Nothing Special   »   [go: up one dir, main page]

CN1890021B - 混合的金属氧化物吸附剂 - Google Patents

混合的金属氧化物吸附剂 Download PDF

Info

Publication number
CN1890021B
CN1890021B CN2004800360162A CN200480036016A CN1890021B CN 1890021 B CN1890021 B CN 1890021B CN 2004800360162 A CN2004800360162 A CN 2004800360162A CN 200480036016 A CN200480036016 A CN 200480036016A CN 1890021 B CN1890021 B CN 1890021B
Authority
CN
China
Prior art keywords
magnesium
aluminium
mixed
metal oxides
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800360162A
Other languages
English (en)
Other versions
CN1890021A (zh
Inventor
阿尔贝特·A·菲尔海利希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey Process Technologies Inc
Original Assignee
Intercat Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intercat Inc filed Critical Intercat Inc
Publication of CN1890021A publication Critical patent/CN1890021A/zh
Application granted granted Critical
Publication of CN1890021B publication Critical patent/CN1890021B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/162Magnesium aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/405Limiting CO, NOx or SOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及从流体流中降低SOx,NOx,和CO排放物的方法,该方法包括使所述流体流与包括镁和铝的化合物接触,该化合物的X-射线衍射图在2θ峰位的约43度和约62度显示出至少一个反射,其中在该化合物中镁与铝的比为约1∶1~约10∶1。在一个实施方案中,在该化合物中镁与铝的比为约1∶1~约6∶1。在一个实施方案中,在该化合物中镁与铝的比为约1.5∶1~约10∶1。在另一个实施方案中,本发明涉及其中在该化合物中镁与铝的比为约1.5∶1~约6∶1的方法。

