CN1838328A - Method for erasing memory cell on memory array - Google Patents
Method for erasing memory cell on memory array Download PDFInfo
- Publication number
- CN1838328A CN1838328A CNA2006100059960A CN200610005996A CN1838328A CN 1838328 A CN1838328 A CN 1838328A CN A2006100059960 A CNA2006100059960 A CN A2006100059960A CN 200610005996 A CN200610005996 A CN 200610005996A CN 1838328 A CN1838328 A CN 1838328A
- Authority
- CN
- China
- Prior art keywords
- verification
- subgroup
- level
- unit set
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012795 verification Methods 0.000 claims abstract description 77
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007850 degeneration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/14—Protection against unauthorised use of memory or access to memory
- G06F12/1408—Protection against unauthorised use of memory or access to memory by using cryptography
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5628—Programming or writing circuits; Data input circuits
- G11C11/5635—Erasing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
- G11C16/14—Circuits for erasing electrically, e.g. erase voltage switching circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
- G11C16/14—Circuits for erasing electrically, e.g. erase voltage switching circuits
- G11C16/16—Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3404—Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/344—Arrangements for verifying correct erasure or for detecting overerased cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/344—Arrangements for verifying correct erasure or for detecting overerased cells
- G11C16/3445—Circuits or methods to verify correct erasure of nonvolatile memory cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/349—Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0466—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
- G11C16/0475—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2216/00—Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
- G11C2216/12—Reading and writing aspects of erasable programmable read-only memories
- G11C2216/18—Flash erasure of all the cells in an array, sector or block simultaneously
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Read Only Memory (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
A method for erasing memory cells in a memory array, the method including applying an erase pulse to bits of a cell ensemble of a memory cell array, and performing an erase verification operation only on a subgroup of the cell ensemble being erased to check if the memory cells threshold voltage (Vt) has been lowered to an erase verify (EV) voltage level.
Description
Technical field
The present invention relates to the operation to nonvolatile memory (NVM) array memory cells, for example, programme and wipe, particularly minimizing is to the erasing pulse of these arrays with wipe the method for verification operation.
Background technology
At present, the nonvolatile memory product is integrated carries out the ability that electronics is programmed and wiped to storage unit.Mainly show as, erase operation is not to carry out one by one on each unit, but carries out on the subgroup, unit, just as normal execution the during programming operation.This means that to the last the unit of (the slowest) is finished and wiped, erased conditions just puts on whole subgroup, that is, whether verification exceeds predetermined level (wiping verification).
The integrated tunnel that carries out between erasing period strengthens the memory product that hot hole injects, and as in NROM (nitride ROM) technology, requires the high bias voltage of transistor junction with by taking tunnel effect generation filling orifice to, as shown in Figure 1.Must control electric charge and inject guaranteeing suitable operation of equipment, so stepping and checking algorithm often are used.In a typical algorithm, with a specific bias voltage iunjected charge, carry out a verification operation thereafter, whether reach preset state with probe unit.If do not reach preset state, just start stronger electric charge and inject by a higher bias voltage, vice versa.Concerning the tunnel strengthens the hot hole injection, often to carry out this flow process, consequently longer erasing time and lower execution efficient simultaneously respectively on the memory cell two sides.
In the length of life of equipment, particularly passing through intensive circulation (programming and erase operation continuously) afterwards, just should increase in order to the voltage of wiping NROM and similar NROM unit.For example, Fig. 2 is an exemplary embodiments of prior art, before the expression circulation and NROM unit afterwards wipe curve.This curve display the degeneration of erase operation, wherein, each the circulation after, all to apply higher voltage and come erase unit.
Fig. 3 is circulation another embodiment to the adverse effect of erasing voltage.Especially, Fig. 3 expresses in the prior art erasing voltage and the step-by-step counting based on the memory product of NROM, and it is for carrying out the function of program/erase operations (cycle count) quantity on an equipment.Leak and press (Vppd) to increase to a specific voltage value (the maximum permissible voltage 7.1V of specific products as shown in FIG.), simultaneously, number of pulses also increases.After reaching maximum permissible voltage, it is stable that voltage levvl becomes.
Since just set initial erase voltage at the product test initial stage, progressively accumulation in erase operation, and this middle and later periods in the product life cycle just is converted into low efficient.
In the prior art, once proposed and attempted a lot of measures improve with the hole be injected to the basis the efficient of wiping flow process.Wherein a kind of measure applies an extra erasing pulse with a level that is higher than last pulse, to guarantee the wiping raising reliability fully.All mention the method that adopts extra-pulse in a plurality of patent documents, for example, United States Patent (USP) 6700818, U.S. Patent application 20050117395 and 20050058005, the assignee that these patents or application have all transferred the application, the application will be with reference to its content.
Another kind of measure is to adopt big voltage span between two continuous steps.But this method may cause operation controllability to reduce.Also having a kind of measure is to adopt multiple voltage amplification.Inject because often simultaneously carry out electric charge simultaneously on a plurality of unit, the principle of this measure is, can integrated big voltage span arrive its target until first cell assembly, continues and finishes until unit set with a littler voltage span.
Also having a kind of measure is in learning phase, determines a preferential step voltage levvl according to the erase operation of a previous one-element group or same one-element group, and this voltage levvl is applied on the remaining element of array, so that faster.Another kind of measure is that first pulse level when product classification dials.But this measure can not be guaranteed short step-by-step counting time overhead.
Multiple level check is then adopted in another kind of measure.Pulse voltage can be comparatively fast to a final pulse level like this, and still this measure requires more complicated design and longer checking time.Another kind of measure requires when pulse application/verification operation, and carry out alternately on the two sides of unit.This way can make the double raising of efficiency of erasing, but controllability can reduce.
Another kind of measure is adopted the parallel mechanism of wiping that strengthens by reducing energy consumption.Also has a kind of measure, if the failure of abundant cell erasure then stops to wipe verification.Apply after the additional erasing pulse, proceed to wipe verification in the address of losing efficacy for the first time.But in above-mentioned all prior aries, verification must be wiped by several in all unit of wiping among the group, is included in and finishes before the erase operation, the loss of word line expense switching time in parallel.
Summary of the invention
The invention provides and a kind ofly wipe the bit of the storage unit that memory array lists and reduce the erasing pulse of this type of array and wipe the method for verification operation.The present invention will describe in detail hereinafter, it relates to a kind of nvm array storage unit, be particularly related to a kind of single-bit, dibit, many bits and many level NROM unit, wherein erasing move generally includes starting voltage horizontal adjustment to a targets threshold with bit, the invention is not restricted to the NROM array.
In one embodiment, for reducing the overall time of erase operation, need to reduce verification and switching time, but be not limited thereto.By shortening the verification operation between the injected pulse of hole, can reduce and above-mentionedly ask loss when of the prior art, carry out efficient thereby fully improve product.
The method that provides by one embodiment of the present of invention, storage unit on the erasable memory array, this method comprises that all bits to the unit set of memory cell array apply erasing pulse, and only a subgroup of the unit set that is wiped free of is carried out and wipe verification operation, whether be reduced to the starting voltage (Vt) of checking this storage unit and wipe verification (EV) voltage levvl, if, just unit set is stopped erase operation, no matter and whether the remainder of unit set is checked.
By one embodiment of the present of invention, have only the subgroup of unit set to be finished and wipe by verification, this unit set just can have been finished by verification and wipe.
By one embodiment of the present of invention, to this subgroup wipe verification make its level be lower than target to wipe the calibration voltage level lower, to guarantee that the whole unit set still is wiped free of even without whole unit are carried out verification.
By one embodiment of the present of invention, this method can further comprise the verification time overhead is minimized.
By one embodiment of the present of invention, can after extremely a small amount of word line, carry out and wipe verification operation, with further minimizing expense switching time with this subgroup pack.
By an alternative embodiment of the invention, reading level and wiping between the verification level, or read level and wipe verification and programming verification level between, can increase the level difference of a setting.
By an alternative embodiment of the invention, this method can further comprise, applies erasing pulse to two or more subgroups of unit set, but verification operation is not carried out in all subgroups.
By one embodiment of the present of invention, this method can further comprise, guarantees that a certain amount of bit reaches the setting level, and unit set is very high by the probability of wiping verification, and only needs verification is wiped in the actual execution in a subgroup of unit.
By one embodiment of the present of invention, this method can further comprise, finish wipe verification after, apply erasing pulse in addition.
By one embodiment of the present of invention, the subgroup of finishing this unit set of wiping verification can change to another erase operation from an erase operation between any one subgroup of the unit set that comprises unit set itself regularly, periodically or randomly.
Description of drawings
In conjunction with the accompanying drawings and detailed description hereinafter, can understand the present invention better.
