(例如脉搏率点)和rr间期的任何导出值(例如心率)。总之,这些间期可以被称为“心率相关间期”。而且,从pp间期中提取RSA波的同一种方法也能够被直接应用到这些其它点上。然而,本发明的优选实施例在pp间期数据集中解析波。
每当遇到新的搏动峰时,每个已记录的pp间期的脉搏率(60,000/pp)可以被显示在屏幕上。连续pp间期之间的绝对时间差(absolute(pp[n]-pp[n-1]))被称为心搏间期(IBI)(图3)。本发明的一个方面使用pp间期时间来识别个体RSA波。在这里描述的这些方法可以用于自然呼吸和引导呼吸。
通过检查每个p-p和紧接它之前的p-p(上一个p-p)以及和紧接它之后的p-p(下一个p-p)的关系,可以对每个p-p进行分类。如果上一个p-p等于或小于它并且下一个p-p也等于或小于它,那么这个p-p可以被看作是一个顶点(tp)(图4a)。如果上一个p-p等于或大于它并且下一个p-p也等于或大于它,那么这个p-p可以被看作是一个底点(bp)(图4b)。如果上一个p-p小于它并且下一个p-p大于它,那么这个p-p可以被看作是一个上升过渡点(at)(图4c)。如果上一个p-p大于它并且下一个p-p小于它,那么这个p-p可以被看作是一个下降过渡点(dt)(图4d)。因此,p-p可以被分类成顶点(tp)、底点(bp)、上升过渡点(at)或下降过渡点(dt)。在没有用词“上升”或“下降”限定时,术语“过渡点”能够用于指上升和下降过渡点。连续过渡点是指一系列连续的上升过渡点或下降过渡点(图5)。
术语“顶水平”可以用于指顶点的相对高度。顶点的水平可以被计算如下。L=顶点紧左侧小于或等于顶点的连续点的数目。R=顶点紧右侧小于或等于顶点的连续点的数目。如果L<R,那么顶水平等于L,否则顶水平等于R。图37/图6使用3个实例来说明顶水平可以如何被分类。
术语“底水平”可以用于指底点的相对高度。底点的水平可以被计算如下。L=底点紧左侧大于或等于底点的连续点的数目。R=底点紧右侧大于或等于底点的连续点的数目。如果L<R,那么底水平等于L,否则底水平等于R。图7使用3个实例来说明底水平可以如何被分类。
图8(a)-(b)提供了说明在数据集中发现RSA波的典型过程的典型流程图,而图9说明了上述过程可以如何被应用。在本发明的典型实施例中,第一个步骤是在数据集中定位最大数目的连续过渡点(ctp)。在图9中,最大数目的连续过渡点从点1开始。那里有两个连续过渡点。波深等于这些过渡点的数目。因此,在本实例中波深等于2。在优选实施例中,如果波深大于4,那么波深值被向下调整为4。
下一个步骤是定位连续过渡点右侧的底水平等于或大于波深的底点。这是RSA波的右谷点(v2)。在图9的实例中,8号底点的水平为3,该水平大于波深。下一个步骤是定位连续过渡点右侧的底水平等于或大于波深的底点。这是RSA波的左谷点(v1)。在图9提供的实例中,0号底点的水平为4,该水平大于波长。下一个步骤是在左谷点和右谷点之间找到最高点。这是RSA波的峰(p)。在图40/图9的实例中,点6是两个谷点之间的最高点。从左谷点(v1)到右谷点(v2)的所有数据被看作是经过处理的数据。相同的过程在剩余未被处理的数据上被重复,直到所有可能的波被识别。
在上述方法中存在多种应当被看作是在本发明的范围内的变型。例如,类似的方法能够用于在过渡点序列的每一侧上找到峰值。因此,两个峰值点之间的谷将是两个峰值之间的最低点。而且,波深可以基于过渡点的绝对数或是基于过渡点数目的导出数(例如过渡点数目×75%)。而且,v1点能够在v2点之前被识别。
在优选实施例中,每当底水平为4的新点被识别时,上述波解析方法就被使用。因此,根据本发明典型实施例的装置在底水平为4的点之间“寻找”RSA波。在其它典型实施例中,装置可以被配置成在每个点之后或在特定时间段经过(例如每30秒)后等等“寻找”RSA波。典型实施例使用底水平为4的点,因为用它们来描绘(delineate)RSA波的概率非常高。也就是,它们具有作为RSA波的谷点(v1、v2)的高概率。
存在两种情况可能使上述基本RSA波解析方法不能准确地描述RSA波。一种情况可能在遇到双峰波时出现。当人在他或她呼气后等待长的时间吸气时,可能形成双峰波。另一种情况可能在形成双谷波时出现。当人在吸气后长时间屏住他的呼吸时,可能形成双谷波。通过检查两个波的长度比,可以容易地识别双峰(图10)。当(p1-v2)远小于(p1-v1)以及(p2-v2)远小于(p2-v3)且(p1-v2)和(p2-v3)十分接近时,则出现了双峰。在优选实施例中,双峰可以被定义成下述情形:((p1-v2)/(p1-v2))<0.50以及((p2-v2)/(p2-v3))<0.50且((p1-v1)/(p2-v3))>0.75。双谷的定义与双峰的相反。
每当双峰或双谷从基本解析方法中产生时,形成所述模式的两个波可以被融合成一个波。点v1是新波的v1。点v3变成了新波的v2。v1和v3之间的最大值是新波的峰值点。这由图11示出。
使用RSA波分析和减轻压力
本发明的典型实施例能够使用上述RSA波信息来估计用户的精神压力水平。这种精神压力测量可以在类似压力计这样的装置中呈现(图12(5))。例如,当人承受压力时,相对于未承受压力的状态,呼吸通常变得急促且不规则。这种急促的不规则呼吸能够导致形成短的紊乱(choppy)RSA波。通过确定用户的平均波长偏离表示放松状态的水平多远,根据本发明的方法和装置能够用于确定用户的压力水平。上述方法和装置也可以计算用户波的不规则(无节律)的程度。这两种估计可以被单独使用或被合并成单个值以指示总压力水平。
研究已经表明,当人们完全放松(例如在深思的状态中)时,他们往往以每分钟大约6次呼吸的稳定节律进行呼吸。这种节律呼吸导致RSA波长变得受呼吸频率控制。因此,每分钟6次呼吸的节律呼吸将导致一系列具有10秒钟波长的RSA波。因此,本发明的典型实施例在估计用户压力水平时使用10秒钟的波长作为放松阈值。典型实施例也包括多种方法和装置,用于计算最后5个波的平均波长以按比例确定平均值偏离10秒钟的程度。这是“波长分数”的一个实例。
无节律波可以使用许多标准方差公式被量化。本发明的典型实施例使用最后5个波的每个连续波长的差之和来计算“方差分数”。典型实施例也能够使用连续波长之间的差之和,并且可以使用等级顺序(rank order)的加权平均,这样最近的那些波的方差就更重要了。在本发明典型实施例中的压力水平使用70%的“波长分数”+30%的“方差分数”。每当新的RSA波被识别时,用户压力水平能够被重新计算。
压力能够导致多种RSA波行为:峰峰时间减小、峰峰频率增大、波长减小、波频率增大、幅度减小、波长不规则、波频率不规则、幅度不规则、峰峰时间不规则、峰峰频率不规则、峰位置(placement)不规则或变化减小。任何一个上述变量或其任何组合能够被应用于RSA波,并且用作压力水平的指示器。识别个体RSA波并单独使用任何一个上述变量、上述变量的相互组合和/或与其它变量的组合来估计压力是在本发明的范围内,并且在现有技术中未被描述。
除了使用已识别的RSA波来确定压力水平外,根据本发明典型实施例的方法和装置也能够使用RSA波信息来确定和显示平均心率和波频率。在最后一个波中所有脉搏率的平均值可以被用于估计平均心率。例如,每当新的RSA波被识别时,脉搏率的平均值可以被计算,并且心率可以被更新。每当新的RSA波被识别时,波频率显示也可以被更新。典型实施例能够表示相对于每分钟的波(呼吸)的频率。在典型实施例中,波频率和心率可以被四舍五入到最接近的整数。
典型装置
下面的描述涉及以装置形式的本发明特定的典型实施例,该装置可以用于估计人的压力。在该典型实施例中,RSA波可以如上所述被识别,并且可以用于为用户提供生物反馈。除了下面描述的特定典型实施例外,还应当理解其它方法和装置打算在本发明的范围中。备选实施例也会在这一部分中被偶尔描述。在备选实施例没有被明确描述的地方,申请人并不打算将本发明限制为在这一部分提供的确切描述中。总体上,本发明的全部范围基于说明书中的公开内容。
例如,本发明包括电池供电的手持式便携装置,该装置包括PPG传感器、显示屏、控制按钮和电源按钮(图13)。用户通过按压电源按钮能够打开该装置。如果装置正在暗室中使用,那么用户通过第二次按压电源按钮并持续按压几秒钟,能够打开背光。在给装置加电后不久,它提示用户将手指插入到手指传感器中(图14)。然后,用户在整个对话期用放在传感器上方的手指轻轻捏住装置。装置能够被舒服地用拇指(图15a)垂直夹持,或是以一个角度用弯曲的手指夹持(图15b)。
一旦手指已经被插入到手指传感器中,装置就开始校准PPG传感器。倒计时计标记校准所需的时间量(图16)。在PPG传感器被校准后,装置使用PPG传感器检测手指血液中的每个脉搏。然后,所得到的脉搏率(60,000/两个连续搏动峰之间的毫秒数)在逐脉搏的基础上被绘制在屏幕上(图17(2))。上述显示也为用户显示他的平均脉搏率(图17(1))。
PPG传感器能够对手指压力十分敏感。也就是,如果用户正在挤压传感器,那么所得到的手指压力可能妨碍装置收集准确的脉搏率信息。每当用户施加过大压力时,装置就将显示错误消息来警告用户停止挤压装置并开始放松手指(图18)。用户一成功地放松了他的手指,那么他就返回到脉搏率显示屏。
当装置识别出新的RSA波时,它使用波信息来确定和显示5件事:最后一个波的频率、在波中所有搏动点的平均脉搏率、对话期分数、剩余对话期时间和压力指数——用户目前正在承受的精神压力有多大(图12)。
在每个RSA波已经被识别后,装置更新对话期倒计时钟。备选典型实施例能够包括有规律递减(例如每秒一次、每15秒一次等)的对话期倒计时钟。在上述典型实施例中,装置在每个RSA波后更新以避免在时钟和期望行为之间出现的无意识关联。换句话说,如果时钟以每秒为基础进行倒计时,那么用户能够有意或无意地使用秒作为以每分钟6次呼吸的频率进行呼吸的指导。上述关联可能妨碍用户无意识地学习每当承受压力时如何每分钟呼吸6次。如果用户有意(或者甚至是无意)地使用时钟,他或她可能总是依靠该装置。然而,通过基于每个波来更新时钟,上述可能的情况不仅被避免了,而且时钟能够巩固学习。通过时钟的减小量,用户将看到每次呼吸的准确秒数。如果时钟减小地更慢(例如每30秒一次),那么在时间和期望行为之间出现无意识关联的可能性将被避免。然而,在上述备选实现中,时钟不能巩固学习。
在这个典型实施例中,一旦第一个波被识别并且数据被显示(图19),对话期倒计时定时器就开始减小。然而,当用户开始节律呼吸时,或者只有当他们实现良好波时(例如频率小于6的波),或者只有当用户正在进行节律呼吸时,备选实施例才能够开始减小计数器。另一个备选实施例在呼吸按钮正在被使用以及引导正在被提供时没有减小计数器。
用户通过改变他们的呼吸模式能够改变波的行为,从而改变他们被计算出来的压力水平。当用户放慢他的呼吸速率时,波长增大并且波幅也在增大(图20)。当人进行更深的呼吸时,波幅变得更大(图21)。当人以稳定的速率进行节律呼吸时,波长诱导呼吸速率(图22)。
使用装置进行放松的第一个步骤是深吸气,然后缓慢地呼气,延长呼吸时间。这将导致波长变长,从而降低波的频率。用户继续深吸气,并以甚至更慢的速度呼气,直至波频率下降到6次(图16/图23)。如果波频率下降到小于6,那么用户将需要呼吸地稍快一点也就是,下次呼气不要太长。
一旦用户已经将波频率降到6次,他或她就继续以产生频率为6的相同频率和节律进行呼吸。如果用户的呼吸率增大,那么频率将增大,从而指示他的下一次呼吸需要有更长的呼气。如果用户的呼吸率变得太低,那么频率将下降到低于6,从而指示下一次呼吸的呼气需要稍快一点。通过注意波频率的数目,用户能够快速地用节律波填充屏幕,这些节律波的长度为10秒钟(图24),与每分钟6次的呼吸循环的频率相对应。
在每个RSA波被识别后,对话期分数被计算并被显示。该分数基于用户与要实现的期望行为的接近程度。用户累积分数点。对对话期进行计分的各种方法均可以被使用。在某些实施例中,如果波频率等于或小于6,那么用户可以得到3个点。波频率等于7或8时,用户可以得到2个点,波频率等于9或10时可以得到1个点,以及波频率大于10时不会得到点。所累积的对话期分数能够用数字显示。可选择地,每个单独分数能够被显示。另一个替代是在上一组分数旁边显示当前分数(以数字或图形方式)。优选实施例以图形方式显示当前分数和上一组分数(图25)。这样,用户能够知道何时他在进行节律呼吸。当分数显示一致时,用户正在进行节律呼吸。
一旦用户已经用节律波填充了屏幕,那么他就应该集中在进行略微更深些的吸气和略微更彻底些的呼气上。也就是,用户应当试图吸入和呼出更大体积的空气(称为潮气量)。当用户逐渐增加他的呼吸深度时,波的大小将增大(图26)。用户继续用波长均为10秒的大波填充屏幕,直至对话期定时器溢出。然后,用户将发现他已经实现了非常深和完全的放松状态。
如果用户难以进行每分钟6次呼吸的深度节律呼吸,那么通过启动呼吸引导功能(图27),他能够获得引导。用户一按下呼吸按钮,呼吸引导就出现在显示器上。在呼吸条上升时(图21a/图28a),指导用户吸气;以及在呼吸条下降时(图21b/图28b),指导用户呼气。在典型实施例中,呼吸引导例如用1∶2的吸气∶呼气比来设置每分钟6次呼吸的用户呼吸。在备选实施例中,呼吸引导能够被编程以提供接近每分钟6次呼吸(例如4-8次/分钟)的比的其它节律(例如1∶3)呼吸。呼吸引导保持一分钟有效,然后自动关闭。通过具有临时的而不是恒定的呼吸引导,用户被鼓励使用生物反馈方案来实现每分钟六次呼吸的呼吸模式。如果用户将仅仅依靠呼吸引导,那么将更加难以学习如何独立地实现所述模式。因此,通过使用户脱离呼吸引导,用户能够使用生物反馈来建立无意识学习。备选的典型实现能够在一段时间后提示用户关闭呼吸模式。其它呼吸速率和节律也可以被使用。
在呼吸引导已经完成后,装置使用户返回到正常显示。然后,用户以上述方式调节他的呼吸以将波频率减小到6,维持节律呼吸,并且通过更深地呼吸来增大波的大小。用户继续上述过程,直到对话期定时器达到0:00,此时对话期汇总屏幕可以被显示(图29)。