Description

混合的金属氧化物吸附剂
在本申请中,参考了各种出版物。为了更全面地说明本文所述和要求保护的发明日之前的本领域的现有技术,在这里全文引入这些出版物的全部内容作为参考。
本专利文献的公开内容包含版权保护的材料。当本专利文献或专利公开内容出现在专利商标局的案卷或记录中时,版权所有人不反对对其进行传真复制,但是其他情况下要求所有的版权保护。
发明领域
本发明提供使用混合的金属氧化物从流体流中降低SOx,NOx和/或CO排放物的方法。
发明背景
催化裂化是一种大规模商业应用的石油精炼方法。在美国,大部分炼油厂的汽油掺合池都由这种方法制成,并且几乎所有的都使用流化催化裂化方法。在催化裂化过程中,重质烃馏份通过在催化剂存在下发生高温反应转化成轻质产品,其中大部分转化或裂化在气相中发生。因此,烃原料转化成汽油,蒸馏物和其他液体裂化产物以及每个分子中含四个或更少碳原子的轻质气态裂化产物。气体部分地由烯烃组成,部分地由饱和烃组成。
在催化裂化过程中,烃原料注射进烃裂化反应器的提升管部分,并在那里接触从催化剂再生器循环回提升管反应器的热催化剂,从而裂化成轻质有价值的产物。随着吸热的裂化反应发生,被称作焦炭的重质材料沉积在催化剂上。这样降低了催化剂的活性,因而需要催化剂再生。催化剂和烃蒸汽上升到提升管,再到反应器的分离部分,在那里得以分离。随后,催化剂流进抽提部分,催化剂所带的烃蒸汽在那里通过气流注射被抽提。从废裂化催化剂除去吸附的烃之后,抽提的催化剂流经废催化剂竖管并进入催化剂再生器。
通常,通过将空气通入再生器,并烧掉焦炭以恢复催化剂活性,由些实现催化剂再生。这些焦炭燃烧反应是高度放热的,并加热催化剂。热的再活化催化剂流经再生的催化剂竖管,返回到提升管,从而完成催化剂循环。焦炭燃烧废气流升至再生器的顶部,通过再生器烟道离开再生器。废气通常含有NOx,SOx,CO,氧,氨,氮和CO2
因此,可以区分催化裂化的三个特征步骤:1)裂化步骤,其中烃转化成轻质产物,2)抽提步骤,除去吸附在催化剂上的烃,和3)再生步骤,从催化剂中烧掉焦炭。然后再生的催化剂重新用于裂化步骤。
催化剂再生器可以按完全燃烧方式操作(目前已成为标准燃烧方式),按部分CO燃烧方式,或完全/部分燃烧双重方式。在完成燃烧操作中,催化剂上的焦炭完全燃烧成CO2。这通常可以在过量氧(过量空气)存在下进行再生来实现。完全燃烧操作的废气包括NOx,SOx,CO2,氮和氧。
在部分一氧化碳燃烧方式操作中,催化剂再生器的操作中不足量的空气将催化剂中的焦炭烧成CO2。因此,焦炭燃烧成CO和CO2的混合物。可选择地,CO可以在下流的CO锅炉中氧化成CO2。CO锅炉的流出物包括NOx,SOx,CO2和氮。
工业上已经使用了几种技术来降低裂化催化剂再生器废气中的SOx,NOx和CO。这些技术包括资本密集昂贵的方案,如用氢预处理反应器和烟道气后处理方案,和不太昂贵的方案,如使用催化剂和催化剂添加剂。
早期的技术使用氧化铝化合物作为裂化催化剂的添加剂,以吸附FCC再生器中的氧化硫;在循环的裂化部分中,进入过程的吸附的硫化合物作为硫化氢被释放,并经过单元的产物回收部分被除去。然而,尽管随后在此过程中从再生器的烟道气中除去硫,但是产物中硫水平未受到很大影响。
本领域中公知的是,可以用NH3从烟道气中除去NOx,NH3是一种选择性还原剂,它不能与烟道气中的过量氧发生快速反应。已知发展了两种类型的NH3过程,加热型和催化型。加热过程是高温下的均相气相过程,通常约1550~1990℉。催化体系通常在更低温度下进行,通常300~850℉。美国专利4,521,389公开了将NH3加到烟道气中,催化性地将NOx还原成氮。这些还原NOx的烟道气处理是有效的,但是投资和操作成本高。还原FCC单元的烟道气中的NOx和CO的可选择组合物和方法公开在2003年8月13日提交的共同未决的美国专利申请10/639,688中。
工业实验室中持续尝试找到从FCC单元的排放物中降低NOx,SOx和CO浓度的新和改进的方法,以降低大气污染。本发明涉及这些和其他重要的目的。
发明概述
本发明涉及从流体流中降低SOx,NOx,和CO排放物的方法,该方法包括使该流体流与包括镁和铝的化合物接触,该化合物其X-射线衍射图在2θ峰位的约43度和约62度表现出至少一个反射,其中在该化合物中镁与铝的比为约1∶1~约10∶1。在一个实施方案中,在该化合物中镁与铝的比为约1∶1~约6∶1。在一个实施方案中,在该化合物中镁与铝的比为约1.5∶1~约10∶1。在另一个实施方案中,在该化合物中镁与铝的比为约1.5∶1~约6∶1。这些化合物可以单独用于降低SOx,NOx和/或CO排放物,或可选择地与金属氧化剂,载体,或其他成分一起用于降低SOx,NOx和/或CO排放物。这些化合物可以是浆料或成形体形式。成形体可以是干燥的成形体和/或焙烧的成形体。
本发明还涉及从流体流中降低SOx,NOx和CO排放物的方法,该方法包括使所述流体流与化合物接触,其中该化合物包括(i)包括镁和铝的混合金属氧化物,其X-射线衍射图在2θ峰位的43度和62度显示出至少一个反射,其中在该混合金属氧化物中镁与铝的比为1∶1~10∶1,和(ii)1wt%~75wt%的类水滑石组合物。此外,在本发明所述的方法中,该化合物包括(i)99wt%~50wt%的包括镁和铝的混合金属氧化物,和(ii)1wt%~50wt%的类水滑石化合物。此外,在本发明所述的方法中,该化合物包括(i)99wt%~75wt%的包括镁和铝的混合金属氧化物,和(ii)1wt%~25wt%的类水滑石化合物。
附图简要说明
图1是Mg/Al比为2.5的铝酸镁化合物的浆料的XRD。
图2是Mg/Al比为2.5的干燥的铝酸镁化合物的XRD,其是类水滑石化合物的前体。
图3是Mg/Al比为2.5的焙烧的铝酸镁化合物的浆料的XRD,其是类水滑石化合物的前体。
图4是Mg∶Al比为2∶1的铝酸镁化合物的XRD图,其中浆料在步骤(b)中在约80~85℃下被加热。
图5是Mg∶Al比为2∶1的铝酸镁化合物的XRD图,其中浆料在步骤(b)中在约80~85℃下被加热,加热时间比图4所示的铝酸镁化合物长。
图6表明图4所示的相的结晶部分,其中在XRD图中减去图4中的无定形材料。
图7表明在制备各阶段本发明的铝酸镁化合物的XRD图。在图7中底部XRD图是类水滑石化合物。
图8焙烧的铝酸镁化合物的XRD图,其是类水滑石化合物的前体。焙烧的铝酸镁化合物其Mg∶Al比从上到下为2∶1、3∶1和5∶1。
图9表明0.5Mg∶Al尖晶石化合物的XRD图,作为比较例。
图10表明0.8Mg∶Al尖晶石化合物的XRD图,作为比较例。
图11表明本发明的3.0Mg∶Al喷雾-干燥的组合物的XRD图。
图12表明在600℃下焙烧的本发明的3.0Mg∶Al组合物的XRD图。
图13表明在600℃下焙烧的本发明的4.0Mg∶Al组合物的XRD图。
发明详细说明
出人意料地发现,本发明的混合的金属氧化物(也称作前体,公开在美国专利6,028,023,6,479,421,和共同未决的2002年11月7日提交的美国专利申请10/290,012和2003年5月23日提交的美国专利申请10/444,629中)可用于降低流体流中的SOx,NOx和/或CO排放物。因此,本发明涉及从流体流中降低SOx,NOx,和CO排放物的方法,该方法包括使该流体流与包括镁和铝的化合物接触,该化合物其X-射线衍射图在2θ峰位的约43度和约62度表现出至少一个反射,其中在该化合物中镁与铝的比为约1∶1~约10∶1。在一个实施方案中,在该化合物中镁与铝的比为约1∶1~约6∶1。在一个实施方案中,在该化合物中镁与铝的比为约1.5∶1~约10∶1。在另一个实施方案中,在该化合物中镁与铝的比为约1.5∶1~约6∶1。
本文中,术语″XRD″指x-射线衍射。
本文中,术语″FCC″指流化催化裂化。
在一个实施方案中,本发明提供从流体流中降低SOx,NOx和/或CO排放物的方法,该方法包括使混合的金属氧化物与该流体流接触。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该混合的金属氧化物本身用作添加剂以降低SOx,NOx和/或CO排放物。在一个实施方案中,该混合的金属氧化物是成形体形式。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该流体流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括混合的金属氧化物的一种或多种成形体和一种或多种金属氧化剂加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该金属氧化剂中的金属是锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。在另一个实施方案中,该金属氧化剂中的金属是钴,铜,或其混合物。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括混合的金属氧化物的一种或多种成形体和载体加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该载体是尖晶石,类水滑石化合物,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,钛酸铝,钛酸锌,铝酸锌,钛酸锌/铝酸锌,锆酸铝,氧化钙,铝酸钙,硝基水合铝,氢氧化铝化合物,含铝金属氧化物(例如,除了氧化铝或氢氧化铝化合物),水合氯化铝,氧化钛,氧化锆,粘土(例如,多水高岭石,累托石,汉克特石,蒙脱石,合成蒙脱石,海泡石,活化的海泡石,高岭土),粘土磷酸盐物质,沸石,或两种或多种的混合物。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括混合的金属氧化物的一种或多种成形体;一种或多种金属氧化剂;和载体加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括约99wt%~约1wt%混合的金属氧化物和约1wt%~约99wt%类水滑石化合物的一种或多种成形体加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括(i)约99wt%~约1wt%混合的金属氧化物,(ii)约1wt%~约99wt%类水滑石化合物,和(iii)一种或多种金属氧化剂的一种或多种成形体加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该金属氧化剂中的金属是锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。在另一个实施方案中,该金属氧化剂中的金属是钴,铜,或其混合物。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括(i)约99wt%~约1wt%混合的金属氧化物,(ii)约1wt%~约99wt%类水滑石化合物,和(iii)载体氧化剂的一种或多种成形体加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该载体是尖晶石,类水滑石化合物,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,钛酸铝,钛酸锌,铝酸锌,钛酸锌/铝酸锌,锆酸铝,氧化钙,铝酸钙,硝基水合铝,氢氧化铝化合物,含铝金属氧化物(例如,除了氧化铝或氢氧化铝化合物),水合氯化铝,氧化钛,氧化锆,粘土(例如,多水高岭石,累托石,汉克特石,蒙脱石,合成蒙脱石,海泡石,活化的海泡石,高岭土),粘土磷酸盐物质,沸石,或两种或多种的混合物。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在另一个实施方案中,本发明提供从气流中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括(i)约99wt%~约1wt%混合的金属氧化物,(ii)约1wt%~约99wt%类水滑石化合物,(iii)一种或多种金属氧化剂,和(iv)载体的一种或多种成形体加到该气流中。在一个实施方案中,该混合的金属氧化物是铝酸镁化合物。在另一个实施方案中,该混合的金属氧化物是固溶体形式。在另一个实施方案中,该混合的金属氧化物是类水滑石化合物的前体。在一个实施方案中,该成形体是干燥的,焙烧的或其混合物。在另一个实施方案中,该气流是流化催化裂化单元。
在所述的本发明一些实施方案中,按氧化物当量计,该金属氧化剂的存在量达到约50wt%;约0.1wt%~约40wt%;约1wt%~约30wt%;约1wt%~约25wt%;约1wt%~约20wt%;约1wt%~约15wt%;或约1wt%~约10wt%。在一个实施方案中,该固体载体存在量达到约50wt%;约1wt%~约30wt%;约1wt%~约20wt%;约1wt%~约15wt%;约1wt%~约10wt%;或约1wt%~约5wt%。
下面更详细地说明本发明的这些和其他方面。在一个实施方案中,本发明提供从气流(例如,FCC单元)中降低SOx,NOx和/或CO排放物的方法,该方法包括将混合的金属氧化物加到该气流中。在一个实施方案中,该混合的金属氧化物是成形体形式。在另一个实施方案中,该成形体是干燥的成形体和/或焙烧的成形体。
在另一个实施方案中,本发明提供从气流(例如,FCC单元)中降低SOx,NOx和/或CO排放物的方法,该方法包括将包括混合的金属氧化物的组合物加到该气流中。在一个实施方案中,该组合物是SOx,NOx和/或CO吸附剂。在另一个实施方案中,该组合物是成形体形式,如干燥的成形体和/或焙烧的成形体。在一个实施方案中,该组合物可选择地还包括一种或多种金属氧化剂和/或载体。