Fig. 1 strengthens hot hole by tunnel effect in the prior art to inject the sketch of wiping the NROM unit;
Fig. 2 is that typical NROM unit demonstrates the degeneration of erase operation at the curve of wiping of circulation front and back in the prior art;
Fig. 3 be in the prior art based on the erasing voltage and the step counting sketch of the memory product of NROM, this erasing voltage and step counting are the functions of carrying out the quantity of program/erase operations (cycle count) on device;
Fig. 4 A and 4B are by embodiments of the invention, are partitioned the rough schematic view of the embodiment of the unit set that the memory array of subdivision lists;
Fig. 4 C is according to one embodiment of the present of invention, wipes the simplified flow chart of the method for the bit of storage unit on the array of nonvolatile memory cells;
Fig. 5 is according to one embodiment of the present of invention, the reduced graph that starting voltage distributes on the subgroup of NROM array, and this starting voltage is the function of subgroup scale;
Fig. 6 A is by in the prior art, wipes statistical distribution sketch with the starting voltage of programming unit with classic method;
Fig. 6 B is according to one embodiment of the present of invention, the statistical distribution sketch of the starting voltage of erase unit;
Fig. 7 A is according to one embodiment of the present of invention, is programmed the simplified schematic diagram of the unit set of wiping, and the surplus loss does not cause because of matching between the subgroup of unit set among the figure;
Fig. 7 B is according to one embodiment of the present of invention, the process flow diagram that the surplus that compensation causes because of not matching between the subgroup of unit set is lost;
Fig. 8 is according to one embodiment of the present of invention, the distribution of threshold voltages between two subgroups of the NROM unit that is programmed
The reduced graph of embodiment.
Embodiment
For the unit set subregion has been used some terms, can better understand these terms with reference to Fig. 4 A and 4B, aforementioned two figure are according to one embodiment of the present of invention, the embodiment of the unit set that lists at the memory array that is divided into subdivision.Fig. 4 A is an embodiment of the unit set 10 that lists at the memory array that is divided into subdivision 12 (passing through DQ in this case), with a subgroup 14 that will be wiped free of verification (rather than to whole unit set), comprise the unit on all subdivisions 12, hereinafter will describe in detail this.Subdivision 12 and subgroup 14 can be any form.Fig. 4 B divides unit set 10 into subdivision.In this example, divide unit set 10 into subelement 16 by word line.
With reference to figure 4C, this figure is according to one embodiment of the present of invention, wipes the method for the bit of storage unit on the array of nonvolatile memory cells.
Can select an erasing pulse to come the bit of erase unit, comprise negative grid voltage of selection (dialling in) (Vg or Vcvpn-are from the voltage of charge drive) and a positive leakage pressure (Vppd) (step 401).The typical range of magnitude of voltage is as follows, and Vg is from-3V to-7V, and Vppd but is not limited thereto from 3V to 7V, and its duration is the 100-1000 microsecond.Then can to unit set apply erasing pulse (step 402) thereafter.
By one embodiment of the present of invention, not to the whole unit set, but verification operation (step 403) is wiped in a subgroup that is wiped free of of unit set.Check whether storage unit starting voltage (Vt) is lower than and wipe verification (EV) voltage levvl by wiping verification operation.The subgroup of this unit set can comprise the unit in all subdivisions of storage unit set on typical meaning, it defines by application architecture, for example is connected to the physical array section of different sensor amplifier (with reference to subdivision DQ).
If the unit set that is wiped free of by the subdivision unit on the subgroup of verification all not by wiping verification, just set a new Vppd level (dialling in) (step 404) by strong (for example, a big) increment.If subdivision is arranged by wiping verification, sets a new Vppd level (step 405) with regard to (for example, less relatively) increment a little less than passing through.Up to from all unit of subgroup by wiping verification (passing through EV), just can apply erasing pulse to the subdivision of unit set, this subgroup belongs to by the subgroup (step 406) of verification.In case all unit in the subgroup all by wiping verification, just finish erase operation, and other subgroups (step 407) of inspection unit set no longer.Certainly also can check to confirm that it is wiped free of (step 408) really remaining subgroup.However, unit set still may receive one and wipe fully guaranteeing than the higher erasing pulse of the level of last pulse, improving reliability, for example, promptly is like this in United States Patent (USP) 6700818 and U.S. Patent application 20050117395 and 20050058005.Under the normal condition, should apply this additional pulse to collection of units, for example, based on making DQ by wiping (perhaps those reality are by the unit of verification) erase pulse level of verification, and apply pulse to different DQ by the subdivision of unit set.
The quantity of verification operation just can reduce like this, and can finish erase operation sooner.In addition, if the subgroup is limited on a few word line in the whole word lines that comprise the unit set that is wiped free of, expense switching time (to the verification grid voltage, returning then from 0V) also can significantly reduce.
The subgroup of wiping the unit set of verification can comprise between all subgroups of unit set itself, from an erase operation to another erase operation, regularly, periodically or randomly rotate.
This part checkschema depends on the homogeneity that is wiped free of the ground unit set can be successful.For example, with reference to Fig. 5, this figure is the distribution of threshold voltages in the subgroup of a NROM array, and it is the function of subgroup scale.Be the embodiment of a basically identical among the figure, wherein all unit and the variations between the unit are actually at random, and it is distributed as Gaussian distribution.This just can associate the erasing speed of erasing speed of subgroup (requirement can be wiped the slowest unit in this subgroup) and whole unit set.That is to say, can on subgroup, such unit, wipe verification, and need not all wiping verification on the unit.But, on all unit, do not carry out because wipe verification, to wipe in execution and have certain phenomenon that do not match between the subgroup of verification and other unit, it is detailed as follows.
With reference to Fig. 6 A and 6B.Fig. 6 A wipes statistical distribution with the starting voltage of programmed cells by classic method of the prior art.Be wiped free of the unit and have Gaussian distribution, wherein all unit all are lower than and wipe verification level (curve A).Similarly, be programmed the unit and can have Gaussian distribution, wherein all unit all are higher than programming verification level (curve B).
On the contrary, Fig. 6 B is the starting voltage statistical Butut (curve C) of the unit wiped according to method provided by the invention.As mentioned above, do not wipe verification because carry out on all unit, some did not match carrying out between the subgroup of wiping verification and other unit existence.Unmatched reason is the statistical property that cell threshold voltage distributes.If the amount of bits that is wiped free of increases, that distribution of threshold voltages will become is wideer (as, curve C is just wide than curve A).This means that the possibility that individual bit exceeds its distribution of subgroup on every side increases.This does not match and can make some unit not reach to wipe verification level (right half part of curve C is being wiped on the verification level).
With reference to figure 7A and 7B.For solving this not matching, in the product operation window, wipe level and read to set between the level an extra difference.Programming verification level then changes arbitrarily, but itself and the difference read between the level can not reduce.Can be additionally or select to adopt extra-pulse mechanism (as at United States Patent (USP) 6700818, in U.S. Patent application 20050117395 and 20050058005, or the other technologies of mentioning in the background technology part), and to be set be a stronger value, wipe the verification level to guarantee that all unit all are lower than, that is, wipe fully.As previously mentioned, the another kind of selection is that bundle bunched beam one-tenth word line still less is with further minimizing expense switching time.
If in memory array, have fixing difference, can handle by dividing erase operation into subgroup, so that it is minimized in cell erasure.Correspondingly, the unit on the array collection dynamic will be more consistent (as, after circulation, remain unchanged).But since unmatched subgroup needs by verification separately, extra subregion just needs the extra verification operation of wiping.However, also needn't carry out verification to all unit.
Because the checkschema of wiping provided by the invention is based on the statistics rule, " noise edge " that therefore can ignore probability distribution is to improve precision.With reference to figure 8, this figure is the distribution of threshold voltages figure that has two subgroups of same historical record on the NROM unit that is programmed with an array.The stack degree of this distribution is very high, but still has the unit with lowest threshold voltage, and these unit decisions are the highest datum of the read operation of sensing element content correctly, and its voltage deviation is 200mV (at 5.45V and 5.65V).But if used certain level, it makes that 8 bits can not correctly be read (in this case, the bit that is programmed that is read out is wiped free of) at least, and the level difference between two subgroups is 50mV (5.65V and 5.75V).Certainly, using eight bits as trigger mechanism, only is an embodiment, the invention is not restricted to this.Correspondingly, the verification scheme of wiping of the present invention can make that quantity is bit (X>1 of X; For example, generally be X=8) by a predetermined level, thus it is at random to reduce noise profile significantly, and it is very big to make whole unit gather the possibility that is wiped free of (by wiping verification) fully, even in fact only on the subgroup, unit, carried out verification.
Though set forth the present invention in conjunction with some specific embodiments the front, clearly, those skilled in the art can also have a lot of other selections, correction and variation at this.Correspondingly, the present invention comprises all these classes selections, revises and changes.
Claims (11)
1, a kind of method of erasing memory cell on memory array, this method comprises:
The bit of the unit set that memory array is listed applies erasing pulse, and only verification operation is wiped in a subgroup of the unit set that is wiped free of, wipe verification (EV) voltage levvl to check whether storage unit starting voltage (Vt) is reduced to, if then stop to apply erasing pulse to unit set.
2, method according to claim 1 wherein, is only just finished the verification of wiping of whole unit set after verification is wiped in this subgroup.