本发明的若干方面能够被合并在一起来创建许多备选的典型实施例。例如,装置能够以可以用作幅度反馈计而不是压力计的测量计为特征。上述测量计能够进一步具有目标条。因此,装置能够以图形方式显示正在进行的人呼吸的深度,这样他能够学习进行更深的呼吸。如果使用目标条,那么用户就能够试图进行足够深的呼吸,以使每次呼吸均引起测量计上升到目标条之上。幅度的任何数值或图形反馈(可视的或其它方式的)均在上述备选实施例的范围内。
另一个备选典型实施例能够使用波信息(例如波长、幅度和峰位置)确定和提供关于用户对指定呼吸方案(例如吸气∶呼气比为1∶3,每分钟6次呼吸)遵循程度的反馈。可选择地,用户能够被给予呼吸引导,并且同时为用户提供他们和引导呼吸模式一致性程度的同时听觉或视觉反馈。此外,目标水平能够被显示,这样如果用户位于目标水平之上,则他可以被看作是和呼吸方案保持一致,如果用户低于该水平,则他或她被看作是没有和呼吸方案保持一致。
备选的典型实施例能够使用一个或多个波参数的变化来检测节律呼吸。然后,节律呼吸的程度能够以数字、图形或某一其它方式被可视化显示。可选地,可听反馈可被提供。例如在典型实施例中,当呼吸变得更加没有节律时,音调会升高,以及当呼吸变得更有节律时,音调会降低。可选择地,一次嘟嘟声能够指示节律呼吸,两次嘟嘟声能够指示接近节律呼吸,以及三次嘟嘟声能够指示无节律呼吸。当然,上述反馈技术或这些反馈技术的衍生技术中的任何一个均能够被独立使用,彼此结合、与其它技术结合或与彼此和其它技术结合而被使用。上述实现可以用于实行瑜珈式的节律呼吸模式。例如,如果瑜珈学员正在以吸气:屏气:呼气为1∶1∶1的比进行节律呼吸时,那么他或她可以使用该装置来保证节律呼吸被维持。
在本发明的其它实施例中,预编程呼吸引导能够在装置上被提供,这样用户能够跟随呼吸引导,同时接收有关他的呼吸节律性的视觉和/或听觉反馈。此外,呼吸引导能够是可编程的。可选地,不仅能够在呼吸节律上而且能够在速率上提供反馈。例如,如果用户希望以1∶1∶1的比实行每秒钟5次呼吸的呼吸,那么视觉和/或听觉反馈能够指示用户正在以每分钟5次呼吸的频率进行节律呼吸的程度。以另一个频率和/或节律呼吸可能降低分数。
另一个典型实施例提供有关呼吸深度的反馈。在节律呼吸期间,使用上述方法的可测量现象,即波幅中的基本差别是潮气量(呼吸深度)。因此,幅度测量能够用于视觉和/或听觉反馈以指示人呼吸的深度。如上所述,深呼吸是缓解压力的有效方式。典型实施例能够提供有关用户呼吸深度的反馈,以帮助教导用户如何深呼吸,从而缓解压力。
简言之,本发明的典型实施例能够针对下述情况提供听觉和/或视觉反馈:呼吸速率、呼吸节律、呼吸深度、呼吸和指定速率/节律的一致性和类似参数。能够对这些参数中的每个单独地或以任何组合做出评估。能够关于上述评估中的一个或多个提供反馈。任何识别两个或更多个RSA波并导出速率、节律、深度和/或一致性的实现均在本发明的范围内。
典型的形状因数
本发明的典型实施例结合了许多附加的特征。一种上述特征是装置形状因数的设计。在本发明之前,生物反馈程序使用通过导线连接到计算机上的手指PPG传感器、耳部PPG传感器和/或心率ECG传感器。尽管PPG传感器对运动和手指压力敏感,但是现有技术却不得不处理由运动或过大压力产生的许多伪像,这是因为现有技术的手指PPG传感器通常被放置在工作台或桌子上。在这种情况下,用户可以把他们的手和手指放在桌子上以用于稳定手和手指,从而防止过度运动和手指压力。
因为外部导线通常在社交场合(和其它方面)是无法接受的,所以本发明的典型实施例将PPG传感器直接集成到便携式装置中,并消除了外部导线。结果,根据本发明典型实施例的装置能够在公共场所被舒服地使用。然而,将PPG传感器集成到便携式装置中需要新颖的形状因数。例如,因为对话期时间能够在5-15分钟之间变化,所以装置的用户将在没有桌子这样的稳定结构的情况下长时间持握该装置。因此,本发明提供能够被舒服持握的装置,同时允许用户将他的手指轻轻地放在手指传感器上。
本发明也提供在将由长时间(例如10-15分钟)运动和压力引起的伪像最小化的同时提供舒适的形状因数。两种典型的形状因数实现了这些目标。在第一种形状因数中,手指传感器位于装置的顶部接近一个边缘。从人体工程学的角度讲,从装置底部到顶部的高度可以在大约1.5英寸与大约3.5英寸之间,优选为大约2.5英寸。这就允许在垂直持握(图15a)时由拇指支撑装置,或是在倾斜(图15b)时由弯曲的手指支撑。在第二种形状因数中,手指传感器被放置在装置的圆形背部上,而显示器位于装置的前部,从而允许在使用期间装置例如被握在手掌中(图30)。特别优选的形状因数是上述第一种形状因数,该形状因数允许具有科学和医学外观和感觉的产品设计。
错误检测和校正
尽管上述形状因数将使伪像最小化,但是硬件形状因数不会消除每一种可能的伪像。因为没有像工作台或桌子这样的支撑结构,所以在整个对话期手和手指将在不同的时期运动。尽管硬件将使伪像最小化,但是在本发明的典型实施例中,剩余伪像能够被软件处理。而且,装置不但检测到何时出现错误,而且它也校正错误。
通常,小型便携式装置上的显示器对错误更加敏感,因为例如与台式计算机的显示器相比,上述显示器非常小。当错误出现在台式计算机上时,显示器具有足够的分辨率以显示准确的数据和错误(图31a)。然而,在小型便携式装置上,由于它的分辨率低,所以一个错误能够导致所有的正确数据变得无法辨别(图31b)。
在现有技术的状态中,有许多种在数据流中检测错误的统计学方法。然而,这些方法在它们提供高准确度之前需要大量的数据采样。如上所述,即使一个错误也会对具有小显示器的装置产生不利的影响。因此,错误应当被迅速准确地检测到,然后被校正。根据本发明典型实施例的装置实现了一种错误检测和校正的新方法,该方法在它变得非常准确之前只需要少量数据(大约10秒钟)。
为了便于进一步理解本发明的错误检测和校正方法,这里提供了有关PPG传感器如何在理想的、没有错误的条件下获取脉搏信息的简要说明。PPG传感器连续检测手指中的血压值。每当心脏搏动时,相应的血液脉搏导致手指中血压的迅速上升,然后血压会迅速下降。PPG传感器连续搜索以识别血压到达峰值的时间(图32)。这就是脉搏峰。如上所述,两个连续脉搏峰之间的时间量(以ms为单位)被称为pp间期(pp)(图2)。根据本发明的装置能够记录每个连续的pp间期。每当遇到一个新的脉搏峰时,每个被记录的pp间期的脉搏率(60,000/pp)能够被显示在屏幕上。在连续pp间期之间的绝对时间差(absolute(pp[n]-pp[n-1]))被称为心搏间期或IBI(图3)。
当PPG传感器试图正确地识别下一个脉搏峰时,出现了两种类型的错误(图33)。当PPG传感器错误地将伪像识别为脉搏峰时,会出现一种类型的错误。也就是,PPG传感器在实际不存在脉搏峰的地方确定出现了脉搏峰。这种类型的错误被称为假阳性错误。当PPG传感器没有识别出确实存在的脉搏峰时,会出现第二种类型的错误。这被称为假阴性错误。假阴性和假阳性均导致大的IBI。没有错误的数据可能会或者可能不会导致大的IBI。然而,错误数据总是产生大的IBI。因此,每当大量的连续数据没有包含大的IBI时,就可以可靠地认为该数据没有错误。如果出现了大的IBI,有可能是由于错误导致的,也有可能是好的数据;装置将需要确定究竟是哪种情况。
根据本发明的优选实施例,错误检测策略中的第一个步骤是等待一定数量的心率相关间期(例如10个pp间期),其中每个IBI时间均小于200ms。这些数据点被认为是没有错误的。连续间期的数目能够小于10,但需要至少是2,优选至少是3,更优选至少是5。另一种备选方案是等待一组连续数据点,其中每个IBI时间小于连续数据集(例如5个连续pp间期)中最小心率相关间期(例如pp间期)的1/3。这些数据点的范围能够被计算。当用在这里时,“范围”可以指绝对范围(即min pp到max pp)、范围的导出值(例如(min pp-10%)-(maxpp+10%))、或计算变化(例如平均偏差、标准偏差等)。有关范围的任何合适的数学描述均能够被使用。根据本发明的优选实施例使用min pp-((max pp-min pp)×25%)作为范围下限。优选实施例使用maxpp+((max pp-min pp)×25%)作为范围上限。范围可以从整个数据集中或数据集的子集中导出。
一旦范围已经被建立,每个新的p-p被测试以确定它是否“位于范围内”。在典型实施例中,如果新的pp值大于下限值且小于上限值,则认为该新的pp值“位于范围内”。然而,“位于范围内”也可以是指当前p-p和范围的接近程度的任何一种数学确定,其中上述范围由被选范围计算来确定。例如,如果范围是使用标准偏差计算出来的,那么“位于范围内”可以是指下述统计确定:当前p-p具有80%或更高的概率位于计算变化的范围内。
当新的pp间期到达时,新的IBI也可以被计算(新pp减去上一个pp的绝对值)。新IBI可以被测试以确定它是否为“大”。在优选实施例中,装置测试IBI是否大于范围下限值的一半。如果大于,IBI则被认为是大。在其它典型实施例中,新pp间期减去上一个间期的IBI时间能够被计算。作为替代,其它IBI时间能够被使用,例如与最后n个pp间期的平均p-p相比的新p-p的IBI。而且,不同实现能够使用不同的阈值来区分大的IBI与不大的IBI。根据本发明的实施例,使用pp间期的差或pp间期的导出值(例如平均值)的差以便检测错误的任何实现均能够被使用。
总之,当根据本发明典型实施例的装置开始工作时,它不会进入错误检测模式,直到10个连续pp间期被定位,其中所有IBI时间均小于200ms。然后,装置能够计算这些pp间期的范围,并启动错误检测模式。在错误检测模式中,装置能够检测每个新的pp以确定它是否“位于范围内”,并且装置测试每个新的IBI以确定它是否为“大”。确定在错误检测中使用的这两个属性中的一个或两个的其它任何合适的方法也在本发明的范围内。
如果下一个p-p“位于范围内”并且IBI不是“大”的,那么新p-p能够被看作是没有错误的。如果p-p没有“位于范围内”并且IBI不是“大”的,那么新p-p能够被看作是没有错误的,并且范围被重新计算以包括新发现的pp值。如果新p-p“位于范围内”但IBI是“大”的,那么新p-p能够被看作是没有错误的。然而,当新p-p“超出范围”并且IBI是“大”的时,那么新p-p能够被看作是错误的结果。一旦错误已经被检测到,那么它应该被校正。因此,每当错误在错误检测模式中被检测到,装置就转换到错误校正模式。装置能够保持在错误校正模式中,直到错误情形已经被解决。
图34提供了示出在错误校正模式中使用的典型错误校正方法的流程图。错误校正包括当它被识别时将每个连续pp间期一起求和,直到pp间期的和“位于范围内”,或者上述和能够被整除以使除法的结果“位于范围内”。当和本身“位于范围内”时,构成和的所有pp间期能够被合并在一起,以成为等于和的单个值。当被整数除的和位于范围内时,错误值能够被等于除法结果的n(其中n=整数分母)个值取代。
下面的讨论提供了根据本发明的典型实施例可以如何校正错误的实例。例如,如果范围是600ms-1,000ms,并且错误的pp间期时间是200ms。下一个pp间期是100ms。现在,总和是300ms。它没有“位于范围内”。下一个pp间期是400ms。因此,现在总和是700ms。它“位于范围内”,因此700ms是校正值。三个pp间期(200ms、100ms和400ms)将被合并成一个值700ms。然后,装置返回到错误检测模式。
作为另一个例子,如果范围是700ms-1,000ms,并且错误的pp间期是1,300ms。没有一个整数能够除1300以产生“位于范围内”的值。因此,下一个pp间期(300ms)被一起求和以产生1,600ms。此时,存在一个能够用于除法以产生“位于范围内”的值的整数。整数2导致产生了“位于范围内”的值(1600/2=800ms)。因此,两个错误值(1,300ms和300ms)将被等于800ms(除法的结果)的两个(整数)值取代。
在典型实施例中,根据本发明的装置将能够在一个或两个额外的pp间期内产生校正值。然而,装置也有可能无限地进入错误校正模式中。因此,本发明能够包括一种在出现上述情况时解决该情况的安全机制。例如,如果装置在错误校正模式中保持了太长的时间,那么装置通过对遇到的所有原始数据点应用统计学方法来重新计算范围。也就是,从PPG传感器中接收到的每个未被处理的pp间期均被使用了。然后,使用基于统计学的范围计算(例如标准偏差公式)来计算范围。在典型实施例中,中间的pp间期从遇到的所有未被处理的pp间期(不管是真实的还是错误的)中确定。范围被定义成比中间值低每分钟15次搏动一直到比中间值高每分钟15次搏动。在错误队列中的pp间期根据新的范围被重新处理。注意,范围也能够用未被处理的数据点的子集(例如最后50个数据点)计算。本发明也能够包括重新计算范围以解决扩展错误情形的任何方法。
如上所述,PPG传感器对运动和手指压力敏感。它们也对亮光和冷的手指敏感。因此,存在能够导致多个错误的许多因素。在本发明的一些实施例中,每当10秒期间的信噪比下降到低于25%时,装置可以循环显示错误消息(例如图18所示的消息),直到装置从错误校正模式中退出。因此,用户将被提供有关变化的信息,这些变化能够被做出以帮助装置收集准确的脉搏信息。
本发明也提供了在心率间期数据集中检测和校正错误的备选方法。例如,存在多种实现,在检测到新的心率间期值时,这些实现允许范围和/或IBI阈值动态改变。在某些情况下,上述实现可以提供准确性的边缘增加。
例如,可以使用滚动窗口对范围进行连续评估。范围可以在接收到pp间期的第一个10秒后被初始化,这样每个连续IBI小于200ms。在该点后,可以使用可靠数据最后10秒的滚动窗口连续地对范围进行重新评估。可靠数据的最后10秒可以是连续的,也可以是不连续。例如,范围的顶(r_top)能够是可靠数据最后10秒中的最高p-p,并且范围的底(r_bottom)能够是可靠数据最后10秒中的最低p-p。