为从烟道气中降低NOx,将包括本发明的混合的金属氧化物的组合物引入FCC再生器,并在该FCC反应器和该再生器间连续循环。本发明的组合物可以出人意料的小量使用来降低NOx和CO排放物。例如,本发明的组合物使用量约1ppm~约1000ppm,约2ppm~约500ppm;约50ppm~约250ppm;或约100ppm~约200ppm。可选择地,本发明的组合物使用量占该FCC再生器中总催化剂的循环藏量的约0.001wt%~约5wt%;占该FCC再生器中总催化剂的循环藏量的约0.001wt%~约1wt%;或占该FCC再生器中总催化剂的循环藏量的约0.01wt%~约0.1wt%。本发明的组合物可以在约2小时或更少;约1小时或更少;约30分钟或更少;约15分钟或更少;或约5分钟或更少的时间内从FCC单元降低NOx和/或CO排放物。
在另一个实施方案中,本发明的组合物从FCC单元的再生器和/或FCC单元的烟道中的烟道气降低CO排放物。在一个实施方案中,本发明提供用于降低FCC单元的烟道中的CO的烟道气处理,包括将包括铜和/或钴和载体的组合物加到该FCC单元的再生器中。在另一个实施方案中,本发明提供从该FCC单元的再生器降低CO排放物的方法,包括将包括铜和/或钴和载体的组合物加到该FCC单元的再生器中。在另一个实施方案中,本发明提供用于降低FCC单元的烟道中的CO和用于从该FCC单元的再生器降低CO排放物的方法,包括将包括铜和/或钴和载体的组合物加到该FCC单元的再生器中。该载体可以是类水滑石化合物,尖晶石,氧化铝,氧化硅,铝酸钙,硅酸铝,钛酸铝,钛酸锌,锆酸铝,铝酸镁,氢氧化铝,除了粘土的含铝金属氧化物,氧化镁,氧化镧,氧化锆,氧化钛,粘土/磷酸盐物质,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,含水硅酸镁,硅酸镁,硅酸钙镁,氧化硼,硅酸钙,氧化钙,硝基水合铝,水合氯化铝,氧化硅/氧化铝,沸石(例如,ZSM-5),或两种或多种的混合物。在一个实施方案中,该载体是类水滑石化合物,尖晶石,氧化铝,钛酸锌,铝酸锌或铝酸锌。
在另一个实施方案中,本发明的组合物可以与CO燃烧促进剂一起使用,如铂和/或氧化铝CO燃烧促进剂。使用按该再生器的藏量计0.01~100重量ppm Pt金属可以得到良好结果。在该单元中的催化剂上存在少至0.1~10重量ppm铂可以得到极好结果。
任何常规FCC物料都可用于FCC单元中。物料范围可以是典型物料,如石油蒸馏物或残余油料,或者是原始的或者是部分精炼的,可以是非典型物料,如煤油和鲸油。物料经常含有再循环烃,如已进行过裂化的轻质和重质循环油。优选的物料是汽油,真空汽油,大气残油,和真空残油。
可以使用任何商业上可得到的FCC催化剂。催化剂可以是100%无定形的,但是优选地包括一些多孔难熔基质(如氧化硅-氧化铝,粘土等)中的沸石。沸石通常占催化剂的约5~约40wt%,其余的是基质。可以使用常规沸石,如Y沸石或这些沸石的铝缺失形式,如脱铝Y,超稳定Y和超疏水性Y。沸石可以用稀土稳定,例如,其量约0.1~约10wt%。在本发明中可以使用含有相对较高氧化硅沸石的催化剂。它们可以承受通常与FCC再生器内将CO完全燃烧成CO2的高温。这种催化剂包括含有约10~约40%超稳定Y或稀土超稳定Y的那些催化剂。
催化剂藏量也可以含有一种或多种添加剂,可按单独的添加剂粒子存在,或与裂化催化剂的每个粒子混合。添加剂可以加入以增强辛烷值,如中孔径的沸石,例如ZSM-5,和其他具有相似晶体结构的材料。
可以使用常规提升管裂化条件。通常提升管裂化反应条件包括催化剂/油比为约0.5∶1~约15∶1,催化剂接触时间为约0.1~约50秒,和提升管顶部温度为约900~约1050℉。重要的是,使用常规技术,如加入大量雾化流,使用多个喷嘴,使用雾化喷嘴和相似技术,在提升管反应器的基部中,使物料与催化剂良好地混合。提升管的基部可以包括提升管催化剂加速区。优选的是将提升管反应器放到封闭的涡旋系统中,以快速有效地从废催化剂中分离裂化的产物。
本发明的化合物,组合物和/或成形体可根据美国专利6,028,023所述的方法制备。在一个实施方案中,该化合物,组合物和成形体按如下过程制备:
(a)使包括至少一种二价金属化合物和至少一种三价金属化合物的混合物反应,制备浆料形式的混合的金属氧化物;
(b)在达到约225℃的温度下加热处理步骤(a)的混合的金属氧化物浆料,制备加热处理的浆料形式的混合的金属氧化物;
(c)干燥步骤(b)的加热处理的化合物,制备混合的金属氧化物的一种或多种成形体;和,可选择地,
(d)约300℃或更高的温度下加热处理步骤(c)的化合物,制备混合的金属氧化物的一种或多种焙烧的成形体。
在一个实施方案中,该混合物是水性混合物,该浆料是水性浆料。
步骤(a)-(d)可以连续和/或间歇方式进行。术语“水性浆料”和“浆料”包括例如溶胶溶液,凝胶和糊状物。在制备本发明的混合的金属氧化物的成形体的方法中,可选择地,在步骤(b)的加热处理中,可以将溶剂加到浆料。溶剂例如可以是乙酸,丙酸,蚁酸,丁酸,戊酸,硝酸,氢氧化铵,水等。在一个实施方案中,溶剂是乙酸。
二价金属化合物中的二价金属阳离子例如可以是Mg2+,Ca2+,Zn2+,Mn2+,Co2+,Ni2+,Sr2+,Ba2+,Cu2+,或两种或多种的混合物。在一个实施方案中,该二价金属阳离子是Mg2+。二价金属化合物在本领域中是公知的。含有Mg2+的示例性二价金属化合物包括氧化镁,羟基醋酸镁,醋酸镁,氢氧化镁,硝酸镁,氢氧化镁,碳酸镁,甲酸镁,氢化镁,铝酸镁,含水硅酸镁,硅酸钙镁,含镁粘土(例如,白云石,皂石,海泡石)和两种或多种的混合物。
三价金属化合物中的三价金属阳离子例如可以是Al3+,Mn3+,Fe3+,Co3+,Ni3+,Cr3+,Ga3+,B3+,La3+,Gl3+,或两种或多种的混合物。在一个实施方案中,该三价金属阳离子是Al3+。三价金属化合物在本领域中是公知的。含有Al3+的示例性三价金属化合物包括水合氢氧化铝,氧化铝,醋酸铝,硝酸铝,氢氧化铝,碳酸铝,甲酸铝,氯化铝,含水硅酸铝,硅酸钙铝,过渡型氧化铝,三水合铝(例如,水铝矿,三羟铝石,焙烧的氧化铝),氧化铝溶胶,无定形氧化铝,拟薄水铝石,含铝粘土(例如,高岭土,海泡石,水滑石,斑脱土,偏高岭土),铝酸钠,和两种或多种的混合物。
在本发明的混合的金属氧化物中,二价金属阳离子(例如,Mg2+)与三价金属阳离子(例如,Al3+)的比可以为约1∶1~约10∶1;约1.1∶1~约6∶1;约1.2∶1~约5∶1;约1.3∶1~约5∶1;约1.4∶1~约5∶1;约1.5∶1~约5∶1;约1.6∶1~约5∶1;约1.7∶1~约5∶1;约1.8∶1~约5∶1;约1.9∶1~约5∶1;或约2∶1~约5∶1。
在步骤(a)之前,二价金属化合物可制备成浆料形式,三价金属化合物可制备成浆料形式。二价金属化合物和三价金属化合物可以单独制成浆料形式,然后混合到一起;或将含有二价金属化合物和三价金属化合物的浆料形式的混合物同时混合到一起。
在一个实施方案中,步骤(a)中的水性反应混合物还可以包括一种或多种其他金属成分,如锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。金属可以是单质态和/或金属氧化物,金属硫化物,金属卤化物,或两种或多种的混合物形式。在一个实施方案中,水性反应混合物还包括铜(例如,CuO),钴(例如CoO),钒(例如,V2O5),钛(TiO2),镧(La2O3),铈(例如CeO2),钨,或两种或多种的混合物。在另一个实施方案中,水性反应混合物还包括铜(例如,CuO),钴(例如CoO),钒(例如,V2O5),铈(例如CeO2),或两种或多种的混合物。按氧化物当量计,一种或多种金属成分(或其氧化物,硫化物,和/或卤化物)在水性反应混合物中的量达到约40wt%;或约1%~约25wt%;或约2%~约20wt%。一种或多种其他金属成分可以在将至少一种二价金属化合物和至少一种三价金属化合物混合到一起形成水性浆料的同时加到水性反应混合物中。
步骤(b)的加热处理水性浆料可以通过在约50℃~小于225℃的温度下;在约60℃~200℃的温度下;在约70℃~150℃的温度下;在约75℃~100℃的温度下;或在约80℃~85℃的温度下,加热处理水性浆料来进行。低温加热处理步骤可以进行约10分钟至约24小时或更久。低温加热处理通常在空气中或在惰性气氛中在大气压进行。在一个实施方案中,使用蒸汽注射,加热套,加热圈,和/或高压釜实现低温加热处理步骤。低温加热处理不能形成干化合物;相反,形成加热处理的水性浆料。
在另一个实施方案中,一种或多种其他金属成分(例如,金属,下述元素的氧化物,硫化物和/或卤化物:锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物)可以在步骤(b)之前、过程中和/或之后加到水性浆料中。
在进行低温加热处理之后,干燥加热处理的水性浆料。干燥步骤(c)可以通过例如喷雾干燥、转鼓干燥、快速干燥、隧道干燥等来实现。在一个实施方案中,干燥步骤通过喷雾干燥来实现。干燥后,混合的金属氧化物可以是成形体形式(例如,粒子,晶粒,小球,粉末,压出物,球,颗粒,和两种或多种的混合物)。干燥步骤用于产生具有特定形状的成形体。本文所述的干燥的混合的金属氧化物可用在FCC单元中降低SOx,NOx和/或CO排放物。
步骤(d)也可以在约300℃~1,600℃的温度;或约300℃~850℃的温度;或约400℃~500℃的温度下进行。在其他实施方案中,步骤(d)在约300℃~850℃的温度;或约500℃~850℃的温度;或约550℃~850℃的温度;或约600℃~850℃的温度下进行。高温加热处理通常在空气中在大气压下进。高温加热处理步骤可以进行约10分钟至约24小时或更久;约1小时至约18小时;或约1小时至约10小时。高温加热处理步骤可以在空气中,在惰性环境中,在氧化环境中(例如,比“正常”空气中更高量的氧),或在还原环境中进行。在一个实施方案中,高温加热处理步骤在空气中进行。本文所述的焙烧的混合的金属氧化物可用在FCC单元中降低SOx,NOx和/或CO排放物。
包括混合的金属氧化物的干燥和/或焙烧的成形体通常其磨损小于4;小于3;小于2.5,小于2.4,小于2.3,小于2.2,或小于2.1;优选小于2;小于1.9;小于1.8;小于1.7,小于1.6或小于1.5。在其他实施方案中,混合的金属氧化物的磨损可以小于1.4;小于1.3;小于1.2;小于1.1;小于1.0;小于0.9;小于0.8;或小于0.7。通过ASTMD5757方法,在第一和第二小时之间或第一和第五小时之间,测量混合的金属氧化物的磨损。
在一个实施方案中,该混合的金属氧化物是包括约1.1~约6∶1比的镁和铝的固溶体铝酸镁,其中焙烧的形式的固溶体铝酸镁其X-射线衍射图在2θ峰位的约43度和约62度表现出至少一个反射。在其他实施方案中,镁与铝的比是1.1∶1~6∶1;1.2∶1~5∶1;1.3∶1~5∶1;1.4∶1~5∶1;1.5∶1~5∶1;1.6∶1~5∶1;1.7∶1~5∶1;1.8∶1~5∶1;1.9∶1~5∶1;或2∶1~5∶1。按氧化物当量计(即MgO),该组合物,总体上,可以包括至少38wt%的镁。可选择地,按氧化物当量计(即MgO),该组合物,总体上,可以包括至少39wt%,40wt%,41wt%,42wt%,43wt%,44wt%,45wt%,或50wt%的镁。固溶体可以是浆料形式,干燥的成形体和/或焙烧的成形体。固溶体本身可以用于所述的方法中,或固溶体可用在含有其他成分(例如,金属氧化剂载体)的组合物中。
该成形体可以包括固溶体铝酸镁,一种或多种金属氧化剂,和,可选择地载体;其中该金属氧化剂中的金属是锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。在一个实施方案中,该组合物包括铜(例如,CuO),钴(例如CoO),钒(例如,V2O5),钛(TiO2),镧(La2O3),铈(例如CeO2),钨,或两种或多种的混合物。在另一个实施方案中,该组合物包括铜(例如,CuO),钴(例如CoO),钒(例如,V2O5),铈(例如CeO2),或两种或多种的混合物。在另一个实施方案中,该组合物包括铜(例如,CuO)和/或钴(例如CoO)。在另一个实施方案中,该组合物包括钒(例如,V2O5)和/或铈(例如CeO2),载体可以是尖晶石和/或类水滑石化合物。
在本发明的一个实施方案中,铝酸镁化合物不是尖晶石;不衍生于类水滑石化合物;和不是类水滑石化合物。优选的是,本发明的铝酸镁化合物不衍生于类水滑石化合物。然而,包括铝酸镁化合物的本发明的组合物还包括其他成分,如尖晶石,衍生于类水滑石化合物的化合物和/或类水滑石化合物。
在本发明的其他实施方案中,本发明提供从FCC单元中降低SOx,NOx和CO排放物的方法,该方法包括使用包括(i)99wt%~1wt%混合的金属氧化物和(ii)1wt%~99wt%类水滑石化合物的一种或多种成形体。在其他实施方案中,该成形体包括约95wt%~约20wt%混合的金属氧化物(其是类水滑石化合物的前体)和约5wt%~约80wt%的类水滑石化合物。在另一个实施方案中,该成形体包括约95wt%~约25wt%混合的金属氧化物(其是类水滑石化合物的前体)和约5wt%~约75wt%的类水滑石化合物。在另一个实施方案中,该成形体包括约95wt%~约50wt%混合的金属氧化物(其是类水滑石化合物的前体)和约5wt%~约50wt%的类水滑石化合物。在另一个实施方案中,该成形体包括约95wt%~约75wt%混合的金属氧化物(其是类水滑石化合物的前体)和约5wt%~约25wt%的类水滑石化合物。在本发明实施方案中的成形体可选择地还包括一种或多种金属氧化剂和/或载体,从FCC单元中降低SOx,NOx和/或CO排放物。