3, method according to claim 1 wherein, is wiped verification to this subgroup and is made its level be lower than target to wipe the calibration voltage level, to guarantee that the whole unit set still is wiped free of even without whole unit are carried out verification.
4, method according to claim 1 wherein, also comprises the verification time overhead is minimized.
5, method according to claim 1 wherein, is carried out behind extremely a small amount of word line with described subgroup pack and is wiped verification operation, with further minimizing expense switching time.
6, method according to claim 1 wherein, also is included in and reads level and wipe to increase by a setting difference between the verification level.
7, method according to claim 1 wherein, also is included in and reads level and wipe the verification level and programme to increase by a setting difference between the verification level.
8, method according to claim 1 wherein, also comprises to two or more subgroups of described unit set applying erasing pulse, does not wipe verification operation but all described subgroups are not carried out.
9, method according to claim 1 wherein, also comprises the bit of guaranteeing some by a setting level, and makes the whole unit set improve by the possibility of wiping verification, even only actual verification is carried out in a subgroup of unit.
10, method according to claim 1 wherein, also is included in to finish and wipes the after-applied extra erasing pulse of verification.
11, method according to claim 1, wherein, this subgroup that is wiped free of the unit set of verification can comprise between the subgroup of unit set, from an erase operation to another erase operation, regularly, periodically or randomly rotate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64456905P | 2005-01-19 | 2005-01-19 | |
US60/644569 | 2005-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1838328A true CN1838328A (en) | 2006-09-27 |
Family
ID=36143177
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006100059960A Pending CN1838328A (en) | 2005-01-19 | 2006-01-18 | Method for erasing memory cell on memory array |
CNA2006100059975A Pending CN1838323A (en) | 2005-01-19 | 2006-01-18 | Methods for preventing fixed pattern programming |
CNA2006100054168A Pending CN1822233A (en) | 2005-01-19 | 2006-01-19 | Method, circuit and systems for erasing one or more non-volatile memory cells |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006100059975A Pending CN1838323A (en) | 2005-01-19 | 2006-01-18 | Methods for preventing fixed pattern programming |
CNA2006100054168A Pending CN1822233A (en) | 2005-01-19 | 2006-01-19 | Method, circuit and systems for erasing one or more non-volatile memory cells |
Country Status (4)
Country | Link |
---|---|
US (3) | US7369440B2 (en) |
EP (3) | EP1684308A1 (en) |
JP (3) | JP2006228406A (en) |
CN (3) | CN1838328A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102385918A (en) * | 2010-08-26 | 2012-03-21 | 三星电子株式会社 | Nonvolatile memory device, operating method thereof and memory system including the same |
CN110838329A (en) * | 2018-08-17 | 2020-02-25 | 北京兆易创新科技股份有限公司 | Memory erasing method and system |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070103980A1 (en) * | 2005-11-10 | 2007-05-10 | Gert Koebernick | Method for operating a semiconductor memory device and semiconductor memory device |
EP2070090B1 (en) | 2006-09-08 | 2014-01-08 | SanDisk Technologies Inc. | Pseudo random and command driven bit compensation for the cycling effects in flash memory and methods therefor |
US7606966B2 (en) | 2006-09-08 | 2009-10-20 | Sandisk Corporation | Methods in a pseudo random and command driven bit compensation for the cycling effects in flash memory |
US7885112B2 (en) | 2007-09-07 | 2011-02-08 | Sandisk Corporation | Nonvolatile memory and method for on-chip pseudo-randomization of data within a page and between pages |
US7734861B2 (en) * | 2006-09-08 | 2010-06-08 | Sandisk Corporation | Pseudo random and command driven bit compensation for the cycling effects in flash memory |
US7619934B2 (en) * | 2006-12-20 | 2009-11-17 | Spansion Llc | Method and apparatus for adaptive memory cell overerase compensation |
US8370561B2 (en) * | 2006-12-24 | 2013-02-05 | Sandisk Il Ltd. | Randomizing for suppressing errors in a flash memory |
US8127200B2 (en) | 2006-12-24 | 2012-02-28 | Sandisk Il Ltd. | Flash memory device and system with randomizing for suppressing errors |
WO2008078314A1 (en) * | 2006-12-24 | 2008-07-03 | Sandisk Il Ltd | Flash memory device, system and method with randomizing for suppressing error |
JP4498370B2 (en) * | 2007-02-14 | 2010-07-07 | 株式会社東芝 | Data writing method |
JP2008217857A (en) * | 2007-02-28 | 2008-09-18 | Toshiba Corp | Memory controller and semiconductor device |
US8320191B2 (en) | 2007-08-30 | 2012-11-27 | Infineon Technologies Ag | Memory cell arrangement, method for controlling a memory cell, memory array and electronic device |
US7945050B2 (en) * | 2007-09-28 | 2011-05-17 | Intel Corporation | Suppressing power supply noise using data scrambling in double data rate memory systems |
US20090150595A1 (en) * | 2007-10-24 | 2009-06-11 | Avi Lavan | Balanced programming rate for memory cells |
JP4554660B2 (en) * | 2007-11-01 | 2010-09-29 | 株式会社コナミデジタルエンタテインメント | Storage processing device, information providing server, operation method, and program |
US7843728B2 (en) * | 2007-11-20 | 2010-11-30 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor storage device |
JP2009163782A (en) * | 2007-12-13 | 2009-07-23 | Toshiba Corp | Semiconductor memory |
US7995392B2 (en) | 2007-12-13 | 2011-08-09 | Kabushiki Kaisha Toshiba | Semiconductor memory device capable of shortening erase time |
JP5019611B2 (en) * | 2007-12-27 | 2012-09-05 | 株式会社東芝 | Memory system |
US8301912B2 (en) * | 2007-12-31 | 2012-10-30 | Sandisk Technologies Inc. | System, method and memory device providing data scrambling compatible with on-chip copy operation |
US7813169B2 (en) * | 2008-01-18 | 2010-10-12 | Qimonda Flash Gmbh | Integrated circuit and method to operate an integrated circuit |
KR101378365B1 (en) | 2008-03-12 | 2014-03-28 | 삼성전자주식회사 | Apparatus and method for hybrid detecting memory data |
KR101517185B1 (en) | 2008-04-15 | 2015-05-04 | 삼성전자주식회사 | Memory system and operating method thereof |
US8154918B2 (en) | 2008-06-30 | 2012-04-10 | Sandisk Il Ltd. | Method for page- and block based scrambling in non-volatile memory |
US8230158B2 (en) * | 2008-08-12 | 2012-07-24 | Micron Technology, Inc. | Memory devices and methods of storing data on a memory device |
US8130552B2 (en) * | 2008-09-11 | 2012-03-06 | Sandisk Technologies Inc. | Multi-pass programming for memory with reduced data storage requirement |
US8429330B2 (en) | 2008-09-12 | 2013-04-23 | Sandisk Technologies Inc. | Method for scrambling data in which scrambling data and scrambled data are stored in corresponding non-volatile memory locations |
WO2010030701A1 (en) * | 2008-09-12 | 2010-03-18 | Sandisk Corporation | Built in on-chip data scrambler for non-volatile memory |
US8145855B2 (en) | 2008-09-12 | 2012-03-27 | Sandisk Technologies Inc. | Built in on-chip data scrambler for non-volatile memory |
US8874825B2 (en) * | 2009-06-30 | 2014-10-28 | Sandisk Technologies Inc. | Storage device and method using parameters based on physical memory block location |
JP5492679B2 (en) * | 2009-06-30 | 2014-05-14 | パナソニック株式会社 | Storage device and memory controller |
US8036044B2 (en) * | 2009-07-16 | 2011-10-11 | Sandisk Technologies Inc. | Dynamically adjustable erase and program levels for non-volatile memory |
KR20110055178A (en) * | 2009-11-19 | 2011-05-25 | 삼성전자주식회사 | Flash memory device and memory system including the same |
US8130551B2 (en) | 2010-03-31 | 2012-03-06 | Sandisk Technologies Inc. | Extra dummy erase pulses after shallow erase-verify to avoid sensing deep erased threshold voltage |