另一个备选方式是降低速率,其中范围能够动态扩大和缩小。例如,每当新的pp值被检测到时,范围能够在3个步骤中被更新。首先,从可靠数据的最后10秒中识别数据集顶(ds_top)和数据集底(ds_bottom)。其次,ds_top和ds_bottom按照这样的方式进行调整,使得它们与上一个ds_top(p_ds_top)和上一个ds_bottom(p_ds_bottom)区别不大。例如,如果p_ds_top大于ds_top,那么ds_top能够被重新设置成p_ds_top-((p_ds_top-ds_top)/25+1)。如果p_ds_top小于ds_top,那么ds_top能够被重新设置成p_ds_top+((ds_top-p_ds_top)/4+1)。如果p_ds_bottom大于ds_bottom,那么ds_bottom能够被重新设置成p_ds_bottom-((p_ds_bottom-ds_bottom)/2+1)。如果p_ds_bottom小于ds_bottom,那么ds_bottom能够被重新设置成((ds_bottom-p_ds_bottom)/25+1)。因此,r_top将等于调整后的ds_top,并且r_bottom将等于调整后的ds_bottom。如果p-p位于r_bottom和r_top之间,它将被看作是“位于范围内”。
上述方法能够实现3个目标。首先,它允许范围动态增大和减小。其次,范围的扩大能够快于它的缩小。最后,范围底的扩大能够快于范围顶的扩大。有许多种方式均可以实现这些方法,并且完成这3个目标中任何一个目标的任何一种实现方式均在本发明的范围内。
另一个备选方式包括将经过计算的pp范围转换成脉搏率值(prv)的范围,并且将每个新检测到的prv(60,000/pp)和脉搏率范围进行比较。通过新prv是否小于最大prv(max_prv)并且大于最小prv(min_prv),“位于范围内”能够被确定。或者,“位于范围内”可以指新prv是否足够接近prv值的范围。例如,范围顶和范围底能够用确定的搏动数(即max_prv=max_prv+9和min_prv=min_prv-9)进行扩大。因此,任何位于数据集范围的9bpm以内的新prv均能够被看作是“位于范围内”。
如pp范围一样,prv范围的计算也能够是动态的。也就是,当新prv到来时,如果新prv被认为是可靠的(例如IBI不是太大),那么范围能够被重新计算。
增强错误检测能力的另一种方法是使用两个阈值来确定新IBI和上一个IBI的接近程度。例如,如果新IBI小于下限阈值,那么它能够被看作是“小跳变”。如果新IBI位于两个阈值之间,那么它能够被看作是“显著跳变”。以及如果新IBI大于第二个阈值,那么它能够被看作是“大跳变”。因此,当新值到来时,它们能够被评估关于新值是“位于范围内”还是“超出范围”以及新IBI是小跳变、显著跳变还是大跳变。关于是否显示值、是否使用值来更新范围和/或是否校正值的决定可以以上述评估为基础。
任何心率相关间期均可以用于确定IBI水平的显著性。例如,在评估新脉搏值和前面脉搏值的接近程度时,两个prv的心搏间期差(prvIBI)能够被使用。因此,IBI能够针对pp间期、prv值、rr间期、hr值和类似数值被计算并被评估。
另一种备选方式包括使用IBI变化的方向确定跳变是小跳变、显著跳变还是大跳变。当人身体不动时,脉搏率能够以不同的速率上升或下降。因此,依靠变化的方向,不同阈值能够被使用。例如,当prv IBI大于上一个prv IBI时,如果prv IBI小于8bpm,则它能够被看作是向上的小跳变;如果它在8-15bpm之间,则是显著跳变;以及如果它大于15bpm,则是大跳变。以及当prv IBI小于上一个prv IBI时,如果prv IBI小于8bpm,则它能够被看作是小跳变;如果它在8-12bpm之间,则是显著跳变;以及如果它大于12bpm,则是大跳变。
另一个典型实施例包括将prv IBI阈值基于位于范围内的上一个prv的位置。如果上一个prv已经逼近范围的顶,那么阈值应当被设置得小一点,因为从理论上讲不希望下一个prv跳变到超出范围太远的地方。同样,如果上一个prv已经逼近范围的底,那么向下跳变的prv阈值应当被减小。因此,以位于范围内的上一个prv的位置为基础的prv IBI阈值的实例可以包括:针对向上的小跳变的((r_top-prev_prv)(1/3))+10,针对向上的大跳变的((r_top-prev_pr)(2/3))+15,针对向下的小跳变的((prev_prv-r_bottom)(1/2))+10,以及针对向下的大跳变的((prev_prv-r_bottom)×(2/3))+15。
另一个典型实施例是在确定新的心率间期点是否需要被校正时添加一个例如方向这样的第三测试。例如,如果点没有通过IBI和范围测试,但它比上一个心率间期点更接近范围,那么它仍能够被看作是可接受的。
在一些环境和实现中,通过组合动态范围方法、利用基于方向的不同阈值的双IBI阈值方法和心率间期方向方法,可以获得边缘改善。如下是上述组合的一个实例。在每个新prv被计算(60,000/pp)时,它能够首先被估计是否是“可以立即显示的”。如果prv是小的向上跳变或小的向下跳变(使用合适阈值),那么它是“可以立即显示的”,所以被立即显示。如果它是显著跳变但是“位于范围内”,那么它是“可以立即显示的”,所以被立即显示。否则,它能够按照方向被重新计算以看它是否可以被显示。如果当前prv比上一个prv更接近范围,那么它仍然被显示。否则,它不被显示,并且必须被校正。
上述方法的组合也可以用于确定何时值是“可靠的”或是不可靠的。也就是,这些方法可以用于确定新prv是否应当被用于重新计算动态范围。例如,如果新prv是小跳变,那么它能够被看作是“可靠的”。如果新prv是显著跳变,但是“位于范围内”,那么它能够被看作是“可靠的”。而且,如果新prv是显著跳变并且“超出范围”,但是比上一个prv更接近范围,那么它能够被看作是“可靠的”。
在决定使用哪些方法在数据集中检测和校正错误时,应当考虑硬件稳定性、使用环境和其它因素,以确定复杂组合方法的潜在统计优势的程度是否提供了比基本IBI/范围方法更加可行的效用。在大多数情况下,基本IBI/范围策略是完全足够的。然而,如果预期存在显著运动、阳光、压力和类似因素,那么上述附加统计方法可以被实施以在数据集中提供更准确的错误检测和校正。
解决缩放问题和识别节律呼吸
根据本发明典型实施例的方法和装置不仅使用波信息估计压力、确定准确的平均心率并提供有关波频率的反馈,而且使用波信息创新性地缩放波被显示的显示区域。
人与人之间的RSA波幅变化非常大。如上所述,RSA的幅度取决于个体的年龄、性别、健康水平、呼吸模式和其它因素。尽管大显示屏能够容纳大波或小波,但是便携式装置上的小显示屏需要复杂的缩放。因此,如果小显示器上的比例太小,那么大波的将不能适合显示器。如果比例太大,那么小波的形状和大小将变得难以分辨。而且,如果比例是动态的并且调整得太频繁,那么大波和小波看起来将是同样大小,而且用户将无法分辨出他的呼吸模式是否发生了变化或者是何时发生了变化。
根据本发明典型实施例的装置能够通过在两个阶段中不同地调节显示比例来解决缩放问题。第一个阶段从装置上电的时间一直持续到用户开始节律呼吸。第二个阶段从装置检测到节律呼吸一直持续到装置被关闭。在阶段1中,非常基本的缩放技术能够被执行。在阶段2中,创新性的方法能够被使用,这样用户能够准确地估计他的呼吸何时已经变得更浅(不太深)。
例如,当装置第一次被打开时,比例被优选放大到小的预设值。然后,每当遇到的脉搏率点大于使用当前缩放水平能够被绘制的最大值或小于能够被绘制的最小值时装置缩小。比例被缩小,这样新的脉搏点被绘制在装置显示区域的边缘上。为了向用户提供比例的思想,装置在开始时只缩小不放大。在大波离开屏幕以后,显示器还被重新放大,以致于显示器的整个高度自顶到底被使用了。显示器连续放大和缩小,这样被显示的数据点始终占据整个显示范围,直到用户开始节律呼吸。
一旦用户开始节律呼吸,装置就设法鼓励他进行深呼吸。如果小波出现时装置继续自动放大,那么由浅呼吸产生的小波看起来将和由深呼吸产生的大波一样大。这将无法使用户从波的大小在视觉上辨别他的呼吸深度。
根据本发明典型实施例的装置使用波信息来检测节律呼吸。节律呼吸产生具有一致波长、频率、幅度、峰峰时间和峰位置时间的波(图35)。通过测量这些波特征参数中的一个或多个参数的变化,节律呼吸能够被识别。典型实施例计算最后三个波的波长和幅度的变化。当这些变化都小时,节律呼吸被看作是已经开始了。
一种确定变化并且从而确定何时变化为小的方法能够以相对偏差的百分比为基础。这种方法在比较两个或更多个值(例如峰峰时间、波长、频率等)的变化时有用。这可以如下所述进行。首先,值的均值(平均值)能够被确定。然后,每个值与平均值的差之和(sum_dif)能够被计算。该和可以除以平均值与值的数目的乘积。例如,考虑4个波长:10、8、10、8秒。平均值是9。与平均值的差之和是4(10和均值的差是1,加上8和均值的差是1,加上10和均值的差1,加上8和均值的差是1)。因此,4除以均值和值的数目的积(4/(9×4))。因此,相对平均偏差的百分比是11.1%。考虑4个幅度:30、28、30、28bpm。尽管和上一个实例中一样偏差也是4,但是相对平均偏差的百分比仅是3.4%。因此,相对平均偏差的百分比将自身自动缩放到被分析的值的范围。
使用多种方法,任何一个波特征的变化能够被单独分析或被组合分析。优选实施例使用相对平均偏差的百分比。所得到的百分比越大,变化也就越大。变化阈值能够被设置成确定是否已经开始节律呼吸。例如,如果三个或更多个波在波特征上具有小于20%的变化,那么可以断定节律呼吸已经开始。在优选实施例中,当最后三个波的波长和幅度的变化均小于10%时,节律呼吸被认为已经开始。
一旦节律呼吸已经开始,就可以跟踪由所得到的节律波形成的最大幅度(最大幅度)。例如,装置用每个波继续确定用户是否仍然进行着节律呼吸。只要用户继续进行节律呼吸,装置将继续寻找最大幅度(最大幅度)。如果新形成的节律波具有比当前最大幅度更高的幅度,那么最大幅度能够被重新调整以使其等于新幅度。通常,显示不会放大到超过最大幅度。也就是,显示比例能够被设置,这样具有和最大幅度相等的幅度的波将自顶到底占据整个屏幕。缩放水平能够被设置成不超过上述设定点。结果,装置能够缩小,但它不会放大到超出由最大幅度确定的设定点。这样,用户将注意到何时他们正在进行浅呼吸,因为他们将在屏幕上看到相对较小的波(相对于最大幅度)。
有时错误波(被错误重建的带有校正错误的波)能够具有最大幅度。这种最大幅度可能错误地为高。而且,人的最大可能幅度会随着时间下降,直到他们的肺变得习惯于节律呼吸。也就是,当他们的肺变得疲劳时,他们将不能再现幅度等于最大幅度的波。因为装置不应当使用户感到灰心,而是应当鼓励他产生他能够舒服地产生的最大波,所以如果有一系列连续波没有足够接近最大幅度,那么装置能够随着时间而降低最大幅度值。在优选实施例中,如果三个连续节律波的幅度小于最大幅度的80%,那么可以使用下述公式对最大幅度进行重新调整:(最后三个波的最大幅度)×(100/85)。另一个备选方式是继续减小最大幅度,直至波足够接近于自顶到底占据显示器。例如,每当新形成的节律波的幅度小于当前最大幅度的80%时,最大幅度能够被减小5%。使用幅度的另一种方式是采用最大平均幅度。例如,每当新波被遇到时,最后三个波的平均幅度能够被计算。最大平均幅度能够作为最小设定点而被使用。
使用节律呼吸中出现的高幅度建立设定点是被公开的本发明的新颖和有用的部分。任何基于幅度、范围、变化或偏差的缩放均打算在本发明的范围内。例如,数据集或数据子集的标准偏差能够被确定。最大缩放水平能够被设置,使得相对于偏差具有特定概率的值占据屏幕。例如,具有位于标准偏差内80%概率的所有值将自顶到底填充屏幕。
典型系统和软件过程
例如,本发明的典型实施例能够被实施为存储在数据处理装置(例如计算机)的存储器中的过程。上述过程例如能够以软件的形式,以及例如能够由数据处理器或CPU执行,并且结果被显示在显示器上,例如现有技术中已知的CRT、等离子体或其它计算机显示器。因此,例如上述软件能够在包括CPU、存储器和显示器的系统中被执行,系统中的所有装置通过一条或多条总线或数据通道连接。图55描述了上述典型系统。
参考图55,提供了I/O或输入/输出接口5501、CPU 5505和存储器5510。典型系统的三个部件通过系统总线5520被可通信地连接起来。如所述,系统总线5520是一个逻辑部件,并且在任何给定的实施例中能够包括系统元件之间的多个互连。在给定上述典型系统的情况下,软件过程能够被载入到存储器5510中,并且在CPU 5505中被执行。此外,用户能够通过I/O 5501为过程提供输入,并且也使用I/O可以向用户提供借助于视觉、听觉、触觉或其它手段给用户的输出。例如,上述I/O能够包括物理接口装置,其包括一个或多个传感器,或者能够包括一个或多个话筒和一个或多个扬声器、键盘、鼠标和视频显示器以及触觉输入和输出机构。
此外,上述软件过程例如能够用任何合适的计算机语言或使用已知技术的语言的组合来表示,并且例如能够被实施为嵌入式系统或使用已知技术常规存储的指令程序。例如,上述软件过程能够在上述用于估计人的压力的装置中执行。例如,上述典型软件过程能够具有顶层过程,该过程例如通过向用户显示消息以及通过连续不断地查找和响应各种用户操作(例如用户按下呼吸引导按钮或源自用户手指的脉搏)与用户交互。如以下所述,这种典型的软件过程在图36-54中被描述。应当注意,上述图8(a)-(b)结合了该典型软件过程,因此下面结合图49描述的“process_waves”子程序调用了图8(a)-(b)中描述的“get_waves”子程序。
图36-37描述了典型的顶层过程,该过程例如能够控制什么被显示给用户,并且能够响应用户操作。这种顶层过程主要是初始化变量,然后等待它响应的中断。参考图36,在3601变量可以被初始化。例如,上述初始化能够包括将装置模式设置为“自发”,并且将下述变量的值设置为0:原始时间步的数目、时间步的数目、pp间期的数目、心搏间期的数目、error_sum、波数目、pp间期的数目和pp间期时间步的数目,以及将变量状态设置为RAW(原始的)。例如,上述初始化能够根据下述伪代码实现:n_rt=0;n_ts=0;n_pp=0;n_ibi=0;state=RAW;err_sum=0;n_waves=0;n_val4=0;n_ppts=0。