在本发明的此实施方案中,可以按照美国专利6,028,023所述的方法制备成形体,其中在上述步骤(a)过程中;在上述步骤(b)之前、过程中和/或之后;和/或在上述步骤(c)之前、过程中和/或之后,加入类水滑石化合物。
类水滑石化合物的特征在于,其结构具有正电荷层,各层被空隙阴离子和/或水分子分开。类水滑石化合物的示例性天然矿物包括羟镁铝石,碳酸镁铁矿,磷铜铁矿,水滑石,陨菱铁镍矿,镍锌水滑石(eardleyite),mannaseite,水镁铬矿和水铝钙石。其他类水滑石化合物和其制备方法公开在Cavani等人,Catalysis Today,11:173-301(1991),其全部公开内容在此入作为参考。
在其他实施方案中,类水滑石化合物可以是式(I),(II),(III)和/或(IV)的化合物:
(X2+ mY3+ n(OH)2m+2n)An/a a-·bH2O      (I)
(Mg2+ mAl3+ n(OH)2m+2n)An/a a-·bH2O    (II)
(X2+ mY3+ n(OH)2m+2n)OHn -·bH2O        (III)
(Mg2+ mAl3+ n(OH)2m+2n)OHn -·bH2O      (IV)
其中X是镁,钙,锌,锰,钴,镍,锶,钡,铜或两种或多种的混合物;Y是铝,锰,铁,钴,镍,铬,镓,硼,镧,铈或两种或多种的混合物;A是CO3,NO3,SO4,Cl,OH,Cr,I,SiO3,HPO3,MnO4,HGaO3,HVO4,ClO4,BO3或两种或多种的混合物;a是1,2或3;b是0~10;和选择m和n使得m/n的比为约1~约10。
在一个实施方案中,该类水滑石化合物是水滑石,即,Mg6Al2(OH)16CO3·4H2O。在另一个实施方案中,该类水滑石化合物是Mg6Al2(OH)18·4.5H2O。
本发明的成形体可以包括载体。示例性的载体包括尖晶石,类水滑石化合物,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,钛酸铝,钛酸锌,锆酸铝,氧化钙,铝酸钙,硝基水合铝,氢氧化铝化合物,含铝金属氧化物(例如,除了氧化铝或氢氧化铝化合物),水合氯化铝,氧化钛,氧化锆,粘土(例如,多水高岭石,累托石,汉克特石,蒙脱石,合成蒙脱石,海泡石,活化的海泡石,高岭土),粘土磷酸盐物质,沸石,或两种或多种的混合物。在一个实施方案中,该载体,钛酸锌,铝酸锌,或铝酸锌。制备这种组合物的方法公开在例如WO 99/42201中,在此引入其全部内容作为参考。
在另一个实施方案中,本发明提供从流化催化裂化单元降低SOx排放物,NOx排放物和/或CO排放物的方法,该方法包括将所述的成形体加到FCC单元中,用于从FCC单元降低CO,SOx和/或NOx排放物。该成形体优选地加到该FCC单元的再生器中。
本发明的成形体可以加到任何常规反应器-再生器系统中,加到沸腾催化剂床系统,加到在反应区和再生区等之间连续运送或循环催化剂/添加剂的系统。循环床系统是优选的。常见的循环床系统是常规移动床和流化床反应器-再生器系统。这些循环床系统都可方便地用在烃转化(例如,烃裂化)操作中,其中流化催化剂床反应器-再生器系统是优选的。
为从FCC单元降低CO,SOx,和/或NOx,所述的成形体被引入该FCC单元的再生器中,并在FCC反应器和再生器之间连续循环。所述的成形体使用量至少2ppm;使用量至少占该再生器藏量的约5%;或使用量至少占该再生器藏量的约10%。
在另一个实施方案中,所述的成形体可以在本领域公知的反应中用作催化剂,例如,碱催化(例如,环氧化物的聚合,醛和酮的醇醛缩合);用水重整烃(例如,石脑油和CH4);氢化反应(例如,从合成气制备CH4,CH3OH,高级醇,石蜡和烯烃,硝基苯的氢化);氧化反应;Ziegler-Natta催化剂的载体,和其他粒子强度很重要的应用。
在另一个实施方案中,本发明的成形体可以有效量使用用作阻燃剂。
在另一个实施方案中,本发明的成形体可以用作成型剂。例如,本发明的成形体可用于制造模制的耐热电绝缘元件,如开关板,电容器,绝缘线等。
在其他实施方案中,本发明的成形体可用作油漆和涂料组合物中的耐腐蚀剂或用作电解电容器的间隔板。
在其他实施方案中,本发明的成形体可用作其他金属的载体,如银,金,锌,镉,锗,锡,铅,铬,钼,钨,锰,铼,铁,钴,镍,钌,铑,钯,锇,铱,铂,铈,铜,钛,铋,锑,铌,钽,钒,锑,或两种或多种的混合物。金属可以是单质态和/或氧化物,硫化物和/或卤化物形式。在一个实施方案中,本发明的成形体用作铜(例如,CuO),钴(例如CoO),钒(例如,V2O5),钛(TiO2),镧(La2O3),铈(例如CeO2),钨,或两种或多种的混合物的载体。
在另一个实施方案中,本发明的成形体可按治疗有效量用于药物组合物中,用于治疗患有胃肠道疾病的患者。这种组合物优选口服给予,可以是固体剂型,例如片剂,胶囊等。
实施例
下面的实施例仅用于解释说明,但不用于限制权利要求的范围。
实施例1
MgO粉末(表面积约100m2/g)(MAGOX,Premier Chemicals,Cleveland,OH)在水中形成浆料,固体含量约14%。随后,将5.2%技术级乙酸加到MgO浆料中。
单独地将拟薄水铝石(P2
Figure GSB00000329066600201
Condea)分散在水中,固体含量8%,制得氧化铝溶胶。
在容器中混合MgO浆料和氧化铝溶胶,使得制剂中Mg/Al的摩尔比是2.5。再加入水,使得生成的混合物中固体含量为约9.5%。在约5小时内将混合物加热到约214℉。从混合物中提取浆料样品,进行下面的分析。喷雾干燥浆料样品,将喷雾-干燥的粒子在550℃下焙烧1小时。
在制备混合物后,从混合物中立即提取样品,样品的XRD如图1所示。
然后喷雾干燥(即,进口温度400℃和出口温度150℃),其XRD如图2所示。
然后在550℃下焙烧样品1小时,其XRD如图3所示。
实施例2
按下面和美国专利6,028,023所述的方法制备铝酸镁化合物(类水滑石化合物的前体),其全部内容在此入作为参考。
示例性的铝酸镁(其是类水滑石化合物的前体),其中镁与铝的比是2∶1,其X-射线衍射图如图4和图5所示。在约80-85℃下加热处理铝酸镁(即,上述步骤(b))。图6表明图4所示的相的结晶部分,其中在图6所示的XRD图中减去图4中的无定形材料。
图7表明所述过程各步骤中晶体结构的变化。上部XRD图(标示为″加热老化前的2Mg/1Al HTL前体″)表明对于镁与铝比为2∶1的铝酸镁化合物在进行步骤(b)之前,所述过程步骤(a)的产物。从上数第二个XRD图(标示为″加热老化后的2Mg/1Al HTL前体″)表明所述过程步骤(b)的产物。从上数第三个XRD图(标示为″加热处理″)表明所述过程的焙烧步骤(d)的产物。
图7中的底部XRD图(标示为″加热处理+水合物(活化的HTL)″)表明类水滑石化合物的XRD图,在约11.271度,约22.7度和约34.4度出现峰。图7包括在合成反应中加入的CeO2成分的作用,其最明显的峰出现在28.6度,47.5度和56.3度。XRD图证实本发明的铝酸镁化合物是类水滑石化合物的前体。
图8表明在所述过程的焙烧步骤(d)后,铝酸镁化合物(类水滑石化合物的前体)的XRD图,其中焙烧步骤在500℃下进行小时。上部XRD图是Mg∶Al比2∶1的铝酸镁化合物。中间XRD图是Mg∶Al比3∶1的铝酸镁化合物。底部XRD图是Mg∶Al比5∶1的铝酸镁化合物。
实施例3
为进行对比,用0.5的Mg∶Al并包括铈和钒氧化物的氧化剂制备镁铝组合物。按无损失计,Al2O3,MgO,CeO2和V2O5的相对比是57.0,22.5,16.0,和8.5。通过在剧烈搅拌条件下,将1119g拟薄水铝石(P2
Figure GSB00000329066600211
Condea)分散在6461g水中制备该组合物。单独地,将106g乙酸,2492g水和321g氧化镁粉末(MAGOX,Premier Chemicals)混合在一起。完成后,将氧化铝溶胶和6000g水加到氧化镁浆料中。均匀混合混合物后,加入456g草酸钒溶液和774g硝酸铈溶液,并混合10分钟。喷雾-干燥生成的浆料,制备微球状粒子。喷雾干燥后,将粉末在600℃的箱式炉中焙烧1小时。
如图9所示,对生成的粉末进行X-射线衍射分析,表明主要的镁铝化合物是在美国专利4,469,589和4,472,267中所述的尖晶石相。
实施例4
为进行对比,用0.8的Mg∶Al并包括铈和钒氧化物的氧化剂制备镁铝组合物。按无损失计,Al2O3,MgO,CeO2和V2O5的相对比是48.7,30.8,16.0,和4.5。通过在剧烈搅拌条件下,将638g拟薄水铝石(CondeaP2)分散在3044g水中制备该组合物。单独地,将97g乙酸,2272g水和292.8g氧化镁粉末(MAGOX,Premier Chemicals)混合在一起。完成后,将氧化铝溶胶和4000g水加到氧化镁浆料中。均匀混合混合物后,加入304g草酸钒溶液和516g硝酸铈溶液,并混合10分钟。喷雾-干燥生成的浆料,制备微球状粒子。喷雾干燥后,将粉末在600℃的箱式炉中焙烧1小时。
如图10所示,对生成的粉末进行X-射线衍射分析,表明主要的镁铝化合物是在美国专利4,469,589和4,472,267中所述的尖晶石相。还存在少量的本发明的镁铝氧化物。
实施例5
[0097]用3.0的Mg∶Al并包括铈和钒氧化物的氧化剂制备镁铝组合物。按无损失计,Al2O3,MgO,CeO2和V2O5的相对比是23.6,55.9,16.0,和4.5。通过在剧烈搅拌条件下,将309g拟薄水铝石(Condea P2)分散在1473g水中制备该组合物。单独地,将176g乙酸,4124g水和532g氧化镁粉末(MAGOX,Premier Chemicals)混合在一起。完成后,将氧化铝溶胶和1600g水加到氧化镁浆料中。均匀混合混合物后,加入304g草酸钒溶液和516g硝酸铈溶液,并混合5分钟。喷雾-干燥生成的浆料,制备微球状粒子。喷雾干燥后,将粉末在600℃的箱式炉中焙烧1小时。
对生成的喷雾干燥和焙烧的粉末进行X-射线衍射分析(图11和图12)。喷雾干燥后,没有观察到类水滑石相。如图11所示,主要结晶相是氢氧化镁,Mg(OH)2和拟薄水铝石氧化铝。如图12所示,在600℃下焙烧后,各相转变成镁铝氧化物的主要相,表现出相似于MgO的方镁石晶体结构。
实施例6
为测定本发明的组合物与按美国专利6,028,023的教导制备的组合物的性能对比,将实施例5的一部分焙烧的产物与水进一步水合,以得到类水滑石相。x-射线衍射图表明,除了氧化铈氧化剂相之外,主要镁铝相几乎完成可由Mg6Al2(OH)18·4.5H2O代表,如ICDD卡35-965所示。如美国专利6,028,023中更充分公开的,这种相是类水滑石化合物。
实施例7
用4.0的Mg∶Al并包括铈和钒氧化物的氧化剂制备镁铝组合物。按无损失计,Al2O3,MgO,CeO2和V2O5的相对比是19.1,60.4,16.0,和4.5。通过在剧烈搅拌条件下,将172g拟薄水铝石(Condea P2)分散在822g水中制备该组合物。单独地,将182g乙酸,4258g水和549g氧化镁粉末(MAGOX,Premier Chemicals)混合在一起。完成后,将氧化铝溶胶和1600g水加到氧化镁浆料中。均匀混合混合物后,加入304g草酸钒溶液和516g硝酸铈溶液,并混合5分钟。喷雾-干燥生成的浆料,制备微球状粒子。喷雾干燥后,将粉末在600℃的箱式炉中焙烧1小时。
对生成的粉末进行X-射线衍射分析。如图13所示,在600℃下焙烧后,各相转变成镁铝氧化物的主要相,表现出相似于MgO的方镁石晶体结构。也存在氧化铈,CeO2
实施例8:SO2性能测试
为评估本发明与现有技术相比的性能,进行如下测试,其中将如实施例3-6中制备的每一种产物的75mg样品引入含有5g含粘土微球基惰性材料的固定的流化床反应器中。将反应器加热到700℃,进行平衡,其后,将含SO2气体引入反应器。在每一个例子中,测试气体的近似组成为1998ppm SO2,1%O2和4.96%CO2。通过反应器的流速保持在130cc/分钟。在24小时的测试时间内,连续监测反应器出口的SO2。SO2值以及通过在整个24小时测试时间内积分SO2吸收量所得的总SO2吸收量列于下面的表1中。
表1 SO2性能测试结果
Figure GSB00000329066600241
a对于实施例6,将额外量的材料加到测试反应器中,以得到可与实施例5相比较的吸附剂浓度。
性能测试结果表明,本发明的实施例5和7的SO2吸收量和全部取能力比尖晶石或水滑石衍生的组合物更大。
发现实施例5和7的混合的金属氧化物的性能接近于实施例3和4的尖晶石的2倍。因此,本发明化合物对于精制单元极为有用,而精制单元中要求用最少量的SOx-吸附添加剂控制SO2水平。此外,吸收量的初始速率明显大于现有技术的组合物,测试1000秒后保持在64ppm的低水平,失效的类水滑石化合物125ppm,组合物含有大量尖晶石的组合物为208-395ppm。SO2的快速吸收对于精制单元特别有用,因为精制单元会由于物料变化或设备故障SO2水平会突然增加,因而需要对SOx添加剂有快速反应。
实施例9:NOx降低
使用反应器单元测量NOx降低。在将本发明的组合物加到反应器单元之前,测量接近反应器单元开始和末端的反应器单元的NOx排放物。然后加入本发明的组合物。加入本发明的组合物之后,测量接近反应器单元开始和末端的NOx排放物。本发明的组合物可以从反应器单元降低NOx排放物。
实施例10:CO降低
使用反应器单元测量CO降低。在将本发明的组合物加到反应器单元之前,测量接近反应器单元开始和末端的反应器单元的CO排放物。然后加入本发明的组合物。加入本发明的组合物之后,测量接近反应器单元开始和末端的CO排放物。本发明的组合物可以从反应器单元降低CO排放物。
除了所述的那些实施方案外,本领域所属技术人员可以从上述说明书对本发明做出各种修改。这种修改应被理解成落于所附的权利要求范围之内。