KR20120002760A (en) * | 2010-07-01 | 2012-01-09 | 삼성전자주식회사 | Data recording method and data recoding device for improving operation reliability of nand flash memory |
US8953318B1 (en) * | 2010-09-13 | 2015-02-10 | The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville | Passive cooling systems and methods for electronics |
US9009547B2 (en) | 2011-01-27 | 2015-04-14 | Apple Inc. | Advanced programming verification schemes for analog memory cells |
US8649200B2 (en) | 2011-01-27 | 2014-02-11 | Apple Inc. | Enhanced programming and erasure schemes for analog memory cells |
US9293194B2 (en) | 2011-01-27 | 2016-03-22 | Apple Inc. | Programming and erasure schemes for analog memory cells |
KR20120096212A (en) * | 2011-02-22 | 2012-08-30 | 삼성전자주식회사 | Non-volatile memory device, memory controller, and methods thereof |
US9195537B2 (en) * | 2011-03-02 | 2015-11-24 | Sandisk Technologies Inc. | Method of data storage in non-volatile memory |
US8843693B2 (en) | 2011-05-17 | 2014-09-23 | SanDisk Technologies, Inc. | Non-volatile memory and method with improved data scrambling |
WO2013112332A1 (en) | 2012-01-24 | 2013-08-01 | Apple Inc. | Enhanced programming and erasure schemes for analog memory cells |
WO2013112336A2 (en) * | 2012-01-24 | 2013-08-01 | Apple Inc. | Programming and erasure schemes for analog memory cells |
US9454493B1 (en) * | 2012-05-04 | 2016-09-27 | Amazon Technologies, Inc. | Systems and methods for wiped storage devices |
US9317217B1 (en) * | 2012-05-04 | 2016-04-19 | Amazon Technologies, Inc. | Wiping and verifying storage devices |
KR20130127234A (en) | 2012-05-14 | 2013-11-22 | 삼성전자주식회사 | Driving method for memory |
US8787088B2 (en) | 2012-06-29 | 2014-07-22 | Sandisk Technologies Inc. | Optimized erase operation for non-volatile memory with partially programmed block |
US8971125B2 (en) * | 2012-07-02 | 2015-03-03 | Micron Technology, Inc. | Erase operations with erase-verify voltages based on where in the erase operations an erase cycle occurs |
US9292428B2 (en) | 2012-09-05 | 2016-03-22 | Kabushiki Kaisha Toshiba | Memory system |
KR101949987B1 (en) * | 2012-12-18 | 2019-02-20 | 에스케이하이닉스 주식회사 | Data storage device and operating method thereof |
CN105144300B (en) | 2013-03-04 | 2019-03-01 | 桑迪士克科技有限责任公司 | Dynamic for improving the durability of nonvolatile memory wipes depth |
KR102218735B1 (en) | 2014-01-21 | 2021-02-23 | 삼성전자주식회사 | Memory system including nonvolatile memory device and erase method thereof |
CN104882166A (en) * | 2014-02-27 | 2015-09-02 | 北京兆易创新科技股份有限公司 | Flash memory, erasing method and programming method |
US10409621B2 (en) | 2014-10-20 | 2019-09-10 | Taser International, Inc. | Systems and methods for distributed control |
US9343171B1 (en) | 2015-02-09 | 2016-05-17 | Sandisk Technologies Inc. | Reduced erase-verify voltage for first-programmed word line in a memory device |
US9343160B1 (en) | 2015-02-11 | 2016-05-17 | Sandisk Technologies Inc. | Erase verify in non-volatile memory |
US9236139B1 (en) | 2015-02-11 | 2016-01-12 | Sandisk Technologies Inc. | Reduced current program verify in non-volatile memory |
US10417122B2 (en) * | 2015-09-30 | 2019-09-17 | Seagate Technology Llc | Data randomization using memory block access counts |
US10580506B2 (en) | 2017-12-07 | 2020-03-03 | Micron Technology, Inc. | Semiconductor memory device and erase method including changing erase pulse magnitude for a memory array |
US10535412B2 (en) | 2018-02-09 | 2020-01-14 | Sandisk Technologies Llc | Single pulse verification of memory cells |
JP7163210B2 (en) * | 2019-02-13 | 2022-10-31 | キオクシア株式会社 | Semiconductor memory device, memory system and defect detection method |
JP2020149745A (en) * | 2019-03-13 | 2020-09-17 | キオクシア株式会社 | Semiconductor storage device |
US20210303715A1 (en) * | 2020-03-25 | 2021-09-30 | SK Hynix Inc. | Data scrambler for memory systems and method thereof |
US12087373B2 (en) | 2022-07-26 | 2024-09-10 | Sandisk Technologies Llc | Non-volatile memory with optimized erase verify sequence |
Family Cites Families (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1392599A (en) | 1971-07-28 | 1975-04-30 | Mullard Ltd | Semiconductor memory elements |
US3881180A (en) | 1971-11-30 | 1975-04-29 | Texas Instruments Inc | Non-volatile memory cell |
US3895360A (en) | 1974-01-29 | 1975-07-15 | Westinghouse Electric Corp | Block oriented random access memory |
US4016588A (en) | 1974-12-27 | 1977-04-05 | Nippon Electric Company, Ltd. | Non-volatile semiconductor memory device |
US4017888A (en) | 1975-12-31 | 1977-04-12 | International Business Machines Corporation | Non-volatile metal nitride oxide semiconductor device |
US4151021A (en) | 1977-01-26 | 1979-04-24 | Texas Instruments Incorporated | Method of making a high density floating gate electrically programmable ROM |
US4145703A (en) | 1977-04-15 | 1979-03-20 | Supertex, Inc. | High power MOS device and fabrication method therefor |
US4173766A (en) | 1977-09-16 | 1979-11-06 | Fairchild Camera And Instrument Corporation | Insulated gate field-effect transistor read-only memory cell |
US4173791A (en) | 1977-09-16 | 1979-11-06 | Fairchild Camera And Instrument Corporation | Insulated gate field-effect transistor read-only memory array |
US4373248A (en) | 1978-07-12 | 1983-02-15 | Texas Instruments Incorporated | Method of making high density semiconductor device such as floating gate electrically programmable ROM or the like |
DE2832388C2 (en) | 1978-07-24 | 1986-08-14 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Process for the production of MNOS and MOS transistors in silicon gate technology on a semiconductor substrate |
US4360900A (en) | 1978-11-27 | 1982-11-23 | Texas Instruments Incorporated | Non-volatile semiconductor memory elements |
US4247861A (en) | 1979-03-09 | 1981-01-27 | Rca Corporation | High performance electrically alterable read-only memory (EAROM) |
DE2923995C2 (en) | 1979-06-13 | 1985-11-07 | Siemens AG, 1000 Berlin und 8000 München | Process for the production of integrated MOS circuits with MOS transistors and MNOS memory transistors in silicon gate technology |
JPS5656677A (en) | 1979-10-13 | 1981-05-18 | Toshiba Corp | Semiconductor memory device |
US4281397A (en) | 1979-10-29 | 1981-07-28 | Texas Instruments Incorporated | Virtual ground MOS EPROM or ROM matrix |
DE2947350A1 (en) | 1979-11-23 | 1981-05-27 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING MNOS STORAGE TRANSISTORS WITH A VERY SHORT CHANNEL LENGTH IN SILICON GATE TECHNOLOGY |
JPS56120166A (en) | 1980-02-27 | 1981-09-21 | Hitachi Ltd | Semiconductor ic device and manufacture thereof |
US4342102A (en) | 1980-06-18 | 1982-07-27 | Signetics Corporation | Semiconductor memory array |
US4380057A (en) | 1980-10-27 | 1983-04-12 | International Business Machines Corporation | Electrically alterable double dense memory |
US4521796A (en) | 1980-12-11 | 1985-06-04 | General Instrument Corporation | Memory implant profile for improved channel shielding in electrically alterable read only memory semiconductor device |
DE3174858D1 (en) | 1980-12-25 | 1986-07-24 | Fujitsu Ltd | Nonvolatile semiconductor memory device |
US4448400A (en) | 1981-07-13 | 1984-05-15 | Eliyahou Harari | Highly scalable dynamic RAM cell with self-signal amplification |
US4404747A (en) | 1981-07-29 | 1983-09-20 | Schur, Inc. | Knife and sheath assembly |
US4389705A (en) | 1981-08-21 | 1983-06-21 | Mostek Corporation | Semiconductor memory circuit with depletion data transfer transistor |
US4388705A (en) | 1981-10-01 | 1983-06-14 | Mostek Corporation | Semiconductor memory circuit |
US4435786A (en) | 1981-11-23 | 1984-03-06 | Fairchild Camera And Instrument Corporation | Self-refreshing memory cell |
US4494016A (en) | 1982-07-26 | 1985-01-15 | Sperry Corporation | High performance MESFET transistor for VLSI implementation |
US4527257A (en) | 1982-08-25 | 1985-07-02 | Westinghouse Electric Corp. | Common memory gate non-volatile transistor memory |
JPS5949022A (en) | 1982-09-13 | 1984-03-21 | Toshiba Corp | Multi-value logical circuit |