继续参考图36,在3602,例如“插入手指”消息能够被显示给用户。在3603,该过程等待中断,在中断出现前不会采取任何进一步的动作。在3604,如果用户插入了手指,那么在3610,例如装置开始校准,显示消息被更新,并且中断被清除,返回到3602。
图37继续描述了上述典型顶层过程成当前时间并且中断被清除。然后,处理流程能够移动到3721,例如的处理流程。参考图37,在3710,如果用户如上所述按下呼吸按钮,那么这能够触发呼吸按钮按下中断。例如,处理流程然后移动到3720,在这里装置模式被设置成“引导”,变量启动被设置在这里时钟中断能够被设置成100ms。接着,处理流程能够移动到3730,在这里引导模式显示能够被呈现给用户。接着,处理流程通过图37中的断点2返回到图36的3603,在这里顶层过程再次等待另一个中断出现。这将使处理流程通过断点1返回到图37,例如在3711,如果出现时钟中断,处理流程移动到3703,并且测试从用户在3710按下呼吸按钮并进入引导模式的时间起经过的时间是否小于两分钟。如果经过的时间仍然小于两分钟,那么处理流程能够从3731移动到3730,例如在这里引导模式显示能够被更新。例如,如果在3703,从用户按下呼吸按钮算起时间已经超过了两分钟,那么处理流程能够移动到3702,模式变量被重新设置成“自发”,并且处理流程移动到3701,例如在这里自发模式显示被恢复。
最后,参考图37,在3712,如果脉搏被检测到,则出现脉搏检测中断,并且例如处理流程移动到3713,在这里处理脉搏子程序被调用。这结束了图36和37描述的典型顶层过程。
图38-42描述了根据本发明典型实施例的典型主程序的处理流程,该主程序被称为过程脉搏(Process Pulse)。过程脉搏调用子程序error_correction(图43-45)、error_detection(图46-47)、initialize_range(图48)和process_waves(图49-50)。process_waves再调用子程序get_waves(图8(a)-(b))和determine_stress(图51-53)。因此,所有这些子程序均被过程脉搏直接或间接调用。
参考图38,在3802,假定了在图36的3601的初始化,原始时间步rt[n_rt]是rt[0],它被设置成以ms为单位的当前时间,并且n_rt或原始时间步的数目被预增。然后,例如在3803、3804和3805,变量状态能够被测试是RAW(原始的)、DETECTION(检测)还是CORRECTION(校正),以确定数据是否被假设成无错误、可疑或有错误的,以及从而确定处理流程将沿哪条路径继续。如果状态=CORRECTION(校正),那么将采用从3805开始的数据路径,其在3805调用error_correction子程序。如果状态=DETECTION(检测),那么将采用从3804开始的数据路径,其最后调用在图39中3910的error_detection子程序。这两个数据路径最终到达图40的4011。如果状态=RAW(原始的),那么处理流程能够直接继续到图39的3901,在这里定时变量被初始化,所述定时变量包括预增n_ts(跟踪时间步数目的变量)并通过3902,在这里证实n_ts大于1。如果是上述这种情形,那么在3903,例如为pp间期分配的数目n_val能够被设置成等于1,并且处理流程能够通过断点9继续到图40的4010,然后一直到4011。当处理流程到达4011时,有一个或多个pp值需要被分配。因此,在4011,每个pp值均被分配一个值,并且如果存在多于一个的pp值(即n_val>1),那么实际时间步能够被产生,并且瞬时脉搏率被显示,该瞬时脉搏率是通过(60000/pp[n_pp-1])确定的当前pp间期的频率。处理流程从4011继续到4110,在这里如果存在多于一个的pp值,则有可能进行心搏间期(IBI)的计算。在4110过程测试上述条件,如果是,则IBI值例如能够在4111被计算。如果不是,处理流程能够返回到4010。在4111,一旦IBI值被计算,处理流程就移动到4201以测试有多少个pp值。如果多于8个,即至少是9个,那么就有足够的数据来识别水平为4的谷。一旦至少有两个水平为4的谷点,即num_val4>1,在4212典型过程能够如上所述查找RSA波。因此,例如在4212为是能够导致处理流程调用在4213的process_waves子程序。
图43-45描述了错误校正子程序的典型处理流程。如结合典型过程脉搏程序所述,在图38的3805,错误校正子程序被调用。参考图43,处理流程从4301开始,在这里子程序开始。在4302,例如累加当前pp间期时间的变量err_sum将最近的pp间期添加到该变量。
此外,变量n_val被设置成0。处理流程在4303继续,在这里err_sum的新值被测试是否位于范围内。如果它位于范围内,例如处理流程能够移动到4310,在4310变量n_val被设置成1,其表示正确的pp间期被识别,并且上述pp间期的值被设置成等于err_sum中的毫秒数,然后处理流程在4320返回到过程脉搏。另一方面,如果在4303暂定的pp间期时间没有位于范围内,那么处理流程能够移动到4304,例如在4303子程序测试当前pp间期时间是否小于范围。如果是,处理流程返回到4302,并且额外的pp间期时间被添加到变量err_sum。如果不是,那么当前和被认为太高,并且用来除它的合适整数必须被找到以建立两个或更多个“位于范围内”的pp间期。然后,处理流程通过断点20从4304继续到图44的4401。
在那里,test_integer=2被设置成测试除数,并且例如处理流程能够移动到4402,在4402临时变量tmp_val被建立以保存err_sum/test_integer的商,其表示有可能实际校正的pp间期。然后,处理流程能够移动到4403,例如在4403tmp_val被测试是否在范围之上。如果是,那么在4410例如test_integer变量被增大并且上述除法在4402再进行一次。另一方面,如果在4403,tmp_val没有位于范围之上,那么在4404,例如tmp_val能够被再次测试是否位于范围内,如果是,处理流程能够(通过断点21)移动到图45的4501。
在图45的4501,计数变量能够被设置成1,并且例如在4502,子程序能够查询计数是否小于test_integer的当前值。如果不小于,那么处理流程例如能够移动到4510,并且变量n_val能够被设置成等于test_integer,并且例如在4520,在图38的断点6返回到过程脉搏。另一方面,如果计数在4502小于test_integer,那么例如处理流程能够在4503、4504和4502之间进行循环,从而在每个循环中(在4504)增大计数值,直到计数等于test_integer,这时处理流程能够返回到过程脉搏。
下面参考图46-47描述典型的错误检测子程序。参考图46,处理流程从4601开始,并且继续到4602,在4602当前pp间期被载入到临时(在暂定正确的意义上)pp间期tmp_pp中。在4603,tmp_pp被测试是否位于范围内。如果是,那么n_val被设置成1,并且在4610val[0]被设置成等于tem_pp,在4620处理流程返回到调用程序:过程脉搏,特别是返回到图39中的3911。然而,如果在4603tmp_pp被发现超出了范围,那么在4604临时心搏间期变量tmp_ibi被生成以用于检测如上所述的任何错误。然后,处理流程能够(通过断点22)继续到图47的4701,如上所述在4701tmp_ibi被测试是否大于范围下限的一半,这是一种查看是否过大的测试。如果是,则认为存在错误,流程继续到4702,在4702变量err_sum被设置成等于tmp_pp(err_sum是上述错误校正子程序的输入),“状态”被设置成CORRECTION(校正),并且例如处理流程能够移动到4703,在4703n_val被设置成0并且处理流程返回到,然后其能够基于n_val=0和状态=CORRECTION(校正),在图39的过程脉搏3911处返回到图38的3820,并且最终进入在3805的错误校正子程序。
如果在4701tmp_ibi不大于范围下限的一半,在这种情况下它不被看作是大的并且因此在pp间期数据中不存在错误,则处理流程能够继续到4710,并且例如测试tmp_pp是否大于范围上限。因为在4701没有发现tmp_ibi为大,并且因此认为不存在错误,所以如果在4710tmp_pp间期仍然大于范围的现有上限,那么需要将新pp间期用作max_pp来重新计算范围,该max_pp保持最大可能pp间期的值,该上述最大可能pp间期不是数据中的错误的结果。例如,在4711,max_pp能够被设置成等于tmp_pp,并且例如在4712使用这个新值重新计算范围的上限和下限。然后,例如流程能够继续到4713,在4713n_val被设置成等于1,并且val[0]被设置成等于当前pp间期tmp_pp。在4714,例如处理流程能够返回到调用程序:过程脉搏。如果在4710当前pp间期不大于范围的现有的上限,那么例如在4702最小可能pp间期被设置成等于当前pp间期。然后,处理流程如上所述继续通过4712、4713和4714,在4714处理流程返回到调用程序。
参考图48,接着描述子程序initializ_range的处理流程。该子程序能够在本发明的典型实施例中被使用,以计算在错误检测和校正程序中使用的pp间期的范围,其中在上述范围内假定数据没有错误。子程序调用从4801开始,处理流程例如移动到4802,在4802变量min_pp和max_pp使用下述伪代码被设置:min_pp=数据集中的最小pp;max_pp=数据集中的最大pp。然后,例如在4803,数据点范围的上下限如上所述在错误检测和校正中被使用。例如,这能够使用下述伪代码实现:range_high=max_pp+(max_pp-min_pp)*0.25;range_low=min_pp-(max_pp-min_pp)*0.25。使用这些典型值,现在范围被设置,并且在4804处理流程返回到调用程序,即过程脉搏。尤其是,处理流程返回到图41中的4102。
图49-50描述了波处理子程序的典型处理流程。在本发明的典型实施例中,例如如上所述,上述子程序可以被诸如过程脉搏这样的脉搏采集处理程序调用。例如,在子程序在4901被调用后,处理流程能够在4902继续,在4902上述子程序get_waves能够被调用,以输入从脉搏数据中识别的波。例如,处理流程继续到4903,在4903给定了采集的波,使用典型的determine_stress子程序,指示用户压力水平的分数能够被分配,其中上述用户压力水平被反映在被识别的波中。然后流程能够继续到4904,在4904波被排序,并且基于当前pp间期来使用表达式频率=60000/(ppts[v2[n_waves-1]]-ppts[v1[n_waves-1]])计算瞬时频率,其中ppts[v]是在数据点v上的脉搏点时标。例如,处理流程能够从那里继续到图50的5001中,在5001中0-3之间的分数能够根据当前波的频率被分配给用户,其中分数越高表示压力水平越低。例如,在5002子程序能够向用户显示他或她的下述中的每项:(i)压力水平(通过在4903调用determine_stress获得);(ii)频率(来自4904);以及(iii)分数(来自5001),在这一点上例如在5003,处理流程能够返回到调用程序:过程脉搏。
图51-53描述了用于确定压力分数的典型子程序。通过对他或她的RSA波的波长进行操作,正在测量的内容是给定用户的紧张程度。参考图51,在5104determine_stress子程序调用assigned_wavelengths,它为每个波分配一个位于wl_lo和wl_high(它们在5102被设置)之间的波长。使用这些波长和那里存在的多少个波(即n_waves的值),图51-52描述了针对在1和4之间的每个n_waves值的处理流程。在5110、5201、5202和5203中的每个步骤中score1被确定,它是每个波的波长和w_lo之间差的加权和,它测量了上述特定波偏离基线的程度。因此,完美的放松分数对于所有n将具有a_w[n]=w_lo,并且每个score1将等于0。在本发明的备选典型实施例中,score1能够在没有对差之和进行加权的情况下被计算,并且这是如上所述的方法。score1是所述的“波长”分数。在5110、5201、5202和5203均可以看到,“变化”分数即score2也能够被计算。score1和score2能够在5302使用70/30的相对贡献因子进行合并以获得score3。其它相对加权能够被用在可能发现有用的本发明的其它备选典型实施例中。score3能够被用于计算stress_level,例如使用等式stress_level=(score3-21)*(100/(100-21))。Stress_level被返回给在4903的process_waves。
参考图54,描述了为被采集波分配波长的典型子程序。例如,该子程序能够用在图51-53中描述的典型determine_stress程序中,上述程序将波长采用为输入。在本发明的典型实施例中,处理流程能够在5401以调用一个子程序作为开始。在5402,计数器变量n被设置成等于0,并且例如在5403,通过从当前v1的时标中减去当前v2的时标,使用表达式w1=ts[v2[n]]-ts[v1[n]],当前波长wl被计算出来。例如在5404和5405,wl的值与wl_lo和wl_high的值进行比较,这两个值能够如图51的5102所示在调用子程序中被设置(在那里,例如它们分别被设置成3和10)。如果wl小于wl_lo或大于wl_high,那么a_wl[n]根据具体情况在wl_lo或wl_high处被截断,并且流程在n值被预增的5407处继续。然而,如果wl具有位于wl_low和wl_high之间的值,那么在5406a_wl[n]被设置成wl,并且处理流程继续到5407。在5408,n值和n_waves的值进行比较,以确保每个采集波已经被分配了波长。例如,如果它们是相等的,那么在5410处理流程结束上述子程序,并返回到图51的5105。如果它们不相等,那么流程针对每个采集波通过5403循环,直到所有采集波已经被分配了波长。