Claims (42)

1.一种从流体流中降低SOx,NOx或CO排放物的方法,该方法包括使该流体流与包括镁和铝的混合金属氧化物接触,该混合金属氧化物的X-射线衍射图在2θ峰位的43度和62度显示出至少一个反射,其中在该混合金属氧化物中镁与铝的比为1∶1~10∶1。
2.如权利要求1所述的方法,其中在使该混合金属氧化物与该流体流接触之前,加热该混合金属氧化物。
3.如权利要求1所述的方法,其中在该混合金属氧化物中镁与铝的比为1∶1~6∶1。
4.如权利要求1所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~10∶1。
5.如权利要求4所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~6∶1。
6.如权利要求5所述的方法,其中在该混合金属氧化物中镁与铝的比为1.8∶1~5∶1。
7.如权利要求6所述的方法,其中在该混合金属氧化物中镁与铝的比为2∶1~4∶1。
8.如权利要求1所述的方法,其中该混合金属氧化物是成形体。
9.如权利要求8所述的方法,其中该成形体是干燥的成形体。
10.如权利要求8所述的方法,其中该成形体是焙烧的成形体。
11.如权利要求1所述的方法,其中按氧化物当量计,该混合金属氧化物包括40wt%或更多的镁。
12.如权利要求1所述的方法,其中该方法包括将包括混合金属氧化物的一种或多种成形体和一种或多种金属氧化剂加到所述流体流中,其中所述金属氧化剂中的金属是锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。
13.如权利要求1所述的方法,其中该方法包括将包括混合金属氧化物的一种或多种成形体和载体加到所述流体流中,其中所述载体包括尖晶石,类水滑石化合物,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,钛酸铝,钛酸锌,锆酸铝,氧化钙,铝酸钙,硝基水合铝,氢氧化铝化合物,含铝金属氧化物,水合氯化铝,氧化钛,氧化锆,粘土,粘土磷酸盐物质,沸石,或两种或多种的混合物。
14.如权利要求1所述的方法,其中该方法包括将包括混合金属氧化物的一种或多种成形体和载体加到所述流体流中,其中所述载体是钛酸锌,铝酸锌,或钛酸锌/铝酸锌。
15.如权利要求1所述的方法,其中该流体流是FCC单元的流。
16.一种从流体流中降低SOx,NOx和CO排放物的方法,该方法包括使所述流体流与化合物接触,其中该化合物包括(i)包括镁和铝的混合金属氧化物,其X-射线衍射图在2θ峰位的43度和62度显示出至少一个反射,其中在该混合金属氧化物中镁与铝的比为1∶1~10∶1,和(ii)1wt%~75wt%的类水滑石化合物。
17.如权利要求16所述的方法,其中在使该化合物与该流体流接触之前,加热该化合物。
18.如权利要求16所述的方法,其中在该混合金属氧化物中镁与铝的比为1∶1~6∶1。
19.如权利要求16所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~10∶1。
20.如权利要求19所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~6∶1。
21.如权利要求20所述的方法,其中在该混合金属氧化物中镁与铝的比为1.8∶1~5∶1。
22.如权利要求21所述的方法,其中在该混合金属氧化物中镁与铝的比为2∶1~4∶1。
23.如权利要求16所述的方法,其中该化合物是成形体。
24.如权利要求23所述的方法,其中该成形体是干燥的成形体。
25.如权利要求23所述的方法,其中该成形体是焙烧的成形体。
26.如权利要求16所述的方法,其中按氧化物当量计,该混合金属氧化物包括40wt%或更多的镁。
27.如权利要求16所述的方法,其中该化合物包括(i)99wt%~50wt%的包括镁和铝的混合金属氧化物,和(ii)1wt%~50wt%的类水滑石化合物。
28.如权利要求27所述的方法,其中在该混合金属氧化物中镁与铝的比为1∶1~6∶1。
29.如权利要求27所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~10∶1。
30.如权利要求29所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~6∶1。
31.如权利要求27所述的方法,其中该化合物包括(i)99wt%~75wt%的包括镁和铝的混合金属氧化物,和(ii)1wt%~25wt%的类水滑石化合物。
32.如权利要求31所述的方法,其中在包含镁和铝的混合金属氧化物中镁与铝的比为1∶1~6∶1。
33.如权利要求31所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~10∶1。
34.如权利要求33所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~6∶1。
35.如权利要求31所述的方法,其中该化合物包括(i)95wt%~75wt%的包括镁和铝的混合金属氧化物,和(ii)5wt%~25wt%的类水滑石化合物。
36.如权利要求35所述的方法,其中在该混合金属氧化物中镁与铝的比为1∶1~6∶1。
37.如权利要求35所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~10∶1。
38.如权利要求37所述的方法,其中在该混合金属氧化物中镁与铝的比为1.5∶1~6∶1。
39.如权利要求16所述的方法,其中该方法包括将包括混合金属氧化物的一种或多种成形体和一种或多种金属氧化剂加到所述流体流中,其中所述金属氧化剂中的金属是锑,铋,镉,铈,铬,钴,铜,镝,铒,铕,钆,锗,金,钬,铱,铁,镧,铅,锰,钼,钕,镍,铌,锇,钯,铂,镨,钷,铼,铑,钌,钐,钪,银,钽,铽,锡,钛,钨,铥,钒,镱,钇,锌,或两种或多种的混合物。
40.如权利要求16所述的方法,其中该方法包括将包括混合金属氧化物的一种或多种成形体和载体加到所述流体流中,其中所述载体包括尖晶石,类水滑石化合物,醋酸镁,硝酸镁,氯化镁,氢氧化镁,碳酸镁,甲酸镁,钛酸铝,钛酸锌,锆酸铝,氧化钙,铝酸钙,硝基水合铝,氢氧化铝化合物,含铝金属氧化物,水合氯化铝,氧化钛,氧化锆,粘土,粘土磷酸盐物质,沸石,或两种或多种的混合物。
41.如权利要求40所述的方法,其中该方法包括将包括混合金属氧化物的一种或多种成形体和载体加到所述流体流中,其中所述载体是钛酸锌,铝酸锌,或钛酸锌/铝酸锌。
42.如权利要求16所述的方法,其中该流体流是FCC单元的流。
CN2004800360162A 2003-12-05 2004-11-22 混合的金属氧化物吸附剂 Expired - Fee Related CN1890021B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US52725803P 2003-12-05 2003-12-05
US60/527,258 2003-12-05
PCT/US2004/039706 WO2005060519A2 (en) 2003-12-05 2004-11-22 Mixed metal oxide sorbents