US4613956A (en) | 1983-02-23 | 1986-09-23 | Texas Instruments Incorporated | Floating gate memory with improved dielectric |
JPS59174080A (en) * | 1983-03-24 | 1984-10-02 | Sony Corp | Television signal receiver |
US4769340A (en) | 1983-11-28 | 1988-09-06 | Exel Microelectronics, Inc. | Method for making electrically programmable memory device by doping the floating gate by implant |
US4725984A (en) | 1984-02-21 | 1988-02-16 | Seeq Technology, Inc. | CMOS eprom sense amplifier |
JPS60182174A (en) | 1984-02-28 | 1985-09-17 | Nec Corp | Non-volatile semiconductor memory |
US5352620A (en) | 1984-05-23 | 1994-10-04 | Hitachi, Ltd. | Method of making semiconductor device with memory cells and peripheral transistors |
US4663645A (en) | 1984-05-23 | 1987-05-05 | Hitachi, Ltd. | Semiconductor device of an LDD structure having a floating gate |
US4907273A (en) * | 1984-10-12 | 1990-03-06 | Wiedemer John D | High security pay television system |
US4908834A (en) * | 1984-10-12 | 1990-03-13 | Wiedemer John D | High security pay television system |
US4665426A (en) | 1985-02-01 | 1987-05-12 | Advanced Micro Devices, Inc. | EPROM with ultraviolet radiation transparent silicon nitride passivation layer |
JPH0770230B2 (en) | 1985-04-18 | 1995-07-31 | 日本電気株式会社 | Semiconductor memory |
US4667217A (en) | 1985-04-19 | 1987-05-19 | Ncr Corporation | Two bit vertically/horizontally integrated memory cell |
JPH0831789B2 (en) | 1985-09-04 | 1996-03-27 | 沖電気工業株式会社 | Output circuit |
US4742491A (en) | 1985-09-26 | 1988-05-03 | Advanced Micro Devices, Inc. | Memory cell having hot-hole injection erase mode |
US4760555A (en) | 1986-04-21 | 1988-07-26 | Texas Instruments Incorporated | Memory array with an array reorganizer |
JPH0828431B2 (en) | 1986-04-22 | 1996-03-21 | 日本電気株式会社 | Semiconductor memory device |
US4758869A (en) | 1986-08-29 | 1988-07-19 | Waferscale Integration, Inc. | Nonvolatile floating gate transistor structure |
US5168334A (en) | 1987-07-31 | 1992-12-01 | Texas Instruments, Incorporated | Non-volatile semiconductor memory |
US4780424A (en) | 1987-09-28 | 1988-10-25 | Intel Corporation | Process for fabricating electrically alterable floating gate memory devices |
US4870470A (en) | 1987-10-16 | 1989-09-26 | International Business Machines Corporation | Non-volatile memory cell having Si rich silicon nitride charge trapping layer |
US4839705A (en) | 1987-12-16 | 1989-06-13 | Texas Instruments Incorporated | X-cell EEPROM array |
JPH07120720B2 (en) | 1987-12-17 | 1995-12-20 | 三菱電機株式会社 | Nonvolatile semiconductor memory device |
US5159570A (en) | 1987-12-22 | 1992-10-27 | Texas Instruments Incorporated | Four memory state EEPROM |
US4888735A (en) | 1987-12-30 | 1989-12-19 | Elite Semiconductor & Systems Int'l., Inc. | ROM cell and array configuration |
US4857770A (en) | 1988-02-29 | 1989-08-15 | Advanced Micro Devices, Inc. | Output buffer arrangement for reducing chip noise without speed penalty |
US4941028A (en) | 1988-08-10 | 1990-07-10 | Actel Corporation | Structure for protecting thin dielectrics during processing |
JPH0271493A (en) | 1988-09-06 | 1990-03-12 | Mitsubishi Electric Corp | Semiconductor memory device |
US5042009A (en) | 1988-12-09 | 1991-08-20 | Waferscale Integration, Inc. | Method for programming a floating gate memory device |
US5293563A (en) | 1988-12-29 | 1994-03-08 | Sharp Kabushiki Kaisha | Multi-level memory cell with increased read-out margin |
US5120672A (en) | 1989-02-22 | 1992-06-09 | Texas Instruments Incorporated | Fabricating a single level merged EEPROM cell having an ONO memory stack substantially spaced from the source region |
US5142495A (en) | 1989-03-10 | 1992-08-25 | Intel Corporation | Variable load for margin mode |
DE3931596A1 (en) | 1989-03-25 | 1990-10-04 | Eurosil Electronic Gmbh | VOLTAGE MULTIPLIER |
US5172338B1 (en) | 1989-04-13 | 1997-07-08 | Sandisk Corp | Multi-state eeprom read and write circuits and techniques |
US4961010A (en) | 1989-05-19 | 1990-10-02 | National Semiconductor Corporation | Output buffer for reducing switching induced noise |
US5104819A (en) | 1989-08-07 | 1992-04-14 | Intel Corporation | Fabrication of interpoly dielctric for EPROM-related technologies |
US5081675A (en) * | 1989-11-13 | 1992-01-14 | Kitti Kittirutsunetorn | System for protection of software in memory against unauthorized use |
US5027321A (en) | 1989-11-21 | 1991-06-25 | Intel Corporation | Apparatus and method for improved reading/programming of virtual ground EPROM arrays |
US4992391A (en) | 1989-11-29 | 1991-02-12 | Advanced Micro Devices, Inc. | Process for fabricating a control gate for a floating gate FET |
JP2697231B2 (en) * | 1990-03-12 | 1998-01-14 | 松下電器産業株式会社 | CATV system |
JPH043395A (en) * | 1990-04-20 | 1992-01-08 | Mitsubishi Electric Corp | Non-volatile semiconductor storage device |
US5204835A (en) | 1990-06-13 | 1993-04-20 | Waferscale Integration Inc. | Eprom virtual ground array |
EP0461904A3 (en) | 1990-06-14 | 1992-09-09 | Creative Integrated Systems, Inc. | An improved semiconductor read-only vlsi memory |
US5075245A (en) | 1990-08-03 | 1991-12-24 | Intel Corporation | Method for improving erase characteristics of buried bit line flash EPROM devices without using sacrificial oxide growth and removal steps |
US5091938B1 (en) * | 1990-08-06 | 1997-02-04 | Nippon Denki Home Electronics | Digital data cryptographic system |
US5289406A (en) | 1990-08-28 | 1994-02-22 | Mitsubishi Denki Kabushiki Kaisha | Read only memory for storing multi-data |
US5117389A (en) | 1990-09-05 | 1992-05-26 | Macronix International Co., Ltd. | Flat-cell read-only-memory integrated circuit |
KR920006991A (en) | 1990-09-25 | 1992-04-28 | 김광호 | High Voltage Generation Circuit of Semiconductor Memory Device |
US5081371A (en) | 1990-11-07 | 1992-01-14 | U.S. Philips Corp. | Integrated charge pump circuit with back bias voltage reduction |
JP3002309B2 (en) * | 1990-11-13 | 2000-01-24 | ウエハスケール インテグレーション, インコーポレイテッド | High-speed EPROM array |
JP2987193B2 (en) | 1990-11-20 | 1999-12-06 | 富士通株式会社 | Semiconductor storage device |
US5094968A (en) | 1990-11-21 | 1992-03-10 | Atmel Corporation | Fabricating a narrow width EEPROM with single diffusion electrode formation |
US5086325A (en) | 1990-11-21 | 1992-02-04 | Atmel Corporation | Narrow width EEPROM with single diffusion electrode formation |
JP2612969B2 (en) | 1991-02-08 | 1997-05-21 | シャープ株式会社 | Method for manufacturing semiconductor device |
US5270979A (en) * | 1991-03-15 | 1993-12-14 | Sundisk Corporation | Method for optimum erasing of EEPROM |
JPH04311900A (en) | 1991-04-10 | 1992-11-04 | Sharp Corp | Semiconductor read only memory |
JP2930440B2 (en) | 1991-04-15 | 1999-08-03 | 沖電気工業株式会社 | Semiconductor integrated circuit |
US5142496A (en) | 1991-06-03 | 1992-08-25 | Advanced Micro Devices, Inc. | Method for measuring VT 's less than zero without applying negative voltages |
US5245572A (en) | 1991-07-30 | 1993-09-14 | Intel Corporation | Floating gate nonvolatile memory with reading while writing capability |
JP2965415B2 (en) | 1991-08-27 | 1999-10-18 | 松下電器産業株式会社 | Semiconductor storage device |
US5305262A (en) | 1991-09-11 | 1994-04-19 | Kawasaki Steel Corporation | Semiconductor integrated circuit |
US5175120A (en) | 1991-10-11 | 1992-12-29 | Micron Technology, Inc. | Method of processing a semiconductor wafer to form an array of nonvolatile memory devices employing floating gate transistors and peripheral area having CMOS transistors |
JPH05110114A (en) | 1991-10-17 | 1993-04-30 | Rohm Co Ltd | Nonvolatile semiconductor memory device |
US5355178A (en) * | 1991-10-24 | 1994-10-11 | Eastman Kodak Company | Mechanism for improving television display of still images using image motion-dependent filter |
JP3358663B2 (en) | 1991-10-25 | 2002-12-24 | ローム株式会社 | Semiconductor storage device and storage information reading method thereof |
US5428568A (en) * | 1991-10-30 | 1995-06-27 | Mitsubishi Denki Kabushiki Kaisha | Electrically erasable and programmable non-volatile memory device and a method of operating the same |