Claims (39)

1、一种识别患者体内至少一个RSA波的方法,包括:
记录随时间变化的心率相关间期;以及
分析足以描绘至少一个单独RSA波的心率相关间期,其中所述描绘包括在至少一个单独的RSA波中识别至少一个过渡点。
2、权利要求1所述的方法,其中心率相关间期是pp间期。
3、权利要求1所述的方法,其中心率相关间期是rr间期。
4、权利要求1所述的方法,其中至少一个过渡点被用于确定波深,并且波深被用于在至少一个单独RSA波中确定至少一个谷点或峰值点。
5、一种减小人类患者压力的方法,包括:
向患者提供准实时RSA波信息,其中所述信息从记录患者的多于一个的心率相关间期中导出;以及
分析足以描绘至少一个单独RSA波的患者的多于一个的心率相关间期,其中所述描绘包括在至少一个单独RSA波中识别至少一个过渡点。
6、权利要求5所述的方法,其中心率相关间期是pp间期。
7、权利要求5所述的方法,其中心率相关间期是r-r间期。
8、权利要求5所述的方法,其中所述描绘包括至少一个顶点和至少两个底点的识别。
9、一种用于识别节律呼吸的方法,包括:
比较至少两个连续RSA波;以及
确定何时在所述至少两个连续RSA波的至少一个波特征上存在小变化。
10、权利要求9所述的方法,其中波特征是从由波长、频率、幅度、峰峰时间和峰位置时间组成的组中单独地或以任何组合选择的。
11、权利要求10所述的方法,其中波特征是波长,并且小变化是20%或更小的相对平均偏差。
12、权利要求10所述的方法,其中波特征是频率,并且小变化是20%或更小的相对平均偏差。
13、权利要求10所述的方法,其中波特征是幅度,并且小变化是20%或更小的相对平均偏差。
14、权利要求10所述的方法,其中波特征是峰峰时间,并且小变化是20%或更小的相对平均偏差。
15、权利要求10所述的方法,其中波特征是峰位置时间,并且小变化是20%或更小的相对平均偏差。
16、一种用于减小人类患者压力的手持式便携生物反馈装置,包括:
壳体:
放置在壳体中的PPG传感器,其中PPG传感器生成来自人类患者的数据;
耦合到PPG传感器的控制系统;以及
显示屏,
其中控制系统被配置成处理来自人类患者的数据以用于输出给显示屏,该输出数据向人类患者提供与人类患者压力水平相关的信息;以及
其中壳体、PPG传感器、控制系统和显示屏形成一个集成结构。
17、权利要求16所述的装置,其中壳体包括电源。
18、权利要求16所述的装置,其中电源由A/C源来提供。
19、权利要求16所述的装置,其中在人类患者呼吸期间,所述装置被配置成记录患者的多个心率相关间期;以及
分析足以描绘至少一个单独RSA波的心率相关间期。
20、权利要求19所述的装置,其中心率相关间期是pp间期。
21、权利要求19所述的装置,其中心率相关间期是r-r间期。
22、权利要求19所述的装置,其中所述描绘包括在每个单独的RSA波中识别一组过渡点。
23、权利要求22所述的装置,其中该组过渡点包括至少一个顶点和至少两个底点。
24、权利要求16所述的装置,进一步包括能够由患者启动的呼吸节拍器,其中呼吸节拍器被编程以在预定时间段后停止工作。
25、权利要求19所述的装置,其中装置进一步包括能够由患者启动的呼吸节拍器,其中呼吸节拍器被编程以在预定时间段后停止工作。
26、权利要求16所述的装置,其中装置被配置成提取与患者呼吸相关的信息。
27、权利要求26所述的装置,其中与呼吸相关的信息包括速率、节律和体积。
28、一种检测与RSA波描绘有关的错误数据的方法,包括:
识别至少两个连续心率相关间期,所述心率相关间期具有小于预定阈值或从心率相关间期集中导出的阈值的IBI时间;
计算所述至少两个连续心率相关间期的IBI时间的范围;以及
将每个后续心率相关间期与所计算的范围进行比较以确定它是否在所述范围内。
29、权利要求28所述的方法,其中心率相关间期是pp间期。
30、权利要求28所述的方法,其中心率相关间期是rr间期。
31、权利要求28所述的方法,其中IBI时间小于500ms。
32、一种校正与RSA波识别有关的错误数据的方法,包括:
识别心率相关间期,所述心率相关间期不在预定范围内,并且具有大于阈值的IBI时间;
计算校正的心率相关间期,其中
如果第一心率相关间期小于预定范围,则将后续心率相关间期添加到第一心率相关间期,直到所述间期的和位于或超过预定范围;
如果第一心率相关间期或所述间期的和大于预定范围并且不能被整除,则将后续心率相关间期添加到第一心率相关间期,直到所述间期的和能够被整除,以使商在预定范围内;以及
基于校正的心率相关间期来建立校正RSA波。
33、权利要求32所述的方法,其中心率相关间期是pp间期。
34、权利要求32所述的方法,其中心率相关间期是rr间期。
35、一种在患者节律呼吸期间在便携式生物反馈装置的显示器上调节缩放的方法,包括:
确定随时间变化的RSA波的最大幅度;以及
保持缩放以对应于在呼吸期间形成的最大波。
36、一种包括计算机可用介质的计算机程序产品,所述计算机可用介质具有在其中含有的计算机可读程序代码装置,在所述计算机程序产品中的计算机可读程序代码装置包括用于使计算机执行下述操作的装置:
随时间变化记录心率相关间期;以及
分析足以描绘至少一个单独RSA波的心率相关间期,其中所述描绘包括在每个单独的RSA波中识别一组过渡点。
37、一种可由机器读取的程序存储装置,可触知地包含可由该机器执行的指令的程序以执行用于识别患者体内至少一个RSA波的方法,该方法包括:
随时间变化记录心率相关间期;以及
分析足以描绘至少一个单独RSA波的心率相关间期,其中所述描绘包括在每个单独的RSA波中识别一组过渡点。
38、一种包括计算机可用介质的计算机程序产品,所述计算机可用介质具有在其中含有的计算机可读程序代码装置,在所述计算机程序产品中的计算机可读程序代码装置包括用于使计算机执行下述操作的装置:
比较至少两个连续的RSA波;以及
确定何时在所述至少两个连续RSA波的至少一个波特征上存在小变化。
39、一种可由机器读取的程序存储装置,可触知地包含可由该机器执行的指令的程序以执行用于识别节律呼吸的方法,该方法包括:
比较至少两个连续的RSA波;以及
确定何时在所述至少两个连续RSA波的至少一个波特征上存在小变化。
CN2005800156790A 2004-03-18 2005-03-18 用于缓解压力的方法和装置 Expired - Fee Related CN1968727B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US55421104P 2004-03-18 2004-03-18
US60/554,211 2004-03-18
PCT/US2005/009139 WO2005089856A1 (en) 2004-03-18 2005-03-18 Methods and devices for relieving stress