Publications (2)

Publication Number Publication Date
CN1890021A CN1890021A (zh) 2007-01-03
CN1890021B true CN1890021B (zh) 2013-01-16

Family

ID=34710059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800360162A Expired - Fee Related CN1890021B (zh) 2003-12-05 2004-11-22 混合的金属氧化物吸附剂

Country Status (13)

Country Link
US (1) US7361319B2 (zh)
EP (1) EP1732679B1 (zh)
JP (1) JP2007516073A (zh)
KR (1) KR100912041B1 (zh)
CN (1) CN1890021B (zh)
AR (1) AR047260A1 (zh)
AT (1) ATE548110T1 (zh)
AU (1) AU2004304919C1 (zh)
CA (1) CA2548500C (zh)
MX (1) MXPA06006133A (zh)
TW (1) TWI358317B (zh)
WO (1) WO2005060519A2 (zh)
ZA (1) ZA200604817B (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385341B (en) * 2002-02-15 2005-12-21 Target Well Control Ltd Casing reaming assembly
WO2006095001A1 (en) * 2005-03-09 2006-09-14 Albemarle Netherlands Bv Fluid catalytic cracking additive
US7797931B2 (en) * 2006-03-20 2010-09-21 Ford Global Technologies, Llc Catalyst composition for diesel particulate filter
US7771669B2 (en) 2006-03-20 2010-08-10 Ford Global Technologies, Llc Soot oxidation catalyst and method of making
WO2007111004A1 (ja) * 2006-03-28 2007-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho 排ガス浄化用触媒、その再生方法、それを用いた排ガス浄化装置及び排ガス浄化方法
CN100402147C (zh) * 2006-05-19 2008-07-16 华东师范大学 一种催化裂化烟气高效硫转移剂及其制备方法
CA2667995C (en) * 2006-10-31 2014-10-14 Intercat, Inc. Sulfur oxide removing additives and methods for partial oxidation conditions
DE102006062250A1 (de) * 2006-12-22 2008-06-26 Roland Saur-Brosch Verwendung einer Zusammensetzung aus Mineralstoffen und/oder Vitaminen und gegebenenfalls acetogenen und/oder butyrogenen Bakterien zur oralen oder rektalen Verabreichung für die Behandlung und Vorbeugung von abdominalen Beschwerden
US7622091B2 (en) * 2007-01-24 2009-11-24 General Electric Company Methods and systems for reducing NOx emissions in industrial combustion systems
ES2682283T3 (es) * 2007-04-04 2018-09-19 Otsuka Chemical Co., Ltd. Titanato de potasio, procedimiento de producción del mismo, materiales de fricción y composiciones de resina
TWI443063B (zh) * 2007-07-11 2014-07-01 Mitsubishi Gas Chemical Co 用於製造過氧化氫之作用溶液的再生觸媒之製造方法
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
CL2009001571A1 (es) * 2008-07-11 2010-03-12 Fuel Tech Inc Proceso que limpia y mantiene una camara de combustion debido a la combustion de carbon que tiene un contenido de hierro mayor al 15% basado en el peso de la ceniza y expresado como fe203 y/0 un contenido de calcio mayor al 5% basado en el peso de ceniza y expresado como cao.
US20100180771A1 (en) * 2009-01-22 2010-07-22 General Electric Company fluidized bed system for removing multiple pollutants from a fuel gas stream
US8372269B2 (en) * 2009-10-02 2013-02-12 Basf Corporation Heavy metals trapping co-catalyst for FCC processes
GB0922195D0 (en) * 2009-12-21 2010-02-03 Johnson Matthey Plc Improvements in NOx traps
KR102075953B1 (ko) * 2012-04-13 2020-02-11 사솔 퍼포먼스 케미컬스 게엠베하 마그네슘 알루미네이트 스피넬의 합성 방법
CN102962061A (zh) * 2012-11-09 2013-03-13 陕西超能石化科技有限公司 一种脱除催化裂化再生烟气nox、sox的多功能催化剂及其制备
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
RU2515529C1 (ru) * 2013-04-16 2014-05-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты)
RU2515514C1 (ru) * 2013-04-16 2014-05-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
WO2016002480A1 (ja) * 2014-06-30 2016-01-07 日本碍子株式会社 MgO系セラミックス膜、半導体製造装置用部材及びMgO系セラミックス膜の製法
TWI630954B (zh) * 2014-12-09 2018-08-01 財團法人工業技術研究院 雙酚a或其衍生物的氫化方法以及對苯二甲酸或其衍生物的氫化方法
EP3067319A1 (en) * 2015-03-09 2016-09-14 SASOL Germany GmbH Nox trap catalyst support material with improved stability against baal2o4 formation
CN104841391A (zh) * 2015-04-21 2015-08-19 蚌埠德美过滤技术有限公司 一种掺杂纳米二氧化铈的耐高温吸附过滤剂及其制作方法
CN104841373A (zh) * 2015-04-21 2015-08-19 蚌埠德美过滤技术有限公司 一种蒙脱石/纳米二氧化钛复合的吸附过滤剂及其制作方法
CN104841372A (zh) * 2015-04-21 2015-08-19 蚌埠德美过滤技术有限公司 一种综合型金属氧化物改性硅藻土吸附过滤剂及其制作方法
CN104826576A (zh) * 2015-04-21 2015-08-12 蚌埠德美过滤技术有限公司 一种可循环使用的环保吸附过滤剂及其制作方法
CN104841380A (zh) * 2015-04-21 2015-08-19 安徽凤凰滤清器股份有限公司 一种可有效吸附汞的吸附过滤剂及其制作方法
CN104841392A (zh) * 2015-04-21 2015-08-19 蚌埠德美过滤技术有限公司 一种光触媒粉复合除臭型吸附过滤剂及其制作方法
CN105361288A (zh) * 2015-11-13 2016-03-02 无锡桥阳机械制造有限公司 一种防治雾霾的口罩
CN105233579A (zh) * 2015-11-13 2016-01-13 朱忠良 一种防治雾霾的过滤网
CN105249563A (zh) * 2015-11-13 2016-01-20 无锡桥阳机械制造有限公司 一种防治雾霾的口罩
CN105214724A (zh) * 2015-11-13 2016-01-06 无锡桥阳机械制造有限公司 一种防治雾霾的催化剂
CN105595467A (zh) * 2015-11-13 2016-05-25 无锡桥阳机械制造有限公司 一种防治雾霾的口罩
CN105249561A (zh) * 2015-11-13 2016-01-20 无锡桥阳机械制造有限公司 一种防治雾霾的口罩
CN105212359A (zh) * 2015-11-13 2016-01-06 无锡桥阳机械制造有限公司 一种防治雾霾的口罩
CN105214722A (zh) * 2015-11-13 2016-01-06 无锡桥阳机械制造有限公司 一种防治雾霾的催化剂
CN105595466A (zh) * 2015-11-13 2016-05-25 无锡桥阳机械制造有限公司 一种同时防治雾霾和氮氧化物污染的口罩
CN105251357A (zh) * 2015-11-14 2016-01-20 华玉叶 一种家用煤炉烟气净化方法
CN105251358A (zh) * 2015-11-14 2016-01-20 华玉叶 一种家用煤炉烟气净化方法
CN105251348A (zh) * 2015-11-14 2016-01-20 华玉叶 一种家用煤炉烟气净化方法
CN105327618A (zh) * 2015-12-03 2016-02-17 华玉叶 一种家用煤炉烟气净化方法
KR102044877B1 (ko) * 2016-11-09 2019-11-14 한국에너지기술연구원 일산화탄소 고선택성 흡착제 및 이의 제조방법
CN106732531B (zh) * 2016-12-09 2020-07-28 大唐国际化工技术研究院有限公司 一种scr脱硝催化剂及其制备方法和用途
EP3398678A1 (en) * 2017-05-05 2018-11-07 SASOL Germany GmbH Nox trap catalyst support material composition
CN108854476B (zh) * 2017-05-10 2021-04-27 神华集团有限责任公司 甲醇合成催化剂的保护剂及其制备方法和应用
CN107213906A (zh) * 2017-05-23 2017-09-29 河南康宁特环保科技股份有限公司 一种燃气脱硝的小孔径催化剂及制备方法
CN107497449B (zh) * 2017-09-06 2020-09-01 淄博天净环保技术有限公司 催化氧化元素硫及硫化物的催化剂及其制备方法和应用
CN107999086A (zh) * 2017-11-22 2018-05-08 青岛惠城环保科技股份有限公司 一种催化裂化再生烟气硫转移剂的制备方法
EP3723900A1 (en) 2017-12-11 2020-10-21 BASF Corporation Reactive silica-alumina matrix component compositions for bottoms cracking catalysts
CN108262002B (zh) * 2018-02-24 2021-03-02 北京师范大学 一种去除锑的Fe-Ti二元氧化物吸附剂的制备方法及应用
CN109603841B (zh) * 2019-01-15 2019-10-25 武汉轻工大学 一种除焦脱硝催化剂及其制备方法和应用
KR102558233B1 (ko) * 2019-04-19 2023-07-21 쿠리타 고교 가부시키가이샤 산성 배기가스 처리제, 산성 배기가스 처리방법 및 산성 배기가스 처리설비
JP6898625B2 (ja) * 2019-04-19 2021-07-07 栗田工業株式会社 酸性排ガス処理剤、酸性排ガス処理方法、及び酸性排ガス処理設備
CN112642395A (zh) * 2019-10-11 2021-04-13 中国石油化工股份有限公司 分子筛复合物与复合材料及其制备方法和应用
JP2024533435A (ja) * 2021-09-09 2024-09-12 中国石油化工股▲ふん▼有限公司 規則的な構造を有する触媒およびその調製方法ならびに排ガス中のSOxおよびNOxを同時に低減する方法
CN115318275A (zh) * 2022-08-30 2022-11-11 青岛惠城环保科技集团股份有限公司 一种催化裂化烟气处理三效助剂的制备方法
WO2024069973A1 (ja) * 2022-09-30 2024-04-04 国立大学法人東北大学 二酸化炭素の供給転換剤および二酸化炭素の利用方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028023A (en) * 1997-10-20 2000-02-22 Bulldog Technologies U.S.A., Inc. Process for making, and use of, anionic clay materials
CN1275435A (zh) * 1999-05-28 2000-12-06 中国石油化工集团公司 一种烟气净化催化剂