US5338954A (en) | 1991-10-31 | 1994-08-16 | Rohm Co., Ltd. | Semiconductor memory device having an insulating film and a trap film joined in a channel region |
US5357134A (en) | 1991-10-31 | 1994-10-18 | Rohm Co., Ltd. | Nonvolatile semiconductor device having charge trap film containing silicon crystal grains |
JPH05129284A (en) | 1991-11-06 | 1993-05-25 | Sony Corp | Method of setting condition of plasma sin forming film and manufacture of semiconductor device |
US5260593A (en) | 1991-12-10 | 1993-11-09 | Micron Technology, Inc. | Semiconductor floating gate device having improved channel-floating gate interaction |
JP2564067B2 (en) | 1992-01-09 | 1996-12-18 | 株式会社東芝 | Readout output circuit having sense circuit |
US6222762B1 (en) * | 1992-01-14 | 2001-04-24 | Sandisk Corporation | Multi-state memory |
US5293328A (en) * | 1992-01-15 | 1994-03-08 | National Semiconductor Corporation | Electrically reprogrammable EPROM cell with merged transistor and optiumum area |
JP2851962B2 (en) | 1992-01-21 | 1999-01-27 | シャープ株式会社 | Semiconductor read-only memory |
EP0552531B1 (en) * | 1992-01-22 | 2000-08-16 | Macronix International Co., Ltd. | Non-volatile memory cell and array architecture |
US5324675A (en) | 1992-03-31 | 1994-06-28 | Kawasaki Steel Corporation | Method of producing semiconductor devices of a MONOS type |
JPH05290584A (en) | 1992-04-08 | 1993-11-05 | Nec Corp | Semiconductor memory |
WO1993024959A1 (en) * | 1992-05-29 | 1993-12-09 | Citizen Watch Co., Ltd. | Semiconductor nonvolatile storage device, semiconductor device, and its manufacture method |
JPH065823A (en) | 1992-06-19 | 1994-01-14 | Toshiba Corp | Nonvolatile semiconductor memory device and its application method |
US5289412A (en) | 1992-06-19 | 1994-02-22 | Intel Corporation | High-speed bias-stabilized current-mirror referencing circuit for non-volatile memories |
EP0596198B1 (en) * | 1992-07-10 | 2000-03-29 | Sony Corporation | Flash eprom with erase verification and address scrambling architecture |
US5315541A (en) | 1992-07-24 | 1994-05-24 | Sundisk Corporation | Segmented column memory array |
JP3036565B2 (en) | 1992-08-28 | 2000-04-24 | 日本電気株式会社 | Manufacturing method of nonvolatile semiconductor memory device |
US5280420A (en) | 1992-10-02 | 1994-01-18 | National Semiconductor Corporation | Charge pump which operates on a low voltage power supply |
JP2825217B2 (en) * | 1992-11-11 | 1998-11-18 | シャープ株式会社 | Flash memory |
US5418743A (en) * | 1992-12-07 | 1995-05-23 | Nippon Steel Corporation | Method of writing into non-volatile semiconductor memory |
JPH07114792A (en) * | 1993-10-19 | 1995-05-02 | Mitsubishi Electric Corp | Semiconductor memory |
US5515173A (en) * | 1993-03-05 | 1996-05-07 | Gemstar Developement Corporation | System and method for automatically recording television programs in television systems with tuners external to video recorders |
US5393701A (en) | 1993-04-08 | 1995-02-28 | United Microelectronics Corporation | Layout design to eliminate process antenna effect |
JP3317459B2 (en) * | 1993-04-30 | 2002-08-26 | ローム株式会社 | Nonvolatile storage element, nonvolatile storage device using the same, method of driving this storage device, and method of manufacturing this storage element |
US5335198A (en) | 1993-05-06 | 1994-08-02 | Advanced Micro Devices, Inc. | Flash EEPROM array with high endurance |
US5350710A (en) | 1993-06-24 | 1994-09-27 | United Microelectronics Corporation | Device for preventing antenna effect on circuit |
US5400286A (en) * | 1993-08-17 | 1995-03-21 | Catalyst Semiconductor Corp. | Self-recovering erase scheme to enhance flash memory endurance |
US5666516A (en) * | 1993-12-16 | 1997-09-09 | International Business Machines Corporation | Protected programmable memory cartridge having selective access circuitry |
US5440505A (en) * | 1994-01-21 | 1995-08-08 | Intel Corporation | Method and circuitry for storing discrete amounts of charge in a single memory element |
FR2715758B1 (en) * | 1994-01-31 | 1996-03-22 | Sgs Thomson Microelectronics | Source-programmable, non-volatile flip-flop, especially for memory redundancy circuits. |
FR2715782B1 (en) * | 1994-01-31 | 1996-03-22 | Sgs Thomson Microelectronics | Programmable non-volatile bistable flip-flop, with predefined initial state, in particular for memory redundancy circuit. |
TW241394B (en) * | 1994-05-26 | 1995-02-21 | Aplus Integrated Circuits Inc | Flat-cell ROM and decoder |
JP3725911B2 (en) * | 1994-06-02 | 2005-12-14 | 株式会社ルネサステクノロジ | Semiconductor device |
US5608679A (en) * | 1994-06-02 | 1997-03-04 | Intel Corporation | Fast internal reference cell trimming for flash EEPROM memory |
EP0691729A3 (en) * | 1994-06-30 | 1996-08-14 | Sgs Thomson Microelectronics | Charge pump circuit with feedback control |
EP0696050B1 (en) * | 1994-07-18 | 1998-10-14 | STMicroelectronics S.r.l. | EPROM and Flash-EEPROM non-volatile memory and method of manufacturing the same |
JP3730272B2 (en) * | 1994-09-17 | 2005-12-21 | 株式会社東芝 | Nonvolatile semiconductor memory device |
US5612642A (en) * | 1995-04-28 | 1997-03-18 | Altera Corporation | Power-on reset circuit with hysteresis |
JPH08115597A (en) * | 1994-10-17 | 1996-05-07 | Mitsubishi Electric Corp | Semiconductor disk device |
US5561714A (en) * | 1994-12-12 | 1996-10-01 | Tektronix, Inc. | Scrambling system for serial digital video |
US5599727A (en) * | 1994-12-15 | 1997-02-04 | Sharp Kabushiki Kaisha | Method for producing a floating gate memory device including implanting ions through an oxidized portion of the silicon film from which the floating gate is formed |
JP4183290B2 (en) * | 1994-12-27 | 2008-11-19 | マクロニクス インターナショナル カンパニイ リミテッド | Nonvolatile semiconductor device having verify function |
KR100470575B1 (en) * | 1995-01-31 | 2005-06-27 | 가부시끼가이샤 히다치 세이사꾸쇼 | Nonvolatile memory |
US5518942A (en) * | 1995-02-22 | 1996-05-21 | Alliance Semiconductor Corporation | Method of making flash EPROM cell having improved erase characteristics by using a tilt angle implant |
JPH08306196A (en) * | 1995-04-28 | 1996-11-22 | Toshiba Corp | Non-volatile semiconductor memory |
AU6185196A (en) * | 1995-07-03 | 1997-02-05 | Elvira Gulerson | Method of fabricating a fast programming flash e2prm cell |
US5751944A (en) * | 1995-07-28 | 1998-05-12 | Micron Quantum Devices, Inc. | Non-volatile memory system having automatic cycling test function |
JP3251164B2 (en) * | 1995-12-14 | 2002-01-28 | シャープ株式会社 | Semiconductor device and manufacturing method thereof |
KR100223747B1 (en) * | 1995-12-28 | 1999-10-15 | 김영환 | Output buffer with fast speed and low noise |
US5712815A (en) * | 1996-04-22 | 1998-01-27 | Advanced Micro Devices, Inc. | Multiple bits per-cell flash EEPROM capable of concurrently programming and verifying memory cells and reference cells |
US5715193A (en) * | 1996-05-23 | 1998-02-03 | Micron Quantum Devices, Inc. | Flash memory system and method for monitoring the disturb effect on memory cell blocks due to high voltage conditions of other memory cell blocks |
WO2004090908A1 (en) * | 1996-06-11 | 2004-10-21 | Nobuyoshi Takeuchi | Nonvolatile memory having verifying function |
JPH1011990A (en) * | 1996-06-26 | 1998-01-16 | Nkk Corp | Non-volatile storage device having verify function |
JP2882370B2 (en) * | 1996-06-28 | 1999-04-12 | 日本電気株式会社 | Semiconductor storage device |
US6037627A (en) * | 1996-08-02 | 2000-03-14 | Seiko Instruments Inc. | MOS semiconductor device |
US5787484A (en) * | 1996-08-08 | 1998-07-28 | Micron Technology, Inc. | System and method which compares data preread from memory cells to data to be written to the cells |
US5717635A (en) * | 1996-08-27 | 1998-02-10 | International Business Machines Corporation | High density EEPROM for solid state file |
US5873113A (en) * | 1996-09-24 | 1999-02-16 | Altera Corporation | System and method for programming eprom cells using shorter duration pulse(s) in repeating the programming process of a particular cell |