Publications (2)

Publication Number Publication Date
CN1968727A true CN1968727A (zh) 2007-05-23
CN1968727B CN1968727B (zh) 2010-12-22

Family

ID=34993466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800156790A Expired - Fee Related CN1968727B (zh) 2004-03-18 2005-03-18 用于缓解压力的方法和装置

Country Status (11)

Country Link
US (2) US7691049B2 (zh)
EP (1) EP1729845B1 (zh)
JP (1) JP2007529283A (zh)
KR (1) KR101224346B1 (zh)
CN (1) CN1968727B (zh)
AU (1) AU2005222712A1 (zh)
BR (1) BRPI0508896A (zh)
CA (1) CA2560294C (zh)
MX (1) MXPA06010498A (zh)
WO (1) WO2005089856A1 (zh)
ZA (1) ZA200607757B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256656A (zh) * 2008-12-19 2011-11-23 皇家飞利浦电子股份有限公司 用于增加人的放松程度的系统和方法
CN104367311A (zh) * 2013-09-09 2015-02-25 北京优瀚康科技有限公司 智能呼吸调节仪
CN105852884A (zh) * 2016-03-22 2016-08-17 清华大学 一种基于周围血管应变的认知负载和压力测量方法与装置
CN107789717A (zh) * 2016-08-30 2018-03-13 株式会社电通 冥想辅助装置以及冥想辅助系统