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869500A (en) 1968-03-23 1975-03-04 Asahi Chemical Ind Process for the production of unsaturated aliphatic nitriles
US3992498A (en) 1970-06-19 1976-11-16 Imperial Chemical Industries Limited Refractory fiber preparation with use of high humidity atmosphere
US3679763A (en) 1970-07-28 1972-07-25 Catalysts & Chem Inc Purification of process gas streams by hydrogenation
US4010233A (en) 1970-11-06 1977-03-01 Bayer Aktiengesellschaft Production of inorganic fibers
US3793003A (en) 1971-01-04 1974-02-19 D Othmer Method for producing aluminum metal directly from ore
US3857921A (en) 1972-09-27 1974-12-31 Asahi Chemical Ind Method for eliminating nitrogen oxides and catalyst composition for use in practicing said method
US3894164A (en) 1973-03-15 1975-07-08 Rca Corp Chemical vapor deposition of luminescent films
AT356626B (de) 1973-08-16 1980-05-12 Metallgesellschaft Ag Verfahren zur getrennten gewinnung von reinem kohlenmonoxid und wasserstoff aus leichten kohlenwasserstoffen
US4072600A (en) 1974-02-08 1978-02-07 Mobil Oil Corporation Catalytic cracking process
US4016189A (en) 1974-07-27 1977-04-05 Metallgesellschaft Aktiengesellschaft Process for producing a gas which can be substituted for natural gas
US4048244A (en) 1974-12-20 1977-09-13 Uop Inc. Dehydrogenation method using sulfided nonacidic multimetallic catalyst
JPS51145390A (en) 1975-06-10 1976-12-14 Nissan Motor Co Ltd Manufacturing method of a coated layer of oxygen senser
DE2532198C3 (de) 1975-07-18 1980-05-22 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Erzeugung heizwertreicher Gase
US4153535A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4088568A (en) 1976-01-15 1978-05-09 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US4071436A (en) 1976-03-11 1978-01-31 Chevron Research Company Process for removing sulphur from a gas
FR2367035A1 (fr) 1976-10-11 1978-05-05 Pro Catalyse Procede d'hydrodealkylation d'hydrocarbures alkyl aromatiques en presence d'un catalyseur ayant un support de type aluminate
US4052296A (en) 1976-11-29 1977-10-04 Gulf Research & Development Company Hydrogenation process employing a zinc promoted catalyst
US4173454A (en) 1977-07-18 1979-11-06 Heins Sidney M Method for removal of sulfur from coal in stoker furnaces
US4131496A (en) 1977-12-15 1978-12-26 Rca Corp. Method of making silicon on sapphire field effect transistors with specifically aligned gates
US4141940A (en) 1977-12-27 1979-02-27 Acf Industries, Incorporated Carburetor fuel flow control
US4192855A (en) 1978-04-10 1980-03-11 Uop Inc. Process for the simultaneous separation of sulfur and nitrogen oxides from a gaseous mixture
US4284494A (en) 1978-05-01 1981-08-18 Engelhard Minerals & Chemicals Corporation Control of emissions in FCC regenerator flue gas
US4162963A (en) 1978-07-21 1979-07-31 Continental Oil Company Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts
US4282084A (en) 1978-09-27 1981-08-04 Mobil Oil Corporation Catalytic cracking process
US4199435A (en) * 1978-12-04 1980-04-22 Chevron Research Company NOx Control in cracking catalyst regeneration
US4274942A (en) 1979-04-04 1981-06-23 Engelhard Minerals & Chemicals Corporation Control of emissions in FCC regenerator flue gas
JPS5610334A (en) 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
JPS5610333A (en) 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
US4254558A (en) 1979-07-31 1981-03-10 Exxon Research & Engineering Co. Louvered magnetically stabilized fluid cross-flow contactor and processes for using the same
US4255403A (en) 1979-07-31 1981-03-10 Exxon Research And Engineering Co. Magnetically stabilized fluid cross-flow contactor having support means and process for using the same
US4254616A (en) 1979-07-31 1981-03-10 Exxon Research And Engineering Co. Process for flue gas desulfurization or nitrogen oxide removal using a magnetically stabilized fluid cross-flow contactor
US4238317A (en) 1979-08-20 1980-12-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4280898A (en) 1979-11-05 1981-07-28 Standard Oil Company (Indiana) Fluid catalytic cracking of heavy petroleum fractions
US4374819A (en) 1979-11-13 1983-02-22 Gte Laboratories Incorporated Catalytic process for removing toxic gases from gas streams
US4432864A (en) 1979-11-14 1984-02-21 Ashland Oil, Inc. Carbo-metallic oil conversion with liquid water containing H2 S
US4708785A (en) 1979-11-14 1987-11-24 Ashland Oil, Inc. Carbo-metallic oil conversion
US4263020A (en) 1980-01-02 1981-04-21 Exxon Research & Engineering Co. Removal of sulfur from process streams
US4358297A (en) 1980-01-02 1982-11-09 Exxon Research And Engineering Company Removal of sulfur from process streams
US4495304A (en) 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
JPS5761085A (en) * 1980-07-29 1982-04-13 Atlantic Richfield Co Conversion of hydrocarbon
US4642178A (en) 1980-07-29 1987-02-10 Katalistiks, Inc. Process for conversion of hydrocarbons
US4495305A (en) 1980-07-29 1985-01-22 Atlantic Richfield Company Catalyst for conversion of hydrocarbons
US4472267A (en) * 1980-07-29 1984-09-18 Atlantic Richfield Company Catalyst and process for conversion of hydrocarbons
US4422888A (en) 1981-02-27 1983-12-27 Xerox Corporation Method for successfully depositing doped II-VI epitaxial layers by organometallic chemical vapor deposition
US4513093A (en) 1981-03-30 1985-04-23 Ashland Oil, Inc. Immobilization of vanadia deposited on sorbent materials during treatment of carbo-metallic oils
US4485184A (en) 1981-04-10 1984-11-27 Ashland Oil, Inc. Trapping of metals deposited on catalytic materials during carbometallic oil conversion
US4452854A (en) 1981-04-14 1984-06-05 United Catalysts, Inc. Catalyst and process for carbon monoxide conversion in sour gas
US4434044A (en) 1981-09-01 1984-02-28 Ashland Oil, Inc. Method for recovering sulfur oxides from CO-rich flue gas
US4521389A (en) * 1981-10-05 1985-06-04 Chevron Research Company Process of controlling NOx in FCC flue gas in which an SO2 oxidation promotor is used
US4381993A (en) 1981-10-14 1983-05-03 Standard Oil Company (Indiana) Process for treating hydrocarbon feedstocks with CO and H2 O in the presence of steam stable catalysts
US4376103A (en) 1981-10-26 1983-03-08 Standard Oil Company (Indiana) Removing sulfur oxides from a gas
JPS58105948A (ja) 1981-12-16 1983-06-24 Fujirebio Inc ジペプチド誘導体
US4650564A (en) 1982-03-03 1987-03-17 Gulf Research & Development Company Process for cracking high metals content feedstocks
US4549958A (en) 1982-03-30 1985-10-29 Ashland Oil, Inc. Immobilization of vanadia deposited on sorbent materials during treatment of carbo-metallic oils
US4465779A (en) 1982-05-06 1984-08-14 Gulf Research & Development Company Modified cracking catalyst composition
US4465588A (en) 1982-05-06 1984-08-14 Gulf Research & Development Company Process for cracking high metals content feedstock
US4944865A (en) 1982-05-06 1990-07-31 Chevron Research Company Process for cracking high metals content feedstocks
US4602993A (en) 1982-05-13 1986-07-29 Ashland Oil, Inc. Carbo-metallic oil conversion
US4425312A (en) 1982-07-02 1984-01-10 Exxon Research And Engineering Co. Removal of sulfur from process streams
US4522937A (en) 1982-11-29 1985-06-11 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels
US4519897A (en) 1982-12-27 1985-05-28 Akzo Nv Fluid cracking process using sepiolite-containing catalyst composition
US4613428A (en) 1983-07-13 1986-09-23 Katalistiks, Inc. Hydrocarbon cracking process
US4515683A (en) 1983-09-15 1985-05-07 Ashland Oil, Inc. Passivation of vanadium accumulated on catalytic solid fluidizable particles
US4836993A (en) * 1983-09-27 1989-06-06 Amoco Corporation Process for removing sulfur oxides from a gas
US4520120A (en) 1983-09-28 1985-05-28 Gulf Research & Development Company Vanadium passivation in a hydrocarbon catalytic cracking process
US4481103A (en) 1983-10-19 1984-11-06 Mobil Oil Corporation Fluidized catalytic cracking process with long residence time steam stripper
DE3428231A1 (de) 1983-12-16 1985-07-04 Süd-Chemie AG, 8000 München Verfahren zur entfernung von stickoxiden aus abgasen
US4492677A (en) 1984-05-17 1985-01-08 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels and their use for reducing the sulfur oxide content of gases
US4492678A (en) 1984-05-17 1985-01-08 Atlantic Richfield Company Preparative process for alkaline earth metal, aluminum-containing spinels and their use for reducing sulfur oxide content in gases
US4883783A (en) 1984-05-30 1989-11-28 Uop Composition of matter for conversion of hydrocarbons
US4735705A (en) 1984-05-30 1988-04-05 Katalistiks International Inc. Composition of matter and process useful for conversion of hydrocarbons
US4622210A (en) 1984-08-13 1986-11-11 Standard Oil Company (Indiana) Sulfur oxide and particulate removal system
US4609539A (en) 1984-08-13 1986-09-02 Standard Oil Company (Indiana) Process for simultaneously removing sulfur oxides and particulates
US4692318A (en) 1984-08-13 1987-09-08 Amoco Corporation Process for simultaneously removing nitrogen oxides, sulfur oxides, and particulates
US4617175A (en) 1984-08-13 1986-10-14 Standard Oil Company (Indiana) Nitrogen oxide, sulfur oxide, and particulate removal system
US4609537A (en) * 1984-08-13 1986-09-02 Standard Oil Company (Indiana) Process for simultaneously removing nitrogen oxides, sulfur oxides, and particulates
US4824815A (en) * 1985-06-11 1989-04-25 Exxon Research And Engineering Company Cracking catalysts containing strontium carbonate
US4708786A (en) 1986-03-26 1987-11-24 Union Oil Company Of California Process for the catalytic cracking of nitrogen-containing feedstocks
US4728635A (en) * 1986-04-07 1988-03-01 Katalistiks International Inc. Alkaline earth metal spinels and processes for making
US4790982A (en) * 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
CA1304912C (en) * 1986-05-27 1992-07-14 Andrew S. Moore Gas/solid contact method for removing sulfur oxides from gases
US4866019A (en) * 1987-01-13 1989-09-12 Akzo N.V. Catalyst composition and absorbent which contain an anionic clay
US4904627A (en) 1987-03-13 1990-02-27 Uop Alkaline earth metal spinel/kaolin clays and processes for making
US4744962A (en) 1987-07-22 1988-05-17 Shell Oil Company Process for the reduction of ammonia in regeneration zone off gas by select addition of NOx to the regeneration zone or to the regeneration zone off gas
US4957718A (en) * 1987-11-24 1990-09-18 Uop Process for reducing emissions of sulfur oxides and composition useful in same
US4889615A (en) 1988-12-06 1989-12-26 Mobil Oil Corporation Additive for vanadium capture in catalytic cracking
US5153156A (en) 1989-04-18 1992-10-06 Aristech Chemical Corporation Process for making efficient anionic clay catalyst, catalysts made thereby, and method of making isophorone
US4970191A (en) * 1989-04-18 1990-11-13 Aristech Chemical Corporation Basic mixed oxide
US5174890A (en) 1989-07-31 1992-12-29 Union Oil Company Of California Catalytic cracking using a metals scavenging composition
US4973399A (en) 1989-11-03 1990-11-27 Mobil Oil Corporation Catalytic cracking of hydrocarbons
US5114898A (en) 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Layered double hydroxide sorbents for the removal of SOx from flue gas and other gas streams
US5037538A (en) 1990-02-26 1991-08-06 Mobil Oil Corporation Catalytic cracking process with isolated catalyst for conversion of NO.sub.x
US5079203A (en) 1990-05-25 1992-01-07 Board Of Trustees Operating Michigan State University Polyoxometalate intercalated layered double hydroxides
US5130012A (en) 1991-01-24 1992-07-14 Mobil Oil Corporation Process and apparatus for reducing NOx emissions from high-efficiency FFC regenerators
US5108979A (en) * 1991-02-25 1992-04-28 Intercat, Inc. Synthetic spinels and processes for making them
US5246899A (en) 1991-08-16 1993-09-21 Amoco Corporation Simplified preparation of hydrotalcite-type clays
US5250279A (en) 1991-12-20 1993-10-05 J. M. Huber Corporation Method for the manufacture of hydrotalcite
DE69314819T2 (de) * 1992-02-05 1998-06-10 Grace W R & Co Metallpassivierung/SOx-Kontrollzusammensetzungen für katalytisches Fluidkracken
US5288675A (en) * 1992-02-05 1994-02-22 W. R. Grace & Co.-Conn. SOx control compositions
US5547648A (en) * 1992-04-15 1996-08-20 Mobil Oil Corporation Removing SOx, NOX and CO from flue gases
US6610264B1 (en) * 1992-04-15 2003-08-26 Exxonmobil Oil Corporation Process and system for desulfurizing a gas stream
US5591417A (en) * 1992-04-15 1997-01-07 Mobil Oil Corporation Removing SOx, CO and NOx from flue gases
US5229091A (en) 1992-04-15 1993-07-20 Mobil Oil Corporation Process for desulfurizing Claus tail-gas
US5458861A (en) * 1992-04-15 1995-10-17 Mobil Oil Corporation Desulfurizing a gas stream
US5728358A (en) * 1992-04-15 1998-03-17 Mobil Oil Corporation Sox sorbent regeneration
US5514351A (en) * 1992-04-15 1996-05-07 Mobil Oil Corporation Desulfurizing tailgas from sulfur recovery unit
US5776424A (en) * 1994-04-29 1998-07-07 Aluminum Company Of America Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with monovalen inorganic anions
US5514361A (en) * 1994-04-29 1996-05-07 Aluminum Company Of America Method for making a synthetic meixnerite product
US5843862A (en) * 1994-06-01 1998-12-01 Amoco Corporation Process for manufacturing an absorbent composition
US5426083A (en) * 1994-06-01 1995-06-20 Amoco Corporation Absorbent and process for removing sulfur oxides from a gaseous mixture
CA2156464C (en) * 1994-09-30 1999-07-20 Raghu K. Menon Reduction of emissions from fcc regenerators
US5948726A (en) * 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
US6129834A (en) * 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
US5723039A (en) * 1996-04-11 1998-03-03 Catalytic Sciences, Ltd. Process for removal of organo-sulfur compounds from liquid hydrocarbons
US5928496A (en) * 1996-06-20 1999-07-27 Contract Materials Processing, Inc. Hydrotalcite sulfer oxide sorption
US6074984A (en) * 1996-11-18 2000-06-13 Bulldog Technologies U.S.A., Inc. SOx Additive systems based upon use of multiple particle species
US5954945A (en) * 1997-03-27 1999-09-21 Bp Amoco Corporation Fluid hydrocracking catalyst precursor and method
US5990030A (en) * 1997-06-13 1999-11-23 Tricat Industries, Inc. Sox reducing additive for FCC systems
US5914288A (en) * 1997-09-29 1999-06-22 Research Triangle Institute Metal sulfide initiators for metal oxide sorbent regeneration
US6585945B2 (en) * 2001-01-26 2003-07-01 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
EP1264635A1 (en) * 2001-06-05 2002-12-11 Akzo Nobel N.V. Process for the production of catalysts with improved accessibility
EP1539641A4 (en) * 2002-08-13 2009-12-23 Intercat Inc FLUE GAS TREATMENTS TO REDUCE NOX AND CO EMISSIONS
US6914033B2 (en) * 2002-08-13 2005-07-05 Conocophillips Company Desulfurization and novel compositions for same
US7307038B2 (en) * 2002-10-21 2007-12-11 W.R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028023A (en) * 1997-10-20 2000-02-22 Bulldog Technologies U.S.A., Inc. Process for making, and use of, anionic clay materials
CN1275435A (zh) * 1999-05-28 2000-12-06 中国石油化工集团公司 一种烟气净化催化剂