JPH10133754A (en) * | 1996-10-28 | 1998-05-22 | Fujitsu Ltd | Regulator circuit and semiconductor integrated circuit device |
US5717632A (en) * | 1996-11-27 | 1998-02-10 | Advanced Micro Devices, Inc. | Apparatus and method for multiple-level storage in non-volatile memories |
TW318283B (en) * | 1996-12-09 | 1997-10-21 | United Microelectronics Corp | Multi-level read only memory structure and manufacturing method thereof |
US5870335A (en) * | 1997-03-06 | 1999-02-09 | Agate Semiconductor, Inc. | Precision programming of nonvolatile memory cells |
US6028324A (en) * | 1997-03-07 | 2000-02-22 | Taiwan Semiconductor Manufacturing Company | Test structures for monitoring gate oxide defect densities and the plasma antenna effect |
JP4253052B2 (en) * | 1997-04-08 | 2009-04-08 | 株式会社東芝 | Semiconductor device |
TW381325B (en) * | 1997-04-15 | 2000-02-01 | United Microelectronics Corp | Three dimensional high density deep trench ROM and the manufacturing method thereof |
US5880620A (en) * | 1997-04-22 | 1999-03-09 | Xilinx, Inc. | Pass gate circuit with body bias control |
US6768165B1 (en) * | 1997-08-01 | 2004-07-27 | Saifun Semiconductors Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US5867429A (en) * | 1997-11-19 | 1999-02-02 | Sandisk Corporation | High density non-volatile flash memory without adverse effects of electric field coupling between adjacent floating gates |
US5963465A (en) * | 1997-12-12 | 1999-10-05 | Saifun Semiconductors, Ltd. | Symmetric segmented memory array architecture |
US6020241A (en) * | 1997-12-22 | 2000-02-01 | Taiwan Semiconductor Manufacturing Company | Post metal code engineering for a ROM |
US6148435A (en) * | 1997-12-24 | 2000-11-14 | Cypress Semiconductor Corporation | Optimized programming/erase parameters for programmable devices |
US6351474B1 (en) * | 1998-01-14 | 2002-02-26 | Skystream Networks Inc. | Network distributed remultiplexer for video program bearing transport streams |
US6292490B1 (en) * | 1998-01-14 | 2001-09-18 | Skystream Corporation | Receipts and dispatch timing of transport packets in a video program bearing stream remultiplexer |
US6195368B1 (en) * | 1998-01-14 | 2001-02-27 | Skystream Corporation | Re-timing of video program bearing streams transmitted by an asynchronous communication link |
US6195196B1 (en) * | 1998-03-13 | 2001-02-27 | Fuji Photo Film Co., Ltd. | Array-type exposing device and flat type display incorporating light modulator and driving method thereof |
US6030871A (en) * | 1998-05-05 | 2000-02-29 | Saifun Semiconductors Ltd. | Process for producing two bit ROM cell utilizing angled implant |
US6188211B1 (en) * | 1998-05-13 | 2001-02-13 | Texas Instruments Incorporated | Current-efficient low-drop-out voltage regulator with improved load regulation and frequency response |
US6348711B1 (en) * | 1998-05-20 | 2002-02-19 | Saifun Semiconductors Ltd. | NROM cell with self-aligned programming and erasure areas |
US6034403A (en) * | 1998-06-25 | 2000-03-07 | Acer Semiconductor Manufacturing, Inc. | High density flat cell mask ROM |
JO2117B1 (en) * | 1998-07-15 | 2000-05-21 | كانال + تيكنولوجيز سوسيته انونيم | method and apparatus for secure communication of information between aplurality of digital audiovisual devices |
DE69828966D1 (en) * | 1998-09-15 | 2005-03-17 | St Microelectronics Srl | Method for protecting the content of non-volatile memory cells |
US6044019A (en) * | 1998-10-23 | 2000-03-28 | Sandisk Corporation | Non-volatile memory with improved sensing and method therefor |
US6282145B1 (en) * | 1999-01-14 | 2001-08-28 | Silicon Storage Technology, Inc. | Array architecture and operating methods for digital multilevel nonvolatile memory integrated circuit system |
US6587315B1 (en) * | 1999-01-20 | 2003-07-01 | Alps Electric Co., Ltd. | Magnetoresistive-effect device with a magnetic coupling junction |
US6181597B1 (en) * | 1999-02-04 | 2001-01-30 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells with serial read operations |
US6346442B1 (en) * | 1999-02-04 | 2002-02-12 | Tower Semiconductor Ltd. | Methods for fabricating a semiconductor chip having CMOS devices and a fieldless array |
US6337502B1 (en) * | 1999-06-18 | 2002-01-08 | Saifun Semicinductors Ltd. | Method and circuit for minimizing the charging effect during manufacture of semiconductor devices |
JP3438669B2 (en) * | 1999-09-14 | 2003-08-18 | 日本電気株式会社 | MOBILE COMMUNICATION TERMINAL DEVICE, ITS CONTROL METHOD, AND RECORDING MEDIUM RECORDING ITS CONTROL PROGRAM |
JP2001101870A (en) * | 1999-09-30 | 2001-04-13 | Fujitsu Ltd | Semiconductor integrated circuit |
US6181605B1 (en) * | 1999-10-06 | 2001-01-30 | Advanced Micro Devices, Inc. | Global erase/program verification apparatus and method |
US6175523B1 (en) * | 1999-10-25 | 2001-01-16 | Advanced Micro Devices, Inc | Precharging mechanism and method for NAND-based flash memory devices |
US7039614B1 (en) * | 1999-11-09 | 2006-05-02 | Sony Corporation | Method for simulcrypting scrambled data to a plurality of conditional access devices |
JP2001143487A (en) * | 1999-11-15 | 2001-05-25 | Nec Corp | Semiconductor memory |
JP4360736B2 (en) * | 2000-01-27 | 2009-11-11 | 株式会社ルネサステクノロジ | Nonvolatile semiconductor memory device and data erasing method of nonvolatile semiconductor memory device |
US6185143B1 (en) * | 2000-02-04 | 2001-02-06 | Hewlett-Packard Company | Magnetic random access memory (MRAM) device including differential sense amplifiers |
US6343033B1 (en) * | 2000-02-25 | 2002-01-29 | Advanced Micro Devices, Inc. | Variable pulse width memory programming |
WO2001080238A1 (en) * | 2000-04-05 | 2001-10-25 | Infineon Technologies North America Corp. | Improved read/write channel |
US6292394B1 (en) * | 2000-06-29 | 2001-09-18 | Saifun Semiconductors Ltd. | Method for programming of a semiconductor memory cell |
JP4707803B2 (en) * | 2000-07-10 | 2011-06-22 | エルピーダメモリ株式会社 | Error rate determination method and semiconductor integrated circuit device |
US6519182B1 (en) * | 2000-07-10 | 2003-02-11 | Advanced Micro Devices, Inc. | Using hot carrier injection to control over-programming in a non-volatile memory cell having an oxide-nitride-oxide (ONO) structure |
US6563741B2 (en) * | 2001-01-30 | 2003-05-13 | Micron Technology, Inc. | Flash memory device and method of erasing |
US6898037B2 (en) * | 2001-02-20 | 2005-05-24 | Seagate Technology Llc | Optical equipment assemblies and techniques |
US6348381B1 (en) * | 2001-02-21 | 2002-02-19 | Macronix International Co., Ltd. | Method for forming a nonvolatile memory with optimum bias condition |
DE10110150A1 (en) * | 2001-03-02 | 2002-09-19 | Infineon Technologies Ag | Method for producing metallic bit lines for memory cell arrays, method for producing memory cell arrays and memory cell array |
US6351415B1 (en) * | 2001-03-28 | 2002-02-26 | Tower Semiconductor Ltd. | Symmetrical non-volatile memory array architecture without neighbor effect |
US6677805B2 (en) * | 2001-04-05 | 2004-01-13 | Saifun Semiconductors Ltd. | Charge pump stage with body effect minimization |
US6493266B1 (en) * | 2001-04-09 | 2002-12-10 | Advanced Micro Devices, Inc. | Soft program and soft program verify of the core cells in flash memory array |
US6438037B1 (en) * | 2001-05-09 | 2002-08-20 | Advanced Micro Devices, Inc. | Threshold voltage compacting for non-volatile semiconductor memory designs |
US6522585B2 (en) * | 2001-05-25 | 2003-02-18 | Sandisk Corporation | Dual-cell soft programming for virtual-ground memory arrays |
DE60141200D1 (en) * | 2001-05-30 | 2010-03-18 | St Microelectronics Srl | Semiconductor memory system |
JP2002367380A (en) * | 2001-06-05 | 2002-12-20 | Sony Corp | Non-volatile semiconductor memory |
US6512701B1 (en) * | 2001-06-21 | 2003-01-28 | Advanced Micro Devices, Inc. | Erase method for dual bit virtual ground flash |
US6462387B1 (en) * | 2001-06-29 | 2002-10-08 | Chinatech Corporation | High density read only memory |
US6525969B1 (en) * | 2001-08-10 | 2003-02-25 | Advanced Micro Devices, Inc. | Decoder apparatus and methods for pre-charging bit lines |