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713212B2 (en) * 2003-11-03 2010-05-11 Coherence Llc Method and system for consciously synchronizing the breathing cycle with the natural heart rate cycle
US20060047202A1 (en) * 2004-09-02 2006-03-02 Elliott Stephen B Method and system of breathing therapy for reducing sympathetic predominance with consequent positive modification of hypertension
WO2006050725A1 (en) * 2004-11-10 2006-05-18 Medicus Engineering Aps Method and apparatus for recording and presentation of physiological data
US7458937B2 (en) * 2005-01-11 2008-12-02 Coherence Llc Method and system for assessing breathing effectiveness via assessment of the dynamic arterial pressure wave using the oscillometric measurement technique
US7635337B2 (en) * 2005-03-24 2009-12-22 Ge Healthcare Finland Oy Determination of clinical stress of a subject in pulse oximetry
CA2604741C (en) * 2005-04-20 2014-11-25 Helicor, Inc. Methods and devices for relieving stress
US9779751B2 (en) 2005-12-28 2017-10-03 Breath Research, Inc. Respiratory biofeedback devices, systems, and methods
WO2007079068A2 (en) * 2005-12-28 2007-07-12 Nirinjan Bikko Breathing biofeedback device
WO2007121678A1 (en) * 2006-04-25 2007-11-01 Beijing Choice Electronic Technology Co., Ltd. Handheld electrocardiograph with neutral electrode
JP4965205B2 (ja) * 2006-09-13 2012-07-04 テルモ株式会社 心拍ゆらぎ検出装置
KR100855473B1 (ko) * 2006-11-03 2008-09-01 학교법인 한림대학교 심장박동 데이터에 기초하여 호흡조절을 유도하기 위한장치 및 방법
US20080269629A1 (en) * 2007-04-25 2008-10-30 Robert Howard Reiner Multimodal therapeutic and feedback system
US20080269652A1 (en) * 2007-04-25 2008-10-30 Robert Howard Reiner Multimodal therapeutic system
WO2008139380A2 (en) * 2007-05-14 2008-11-20 Koninklijke Philips Electronics N.V. System and method for guiding breathing exercises
WO2009036256A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
US20090076343A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Energy Management for Adherent Patient Monitor
WO2009036327A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Adherent device for respiratory monitoring and sleep disordered breathing
US8897868B2 (en) 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
US8790257B2 (en) 2007-09-14 2014-07-29 Corventis, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
EP2194856B1 (en) 2007-09-14 2021-09-01 Medtronic Monitoring, Inc. Adherent cardiac monitor
EP2194847A1 (en) 2007-09-14 2010-06-16 Corventis, Inc. Adherent device with multiple physiological sensors
DE102008030956B4 (de) 2007-10-16 2010-01-07 Biosign Gmbh Gerät zur Messung der Herzratenvariabilität
WO2009104127A1 (en) * 2008-02-22 2009-08-27 Koninklijke Philips Electronics N.V. A system and kit for stress and relaxation management
JP5405500B2 (ja) 2008-03-12 2014-02-05 コーヴェンティス,インク. 心調律に基づく心代償不全予測
EP2100556A1 (en) * 2008-03-14 2009-09-16 Koninklijke Philips Electronics N.V. Modifying a psychophysiological state of a subject
JP5878692B2 (ja) * 2008-03-14 2016-03-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 対象の状態を維持するための方法及びシステム
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
KR100943180B1 (ko) * 2008-05-07 2010-02-19 (주)더힘스 호흡을 유도하여 이완 효과를 제공하기 위한 방법 및 장치
RU2511278C2 (ru) * 2008-05-09 2014-04-10 Конинклейке Филипс Электроникс Н.В. Бесконтактное наблюдение дыхания у пациента и оптический датчик для измерения методом фотоплетизмографии
EP2296535B1 (en) * 2008-06-06 2018-09-19 Koninklijke Philips N.V. Method and system of obtaining a desired state in a subject
EP2299902A1 (en) * 2008-06-06 2011-03-30 Koninklijke Philips Electronics N.V. Method and system for maintaining a state in a subject
EP2306896B1 (en) * 2008-07-08 2021-04-21 The Johns Hopkins University Non-invasive systems for assessing cardiac filling pressure
ES2336997B1 (es) * 2008-10-16 2011-06-13 Sabirmedical,S.L. Sistema y aparato para la medicion no invasiva de la presion arterial.
EP2277437A1 (en) 2009-07-22 2011-01-26 Koninklijke Philips Electronics N.V. Method and system for adaptive breath pacing
WO2011050283A2 (en) 2009-10-22 2011-04-28 Corventis, Inc. Remote detection and monitoring of functional chronotropic incompetence
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US8715179B2 (en) * 2010-02-18 2014-05-06 Bank Of America Corporation Call center quality management tool
US9138186B2 (en) * 2010-02-18 2015-09-22 Bank Of America Corporation Systems for inducing change in a performance characteristic
US8715178B2 (en) * 2010-02-18 2014-05-06 Bank Of America Corporation Wearable badge with sensor
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
US9017256B2 (en) * 2010-09-22 2015-04-28 Milieu Institute, Llc System and method for physiological monitoring
EP2433667A1 (en) * 2010-09-28 2012-03-28 Koninklijke Philips Electronics N.V. Breath pacing apparatus, and method for pacing the respiration of a person
US20120083648A1 (en) * 2010-10-04 2012-04-05 S.C. Johnson & Son, Inc. Apparatus and Method for Relieving Stress
WO2012061707A2 (en) * 2010-11-04 2012-05-10 The Cleveland Clinic Foundation Handheld biofeedback device and method for self-regulating at least one physiological state of a subject
EP2642911B1 (en) 2010-11-23 2016-02-03 Koninklijke Philips N.V. Breath pacing system and method for pacing the respiratory activity of a subject
EP2642912A1 (en) 2010-11-23 2013-10-02 Koninklijke Philips N.V. Breath pacing device and method for pacing the respiratory activity of a subject
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US9311825B2 (en) 2011-12-22 2016-04-12 Senstream, Inc. Biometric sensing and processing apparatus for mobile gaming, education, and wellness applications
KR101184684B1 (ko) * 2012-02-15 2012-09-20 (주)트라이스 실시간으로 정확한 호흡상태 인지가 가능한 호흡훈련방법 및 호흡훈련장치
US10632040B2 (en) 2012-02-29 2020-04-28 Frederick Muench Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
US10973736B2 (en) 2012-02-29 2021-04-13 Frederick J. Muench Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
US10098810B1 (en) 2013-02-27 2018-10-16 Frederick Muench Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
US9943461B1 (en) 2012-02-29 2018-04-17 Frederick Muench Systems, devices, components and methods for triggering or inducing resonance or high amplitude oscillations in a cardiovascular system of a patient
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9339193B2 (en) * 2012-05-21 2016-05-17 Fujitsu Limited Physiological adaptability system with multiple sensors
US10426426B2 (en) 2012-06-18 2019-10-01 Breathresearch, Inc. Methods and apparatus for performing dynamic respiratory classification and tracking
US9814438B2 (en) 2012-06-18 2017-11-14 Breath Research, Inc. Methods and apparatus for performing dynamic respiratory classification and tracking
KR101244730B1 (ko) * 2012-07-11 2013-03-18 (주)트라이스 실시간으로 정확한 호흡상태 인지가 가능한 호흡훈련장치
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
JP6149450B2 (ja) * 2013-03-21 2017-06-21 富士通株式会社 呼吸情報推定装置及び方法並びにプログラム
CN104667487A (zh) * 2015-01-26 2015-06-03 周常安 生理反馈系统
CN104667486A (zh) * 2015-01-26 2015-06-03 周常安 生理反馈系统
EP4186548A1 (en) 2015-04-02 2023-05-31 Hill-Rom Services PTE. LTD. Mask leakage detection for a respiratory device
JP2017035327A (ja) * 2015-08-11 2017-02-16 セイコーエプソン株式会社 運動支援装置、運動支援システム、運動支援方法及び運動支援プログラム
US10398350B2 (en) * 2016-02-08 2019-09-03 Vardas Solutions LLC Methods and systems for providing a breathing rate calibrated to a resonance breathing frequency
US10517531B2 (en) 2016-02-08 2019-12-31 Vardas Solutions LLC Stress management using biofeedback
CN109982737B (zh) * 2016-11-30 2022-06-28 索尼公司 输出控制装置、输出控制方法以及程序
GB2567678A (en) * 2017-10-20 2019-04-24 Bournemouth Univ Higher Education Corporation Device and method for guiding breathing of a user
KR102183435B1 (ko) 2017-11-13 2020-11-27 사회복지법인 삼성생명공익재단 가상현실 및 바이오피드백을 이용하여 사용자의 스트레스를 저감시키는 방법 및 시스템
WO2019099185A1 (en) 2017-11-14 2019-05-23 Covidien Lp Methods and systems for drive pressure spontaneous ventilation
WO2019110407A1 (en) * 2017-12-06 2019-06-13 Resilio Aps A computer implemented method for breathing exercises
US10896754B2 (en) * 2018-01-04 2021-01-19 Cardiac Pacemakers, Inc. Troubleshooting system for remote patient monitoring
JP7141681B2 (ja) * 2018-01-29 2022-09-26 株式会社Agama-X 情報処理装置、情報処理システム及びプログラム
JP7141680B2 (ja) * 2018-01-29 2022-09-26 株式会社Agama-X 情報処理装置、情報処理システム及びプログラム
JP7133771B2 (ja) * 2018-02-13 2022-09-09 パナソニックIpマネジメント株式会社 生体情報表示装置、生体情報表示方法及び生体情報表示プログラム
WO2019240778A1 (en) * 2018-06-12 2019-12-19 Vardas Solutions LLC Methods and systems for providing a breathing rate calibrated to a resonance frequency
US11517691B2 (en) 2018-09-07 2022-12-06 Covidien Lp Methods and systems for high pressure controlled ventilation
US20200253507A1 (en) 2019-02-13 2020-08-13 Vardas Solutions LLC Measuring user respiration at extremities
US20220202312A1 (en) * 2020-12-30 2022-06-30 Auralab Technologies Incorporated Respiratory Biofeedback-Based Content Selection and Playback for Guided Sessions and Device Adjustments
DE102022114277A1 (de) 2022-06-07 2023-12-07 BioSign Medical UG (haftungsbeschränkt) Verfahren, Vorrichtung und ausführbares Computerprogramm zur individualisierten Quantifizierung einer respiratorischen Sinusarrhythmie

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020402A (en) * 1933-05-04 1935-11-12 American Telephone & Telegraph Test pick
US4420000A (en) * 1981-09-28 1983-12-13 Camino Laboratories, Inc. Method and apparatus for measuring heartbeat rate
US4519395A (en) 1982-12-15 1985-05-28 Hrushesky William J M Medical instrument for noninvasive measurement of cardiovascular characteristics
US4510944A (en) 1982-12-30 1985-04-16 Porges Stephen W Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems
US4960129A (en) 1988-12-05 1990-10-02 Trustees Of The University Of Pennsylvania Methods of observing autonomic neural stimulation and diagnosing cardiac dynamical dysfunction using heartbeat interval data to analyze cardioventilatory interactions
US5265617A (en) 1991-02-20 1993-11-30 Georgetown University Methods and means for non-invasive, dynamic tracking of cardiac vulnerability by simultaneous analysis of heart rate variability and T-wave alternans
US5148812A (en) 1991-02-20 1992-09-22 Georgetown University Non-invasive dynamic tracking of cardiac vulnerability by analysis of t-wave alternans
US5277189A (en) 1991-08-16 1994-01-11 Nid, Inc. Method and apparatus for the measurement and analysis of cardiac rates and amplitude variations
US5520192A (en) 1991-12-23 1996-05-28 Imperial College Of Science, Technology And Medicine Apparatus for the monitoring and control of respiration
US5291400A (en) 1992-04-09 1994-03-01 Spacelabs Medical, Inc. System for heart rate variability analysis
US5718235A (en) 1992-10-06 1998-02-17 Gw Scientific, Inc. Detection of abnormal and induction of normal heart rate variability
US5891044A (en) 1992-10-06 1999-04-06 Gw Scientific, Inc. Detection of abnormal and induction of normal heart rate variability
US5423325A (en) 1993-03-12 1995-06-13 Hewlett-Packard Corporation Methods for enhancement of HRV and late potentials measurements
WO1995003739A1 (en) 1993-08-03 1995-02-09 Peter Walter Kamen A method of measuring autonomic activity of a patient
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5579775A (en) 1994-10-20 1996-12-03 Hewlett-Packard Company Dynamic control of a patient monitoring system
US5853364A (en) 1995-08-07 1998-12-29 Nellcor Puritan Bennett, Inc. Method and apparatus for estimating physiological parameters using model-based adaptive filtering
US5807247A (en) 1995-12-20 1998-09-15 Nellcor Puritan Bennett Incorporated Method and apparatus for facilitating compatibility between pulse oximeters and sensor probes
US5603331A (en) 1996-02-12 1997-02-18 Cardiac Pacemakers, Inc. Data logging system for implantable cardiac device
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6106481A (en) 1997-10-01 2000-08-22 Boston Medical Technologies, Inc. Method and apparatus for enhancing patient compliance during inspiration measurements
US6099481A (en) 1997-11-03 2000-08-08 Ntc Technology, Inc. Respiratory profile parameter determination method and apparatus
US6539249B1 (en) 1998-05-11 2003-03-25 Cardiac Pacemakers, Inc. Method and apparatus for assessing patient well-being
US5997482A (en) 1998-06-01 1999-12-07 Vaschillo; Evgeny G. Therapeutic method for a human subject
US6301499B1 (en) 1998-06-08 2001-10-09 Cardiac Pacemakers, Inc. Heart rate variability as an indicator of exercise capacity
US6026320A (en) 1998-06-08 2000-02-15 Cardiac Pacemakers, Inc. Heart rate variability as an indicator of exercise capacity
US6144877A (en) 1998-08-11 2000-11-07 The United States Of America As Represented By The Department Of Health And Human Services Determining the hurst exponent for time series data
US20040230252A1 (en) 1998-10-21 2004-11-18 Saul Kullok Method and apparatus for affecting the autonomic nervous system
JP2000166889A (ja) 1998-12-11 2000-06-20 Inst Of Physical & Chemical Res 心拍変動推定方法およびその装置
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6305943B1 (en) 1999-01-29 2001-10-23 Biomed Usa, Inc. Respiratory sinus arrhythmia training system
US6212427B1 (en) 1999-02-02 2001-04-03 J&J Engineering Heart rate variability feedback monitor system
US6358201B1 (en) * 1999-03-02 2002-03-19 Doc L. Childre Method and apparatus for facilitating physiological coherence and autonomic balance
US6490480B1 (en) 1999-09-16 2002-12-03 Eduard Lerner Apparatus and methods for measuring autonomic nervous system function
US6678547B2 (en) 2001-03-08 2004-01-13 Cardiac Pacemakers, Inc. Cardiac rhythm management system using time-domain heart rate variability indicia
IL134123A (en) 2000-01-19 2005-06-19 Lev El Diagnostics Of Heart Di Method and system for measuring heart rate variability
DE10006154A1 (de) 2000-02-11 2001-08-16 Biotronik Mess & Therapieg Verfahren zur Berechnung der Herzratenvariabilität zur Anwendung in einem EKG-Monitor sowie EKG-Monitor mit einem entsprechenden Berechnungsprogramm
US6487442B1 (en) 2000-04-28 2002-11-26 Nicholas Wood Detection of abnormal and induction of normal heat rate variability
JP2003534044A (ja) 2000-05-13 2003-11-18 オメガウエーブ エルエルシー 人体の機能状態および適応反応を非侵襲的に測定する装置および方法
US6416473B1 (en) 2000-06-13 2002-07-09 Boston Medical Technologies, Inc. Methods and apparatus for providing an indicator of autonomic nervous system function
JP2002112969A (ja) 2000-09-02 2002-04-16 Samsung Electronics Co Ltd 身体及び感情状態の認識装置及び方法
US6836681B2 (en) 2001-02-15 2004-12-28 Jon R. Stabler Method of reducing stress
WO2002089675A2 (en) 2001-05-09 2002-11-14 Biointeractions Ltd. Wound closure system and methods
US6626843B2 (en) * 2001-09-28 2003-09-30 Deane Hillsman Respiratory timing and lung deflation method and device
JP2005535359A (ja) 2002-02-22 2005-11-24 デイテックス−オーメダ インコーポレイテッド フォトプレスチモグラフィ信号の変動に基づく生理的パラメータの監視
US6702752B2 (en) 2002-02-22 2004-03-09 Datex-Ohmeda, Inc. Monitoring respiration based on plethysmographic heart rate signal
US6805673B2 (en) 2002-02-22 2004-10-19 Datex-Ohmeda, Inc. Monitoring mayer wave effects based on a photoplethysmographic signal
US6896661B2 (en) 2002-02-22 2005-05-24 Datex-Ohmeda, Inc. Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal
WO2003073930A1 (en) 2002-03-01 2003-09-12 Christine Ross Novel utilization of heart rate variability in animals
US20040122486A1 (en) * 2002-12-18 2004-06-24 Stahmann Jeffrey E. Advanced patient management for acquiring, trending and displaying health-related parameters
US20040122487A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with composite parameter indices
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US7343199B2 (en) 2002-12-27 2008-03-11 Cardiac Pacemakers, Inc. Measurement of respiratory sinus arrhythmia using respiratory and electrogram sensors in an implantable device
KR100519758B1 (ko) * 2003-01-22 2005-10-07 삼성전자주식회사 용적맥파를 이용한 인체 안정도 평가방법 및 장치
JP3966833B2 (ja) 2003-05-12 2007-08-29 パイオニア株式会社 生体情報検出装置
JP4331977B2 (ja) 2003-05-21 2009-09-16 パイオニア株式会社 精神状態判定装置及び精神状態判定方法
US20040249299A1 (en) 2003-06-06 2004-12-09 Cobb Jeffrey Lane Methods and systems for analysis of physiological signals
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
EP1651942A4 (en) 2003-08-08 2010-02-03 Quantum Intech Inc ELECTROPHYSIOLOGICAL INDICATOR OF INTUITION

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256656A (zh) * 2008-12-19 2011-11-23 皇家飞利浦电子股份有限公司 用于增加人的放松程度的系统和方法
CN102256656B (zh) * 2008-12-19 2015-04-08 皇家飞利浦电子股份有限公司 用于增加人的放松程度的系统和方法
CN104367311A (zh) * 2013-09-09 2015-02-25 北京优瀚康科技有限公司 智能呼吸调节仪
CN105852884A (zh) * 2016-03-22 2016-08-17 清华大学 一种基于周围血管应变的认知负载和压力测量方法与装置
CN105852884B (zh) * 2016-03-22 2019-01-29 清华大学 一种基于周围血管应变的认知负载和压力测量方法与装置
CN107789717A (zh) * 2016-08-30 2018-03-13 株式会社电通 冥想辅助装置以及冥想辅助系统

Also Published As

Publication number Publication date
CA2560294A1 (en) 2005-09-29
ZA200607757B (en) 2008-05-28
BRPI0508896A (pt) 2007-09-11
KR20070026460A (ko) 2007-03-08
CN1968727B (zh) 2010-12-22
US20050288601A1 (en) 2005-12-29
CA2560294C (en) 2014-05-27
US20100174200A1 (en) 2010-07-08
KR101224346B1 (ko) 2013-01-21
AU2005222712A1 (en) 2005-09-29
EP1729845B1 (en) 2017-02-22
WO2005089856A1 (en) 2005-09-29
US7691049B2 (en) 2010-04-06
EP1729845A1 (en) 2006-12-13
MXPA06010498A (es) 2007-03-28
EP1729845A4 (en) 2008-04-02
JP2007529283A (ja) 2007-10-25
US8938288B2 (en) 2015-01-20

Similar Documents

Publication Publication Date Title
CN1968727A (zh) 用于缓解压力的方法和装置
Radtke et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases
Bruce et al. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease
US8428702B2 (en) Methods and devices for relieving stress
US9265430B2 (en) Method, system and software product for the measurement of heart rate variability
US11793448B2 (en) Detection device
US20060195035A1 (en) Non-invasive radial artery blood pressure waveform measuring apparatus system and uses thereof
KR101303354B1 (ko) 스트레스를 완화시키기 위한 방법 및 장치
US8298131B2 (en) System and method for relaxation
KR20130108273A (ko) 호흡량, 운동 및 가변성 측정에 의한 호흡 변화 모니터링 장치 및 방법
CN1713850A (zh) 在治疗性处理中保持和监测睡眠质量的方法和装置
JP3582211B2 (ja) 運動支援装置
CN1903117A (zh) 非侵入性桡动脉血压波型量测系统及其应用
US20230048327A1 (en) Systems and methods of use for a wearable ultrasound blood flow sensor
CN101203175A (zh) 用于缓解压力的方法和设备
CN104757967A (zh) 心肺耦合反馈方法及其装置
Schéele et al. The measurement of respiratory and metabolic parameters of patients and controls before and after incremental exercise on bicycle: Supporting the effort syndrome hypothesis?
CN110201287A (zh) 一种全身麻醉患者术后唤醒方法及装置
RU2828154C1 (ru) Устройство контроля паттернов дыхания (варианты), способ работы устройства контроля паттернов дыхания (варианты), носимое устройство, включающее в себя устройство контроля паттернов дыхания
KR101731621B1 (ko) 스트레스 완화를 위한 최적호흡의 검출 방법 및 이를 적용하는 시스템
Fisher Beyond stationary data collection: investigation of a proposed method for determining heart rate variability resonance frequency
Johnson et al. Monitoring cardiac adaptation in elite, adolescent athletes using a novel, smartphone-based 22-lead ECG
CN115634139A (zh) 基于心肺复苏反馈仪的记录装置、设备及存储介质
CN115634138A (zh) 心肺复苏反馈装置、设备及存储介质
RU2002103527A (ru) Способ функциональной психофизиологической коррекции состояния человека и диагностики в процессе коррекции

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: RESPIRONICS INC

Free format text: FORMER OWNER: HELICOR INC

Effective date: 20100702

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: NEW YORK, THE UNITED STATES TO: PENNSYLVANIA, THE UNITED STATES

TA01 Transfer of patent application right

Effective date of registration: 20100702

Address after: American Pennsylvania

Applicant after: RESPIRONICS, Inc.

Address before: American New York

Applicant before: Helicole

C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Pennsylvania, America

Patentee after: Philips RS North America LLC

Address before: Pennsylvania, America

Patentee before: RESPIRONICS, Inc.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101222