Also Published As

Publication number Publication date
AU2004304919B2 (en) 2010-06-03
CA2548500C (en) 2010-01-12
US20050207956A1 (en) 2005-09-22
EP1732679B1 (en) 2012-03-07
TW200518826A (en) 2005-06-16
TWI358317B (en) 2012-02-21
KR20060127029A (ko) 2006-12-11
ZA200604817B (en) 2007-12-27
AR047260A1 (es) 2006-01-11
WO2005060519A2 (en) 2005-07-07
JP2007516073A (ja) 2007-06-21
EP1732679A2 (en) 2006-12-20
AU2004304919C1 (en) 2010-10-21
KR100912041B1 (ko) 2009-08-12
CN1890021A (zh) 2007-01-03
AU2004304919A1 (en) 2005-07-07
EP1732679A4 (en) 2008-06-11
CA2548500A1 (en) 2005-07-07
MXPA06006133A (es) 2007-01-26
US7361319B2 (en) 2008-04-22
ATE548110T1 (de) 2012-03-15
WO2005060519A3 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
CN1890021B (zh) 混合的金属氧化物吸附剂
CN101027128B (zh) 去除金属污染物用的添加剂
US7431825B2 (en) Gasoline sulfur reduction using hydrotalcite like compounds
US20080202984A1 (en) Mixed metal oxide additives
AU2011202519B2 (en) Additives for metal contaminant removal
AU2004316294B2 (en) Gasoline sulfur reduction using hydrotalcite like compounds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130116