US6614689B2 (en) * | 2001-08-13 | 2003-09-02 | Micron Technology, Inc. | Non-volatile memory having a control mini-array |
US6981188B2 (en) * | 2001-08-16 | 2005-12-27 | Tower Semiconductor Ltd. | Non-volatile memory device with self test |
JP2003068086A (en) * | 2001-08-28 | 2003-03-07 | Mitsubishi Electric Corp | Nonvolatile semiconductor memory |
US6549468B2 (en) * | 2001-08-30 | 2003-04-15 | Micron Technology, Inc. | Non-volatile memory with address descrambling |
ITRM20010556A1 (en) * | 2001-09-12 | 2003-03-12 | Micron Technology Inc | DECODER TO DECODE SWITCHING COMMANDS IN INTEGRATED CIRCUIT TEST MODE. |
EP1293905A1 (en) * | 2001-09-17 | 2003-03-19 | STMicroelectronics S.r.l. | A pointer circuit |
US6440797B1 (en) * | 2001-09-28 | 2002-08-27 | Advanced Micro Devices, Inc. | Nitride barrier layer for protection of ONO structure from top oxide loss in a fabrication of SONOS flash memory |
US6510082B1 (en) * | 2001-10-23 | 2003-01-21 | Advanced Micro Devices, Inc. | Drain side sensing scheme for virtual ground flash EPROM array with adjacent bit charge and hold |
US6643181B2 (en) * | 2001-10-24 | 2003-11-04 | Saifun Semiconductors Ltd. | Method for erasing a memory cell |
US6639271B1 (en) * | 2001-12-20 | 2003-10-28 | Advanced Micro Devices, Inc. | Fully isolated dielectric memory cell structure for a dual bit nitride storage device and process for making same |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US6700818B2 (en) * | 2002-01-31 | 2004-03-02 | Saifun Semiconductors Ltd. | Method for operating a memory device |
US7190620B2 (en) * | 2002-01-31 | 2007-03-13 | Saifun Semiconductors Ltd. | Method for operating a memory device |
FR2835521B1 (en) * | 2002-02-04 | 2004-04-09 | Inst Francais Du Petrole | CATALYTIC COMPOSITION CONTAINING AN ALUMINOXANE FOR DIMERIZATION, CO-DIMERIZATION AND OLIGOMERIZATION OF OLEFINS |
WO2003073431A1 (en) * | 2002-02-28 | 2003-09-04 | Renesas Technology Corp. | Nonvolatile semiconductor memory device |
JP3891863B2 (en) * | 2002-03-07 | 2007-03-14 | 松下電器産業株式会社 | Semiconductor device and driving method of semiconductor device |
US6706595B2 (en) * | 2002-03-14 | 2004-03-16 | Advanced Micro Devices, Inc. | Hard mask process for memory device without bitline shorts |
US6587383B1 (en) * | 2002-03-19 | 2003-07-01 | Micron Technology, Inc. | Erase block architecture for non-volatile memory |
US6690602B1 (en) * | 2002-04-08 | 2004-02-10 | Advanced Micro Devices, Inc. | Algorithm dynamic reference programming |
US6996692B2 (en) * | 2002-04-17 | 2006-02-07 | Matsushita Electric Industrial Co., Ltd. | Nonvolatile semiconductor memory device and method for providing security for the same |
JP4260434B2 (en) * | 2002-07-16 | 2009-04-30 | 富士通マイクロエレクトロニクス株式会社 | Nonvolatile semiconductor memory and operation method thereof |
US6813189B2 (en) * | 2002-07-16 | 2004-11-02 | Fujitsu Limited | System for using a dynamic reference in a double-bit cell memory |
JP2004079602A (en) * | 2002-08-12 | 2004-03-11 | Fujitsu Ltd | Nonvolatile memory having trap layer |
US6992932B2 (en) * | 2002-10-29 | 2006-01-31 | Saifun Semiconductors Ltd | Method circuit and system for read error detection in a non-volatile memory array |
US7447667B2 (en) * | 2002-12-11 | 2008-11-04 | International Business Machines Corporation | Method and knowledge structures for reasoning about concepts, relations, and rules |
US7471932B2 (en) * | 2003-08-11 | 2008-12-30 | Nortel Networks Limited | System and method for embedding OFDM in CDMA systems |
US7447847B2 (en) * | 2004-07-19 | 2008-11-04 | Micron Technology, Inc. | Memory device trims |
-
2006
- 2006-01-18 CN CNA2006100059960A patent/CN1838328A/en active Pending
- 2006-01-18 CN CNA2006100059975A patent/CN1838323A/en active Pending
- 2006-01-18 EP EP06100526A patent/EP1684308A1/en not_active Withdrawn
- 2006-01-18 EP EP06100507A patent/EP1686592A3/en not_active Withdrawn
- 2006-01-18 EP EP06100524A patent/EP1684307A1/en not_active Withdrawn
- 2006-01-19 JP JP2006010811A patent/JP2006228406A/en active Pending
- 2006-01-19 US US11/335,318 patent/US7369440B2/en active Active
- 2006-01-19 CN CNA2006100054168A patent/CN1822233A/en active Pending
- 2006-01-19 JP JP2006010819A patent/JP2006228407A/en active Pending
- 2006-01-19 US US11/335,321 patent/US7468926B2/en not_active Expired - Fee Related
- 2006-01-19 JP JP2006010810A patent/JP2006228405A/en active Pending
- 2006-01-19 US US11/335,316 patent/US20060181934A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102385918A (en) * | 2010-08-26 | 2012-03-21 | 三星电子株式会社 | Nonvolatile memory device, operating method thereof and memory system including the same |
CN102385918B (en) * | 2010-08-26 | 2017-04-12 | 三星电子株式会社 | Nonvolatile memory device, operating method thereof and memory system including the same |
CN110838329A (en) * | 2018-08-17 | 2020-02-25 | 北京兆易创新科技股份有限公司 | Memory erasing method and system |
CN110838329B (en) * | 2018-08-17 | 2022-04-01 | 北京兆易创新科技股份有限公司 | Memory erasing method and system |
Also Published As
Publication number | Publication date |
---|---|
EP1684307A1 (en) | 2006-07-26 |
US20060158938A1 (en) | 2006-07-20 |
EP1684308A1 (en) | 2006-07-26 |
US7468926B2 (en) | 2008-12-23 |
US7369440B2 (en) | 2008-05-06 |
US20060181934A1 (en) | 2006-08-17 |
EP1686592A3 (en) | 2007-04-25 |
CN1838323A (en) | 2006-09-27 |
JP2006228406A (en) | 2006-08-31 |
US20060158940A1 (en) | 2006-07-20 |
CN1822233A (en) | 2006-08-23 |
EP1686592A2 (en) | 2006-08-02 |
JP2006228405A (en) | 2006-08-31 |
JP2006228407A (en) | 2006-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1838328A (en) | Method for erasing memory cell on memory array | |
US8305812B2 (en) | Flash memory module and method for programming a page of flash memory cells | |
KR100953045B1 (en) | Programming method of non volatile memory device | |
EP2417602B1 (en) | Two pass erase for non-volatile storage | |
US7564718B2 (en) | Method for programming a block of memory cells, non-volatile memory device and memory card device | |
CN102985976B (en) | Comprise the programming to nonvolatile memory of the impact reducing other storage unit | |
CN102959634B (en) | For reducing the serrate multiple-pulse programming of the programming noise in storer | |
US9330767B1 (en) | Flash memory module and method for programming a page of flash memory cells | |
CN1770326A (en) | Operation scheme for programming charge trapping non-volatile memory | |
CN1679117A (en) | Method of programming a multi-level memory device | |
CN1864231A (en) | Memory device and method using positive gate stress to recover overerased cell | |
CN1819055A (en) | Method for reading non-volatile memory cells | |
CN1575496A (en) | Non-volatile memory with block erase | |
US20100027348A1 (en) | Program method of flash memory device | |
CN1825484A (en) | Method for operating a memory device | |
CN1692448A (en) | Method of recovering overerased bits in a memory device | |
KR100908662B1 (en) | Nonvolatile semiconductor memory device | |
CN1945743A (en) | Erasing method for reducing erasing time and preventing over erasing | |
JP3965287B2 (en) | Nonvolatile semiconductor memory device and method for determining write time thereof | |
EP3891748B1 (en) | Method for programming in non-volatile memory device by applying multiple bitline bias voltages | |
US6188613B1 (en) | Device and method in a semiconductor memory for erasing/programming memory cells using erase/program speeds stored for each cell | |
US8576630B2 (en) | Non-volatile memory device with plural reference cells, and method of setting the reference cells | |
US20100226171A1 (en) | Method of programming nonvolatile memory device | |
TWI699772B (en) | Method and system to determine quick pass write operation in increment step pulse programming operation | |
CN112735500A (en) | Method and system for determining fast-pass write operation in step-by-step programming pulse operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |