CN1704573B - 用于冷却燃气轮机的燃烧室衬里和过渡件的设备 - Google Patents
用于冷却燃气轮机的燃烧室衬里和过渡件的设备 Download PDFInfo
- Publication number
- CN1704573B CN1704573B CN200510076026.5A CN200510076026A CN1704573B CN 1704573 B CN1704573 B CN 1704573B CN 200510076026 A CN200510076026 A CN 200510076026A CN 1704573 B CN1704573 B CN 1704573B
- Authority
- CN
- China
- Prior art keywords
- lining
- cooling
- air
- flowing sleeve
- transition piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 106
- 230000007704 transition Effects 0.000 title claims abstract description 67
- 239000000567 combustion gas Substances 0.000 claims abstract description 8
- 238000002485 combustion reaction Methods 0.000 claims description 63
- 238000010304 firing Methods 0.000 claims description 25
- 238000007599 discharging Methods 0.000 claims description 17
- 230000008646 thermal stress Effects 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 9
- 239000002184 metal Substances 0.000 description 15
- 230000003116 impacting effect Effects 0.000 description 10
- 239000000446 fuel Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 4
- 239000000112 cooling gas Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010719 annulation reaction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000659 freezing mixture Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/06—Arrangement of apertures along the flame tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03042—Film cooled combustion chamber walls or domes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03044—Impingement cooled combustion chamber walls or subassemblies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
冷却燃气轮机燃烧室衬里和过渡件的方法和设备包括燃烧室衬里,有多个轴向沿限定其长度的长度阵列排列且位于其外表面的圆环形紊流器;绕燃烧室衬里的第一流动套管,其间有第一流环,包括多个在衬里尾端的部分延伸且彼此平行的轴向通道,其每个的截面积恒定或者沿通道长度变化,第一流动套管有多排绕其圆周形成的冷却孔,引导冷却空气从压缩机排气进入第一流环;连接燃烧室衬里且适于将热燃烧气送至涡轮级的过渡件;绕过渡件的第二流动套管,其有第二多排冷却开孔将冷却空气引入第二流动套管和过渡件之间的第二流环;其中第一多个冷却孔和第二多个冷却开孔每个配置有效面积,少于50%的压缩机排气分入第一流动套管,混合第二流环的冷却空气。
Description
技术领域
本发明涉及燃气轮发动机的内部冷却,更具体讲,涉及用于在涡轮的燃烧部分和排出部分之间的过渡区提供更好和更均匀的冷却的设备和方法。
背景技术
传统的燃气轮机燃烧室使用扩散(即非预混)燃烧,其中燃料和空气分别进入该燃烧室。混合和燃烧的过程会产生超过3900°F的火焰温度。因为传统的有衬里的燃烧室和/或过渡件通常能够在大约10000小时内经受仅约为1500°F量级的最大温度,所以必须采取措施保护燃烧室和/或过渡件。通常靠薄膜式冷却来做到这一点,其包括将相对较冷的压缩机空气导入由围绕燃烧室外部的燃烧室衬里形成的增压区。在这种现有的构造中,来自增压区的空气先穿过燃烧室衬里的放气孔,然后作为薄膜通过衬里内表面,从而保持燃烧室衬里的完整性。
因为二价氮在超过大约3000°F(约1650℃)的温度时会迅速分离,扩散燃烧的高温将导致相对较大的NOx排放量。一种降低NOx排放量的方法是用燃料预先混合最大可能数量的压缩机空气。所产生的贫预混燃烧会产生较凉的火焰温度,并因此产生较低的NOx排放量。虽然贫预混燃烧比扩散燃烧凉,但火焰温度对现有传统的燃烧室部件来说仍然太热而无法经受。
而且,因为先进的燃烧室为减少NOx用燃料预先混合了最大可能数量的空气,所以只有很少的冷却空气或者没有冷却空气可用,这使得燃烧室衬里和过渡件的薄膜冷却最多只会过早发生。虽然如此,燃烧室衬里仍然需要主动冷却,以将材料温度保持在极限以下。在干燥的低NOx(DLN)排放系统内,这种冷却只能作为冷边对流提供。这种冷却必须在热梯度和压力损耗的要求内进行。因此,诸如隔热涂层与“背侧”冷却结合的方法已经被认为可以使燃烧室衬里和过渡件防护诸如高热这样的损害。背侧冷却包括在预先混合空气与燃料之前使压缩机排出空气通过过渡件和燃烧室衬里的外表面上方。
关于燃烧室衬里,一种现行的实践是冲击冷却衬里或在衬里的外表面上提供线性紊流器。另一种更新的实践是在衬里的外表面或外部表面上提供凹窝阵列(见美国专利No.6,098,397)。已知的各种各样的技术可以提高热传输,但对热梯度和压力损耗的影响各不相同。紊流带通过在流中提供钝头体来起作用,其扰乱流形成剪流层和高紊流,以提高表面传热。凹窝通过提供有组织的涡流起作用,该涡流增强流混合并擦洗表面以改进传热。
来自衬里的低传热率可能会导致衬里表面温度较高,并最终造成强度的损失。由于衬里的高温而可能造成的几种潜在故障形式包括尾部套筒焊接线破裂、膨胀和三角剖分,但不仅限于此。这些机制会缩短衬里的寿命,从而需要提前更换该部件。
因此,还需要在比先前可用的温度更高的燃烧温度下提高以最小的压力损耗进行主动冷却的水平,同时扩大燃烧检查间隔以降低发电成本。
发明内容
上面所讨论的以及其它的缺点和不足在一个典型的实施例中被一种用于冷却燃气轮机的燃烧室衬里和过渡件的设备克服或减轻。该设备包括燃烧室衬里,其有多个轴向沿限定燃烧室衬里长度的长度以阵列排列且位于其外部表面的圆环形紊流器;第一流动套管,其围绕燃烧室衬里,其间有第一流环,其包括多个在衬里尾端部分的一部分上延伸的、彼此平行的轴向通道(C),每一通道的截面积要么为常量,要么沿着通道的长度变化,第一流动套管有多排围绕第一流动套管圆周形成的冷却孔,用于引导冷却空气从压缩机排气进入第一流环;与燃烧室衬里连接的过渡件,该过渡件适于将热的燃烧气体送至涡轮级;围绕过渡件的第二流动套管,其有第二多排冷却开孔,以将冷却空气导入第二流动套管和过渡件之间的第二流环;其中第一多个冷却孔和第二多个冷却开孔中的每一个均配置有效面积,以使压缩机排出空气中少于50%的量被分配至第一流动套管,并与第二流环的冷却空气混合。
在另一个实施例中,涡轮发动机包括燃烧部分;处于燃烧部分下游的排气部分;燃烧部分和排气部分之间的过渡区;限定燃烧部分和过渡区的一部分的起紊流的燃烧室衬里,该起紊流的燃烧室衬里包括多个沿限定燃烧室衬里长度的长度轴向以阵列排列且位于其外部表面上的圆环紊流器;围绕燃烧室衬里的第一流动套管,其间有第一流环,其包括多个在衬里尾端部分的一部分上延伸的、彼此平行的轴向通道(C),每一通道的截面积为大致的常量和沿着通道的长度变化之一,第一流动套管有多排围绕第一流动套管圆周形成的冷却孔,用于引导冷却空气从压缩机排出空气进入第一流环;与至少一个燃烧室衬里和第一流动套管连接的过渡件,该过渡件适于将热的燃烧气体送至涡轮相当于排气部分的级;围绕过渡件的第二流动套管,其有第二多排冷却开孔,以将冷却空气导入第二流动套管和过渡件之间的第二流环,第一流环与第二流环连接;其中第一多个冷却孔和第二多个冷却开孔中的每一个均配置有效面积,以使压缩机排出空气中少于50%的量被分配至第一流动套管,并与来自第二流环的冷却空气混合,以便冷却流过其燃烧部分和排气部分之间的发动机过渡区的空气。
在一个可选的实施例中,公开了一种冷却燃气轮机燃烧室的燃烧室衬里的方法。燃烧室衬里包括大致圆形的截面,和围绕衬里的、大致与其同心的第一流动套管,其间形成第一流环,以将空气从压缩机排出空气送至燃气轮机燃烧室,并且其中过渡件与燃烧室衬里相连,且过渡件被第二流动套管围绕,从而形成与第一流第一环相连的第二流第一环。该方法包括提供多个在流动套管内沿轴向隔开的冷却孔排,每排围绕流动套管沿圆周延伸,在第二流动套管内的第一排接近第一第二流动套管接口的端部定位;提供来自压缩机排气的冷却空气到冷却孔;以及为冷却孔配置有效面积,以将少于三分之一的压缩机排气分配至第一流动套管并与来自所述第二流环的剩余压缩机排气混合。
本领域的技术人员可以从下列详细说明和附图中理解和明白本发明的上述及其他特点和优点。
附图说明
现在参照附图,其中几幅图中相同的元件标记相同:
图1为燃烧室衬里传统的燃烧室过渡件尾部的简化侧截面;
图2为传统的燃烧室衬里和与过渡件连接的流动套管的部分但更详细的透视图;
图3为根据典型的实施例的衬里尾端的局部分解图;
图4为现有技术尾部衬里区和本发明尾部衬里区用于使冷却空气流过多个涡轮过渡区通道的正视图;
图5为本发明尾部衬里区用于使冷却空气流过多个涡轮过渡区通道的正视图;
图6为具有根据典型实施例的围绕燃烧室衬里及过渡件的流动套管和冲击套管的燃烧室的侧截面图;
图7为图6所示冲击套管的放大图;
图8为冲击套管的简化侧视图,示出了根据典型实施例的空气动力收集器;
图9为冲击套管上空气动力收集器的放大细部;
图10为传统的流动套管的透视图,示出在背侧冷却期间和沿其长度的预计金属温度的相对差;和
图11是流动套管的透视图,示出根据典型实施例的、在背侧冷却期间和沿其长度的预计金属温度的相对差。
具体实施方式
参照图1和图2,典型的燃气轮机包括过渡件10,通过该过渡件,热的燃烧气体从如燃烧室衬里12所示的上游燃烧室传到14所示的涡轮第一级。来自燃气轮机压缩机的流离开轴向导叶16,进入压缩机排气箱18。大约50%的压缩机排气通过沿过渡件冲击套管22并围绕其形成的开孔20,以便流入过渡件10和径向外部的过渡件冲击套管22之间的环形区域或环24(或第二流环)。剩余大约50%的压缩机排气流通过上游燃烧室衬里冷却套管(未示出)的流动套管孔34和进入冷却套管与衬里之间的环,并最终与环24中的空气混合。混合空气最后在燃烧室里与燃气轮机燃料混合。
图2所示为过渡件10和燃烧室流动套管28之间的连接,如其出现在图1最左边的情况。具体而言,过渡件10的冲击套管22(或第二流动套管)以套入的关系容纳在燃烧室流动套管28(或第一流动套管)尾端上的安装法兰26内,且过渡件10也以套入的关系容纳燃烧室衬里12。燃烧室流动套管28围绕燃烧室衬里12,在其间形成流环30(或第一流环)。可以从图2的流向箭头32看到,在环24内流动的横向冷却气流在垂直于流过冷却孔34(看流向箭头36)的冲击冷却空气的方向上继续流入环30,冷却孔34围绕流动套管28的周边形成(图2中可以看到3排,所述流动套管可以有任何数量排这样的孔)。
仍旧参照图1和图2,其示出了通常环状容器的回流式燃烧室,它由燃料形成的燃烧气体驱动,其中具有高能含量的流动介质,即燃烧气体,因安装在转子上的叶片设备环引起的偏斜而产生转动。在运行中,从压缩机排出的空气(压缩成大约250-400磅/平方英寸量级的压力)在其通过燃烧室衬里(一个示为12)的外部上方时倒转方向,并在进入燃烧室衬里12通向涡轮(第一级示为14)时再次倒转方向。压缩空气和燃料在燃烧室内燃烧,产生温度在约1500℃和约2800°F之间的气体。所述燃烧气体通过过渡件10高速流入涡轮部分14。
燃烧室衬里12内燃烧部分产生的热气流入部分16。这两部分之间有在图2上一般用46标示的过渡区。如以前所述,部分12尾端、区域46的入口部分的热气温度大约为2800°F的量级。然而下游、区域46的出口部分的衬里金属温度更适宜为大约1400°-1550°F的量级。为帮助将衬里冷却到这一较低的金属温度范围,在加热气体通过区域46期间,衬里12提供为冷却空气从中流过。冷却空气用于从衬里吸取热,并因而极大地降低了相对于热气温度的衬里金属温度。
在参照图3的典型实施例中,衬里112有相关的压缩型密封件121,通常被称为呼拉(hula)密封件,其安装在衬里112的盖板123和过渡区46的一个部分之间。盖板安装在衬里上,以形成压缩密封件的安装表面,并形成轴向气流通道C的一个部分。如图3所示,衬里112有多个由许多轴向凸起部分或肋124形成的轴向通道,其中所有通道都延伸过衬里112尾端的一部分。盖板123和肋124一起限定各自的气流通道C。这些通道是延伸过衬里112尾端的一部分的平行通道。冷却空气通过通道前端的空气入口槽或开口126被导入通道。然后所述空气流入并通过通道C,并通过衬里尾端130的开口127离开衬里。
根据所述公开,衬里112的设计能够使冷却空气流的需求最小化,同时还在衬里的尾端130提供足够的传热,以便沿衬里产生均匀的金属温度。可以被本领域技术人员理解的是,涡轮的部分12内出现的燃烧会导致衬里112内表面上的热侧传热系数和气体温度。现在要求当前设计的衬里须有外部表面(尾端)冷却,因此衬里尾部承受的金属温度和热应力能够保持在可接受的范围内。否则,因过高应力、温度或者两者一起对衬里造成的损害,会极大地缩短衬里的使用寿命。
本发明的衬里112利用发生在衬里冷却剂外侧和热气内侧之间的存在的静压梯度影响衬里尾端的冷却。这可以通过平衡衬里通道C内的气流速度和空气温度来实现,以便沿通道和衬里的长度产生恒定的冷却效应。
如图4所示的现有技术的衬里,通常标以标号100,具有通过盖板前端延伸的流量计量孔102。如沿衬里100的长度延伸的虚线所示,通道的截面,如由其高度所限定的那样,是沿通道整个长度恒定的。例如,这一厚度可以为0.045″(0.11厘米)。
对照参考图5,本发明的衬里112的通道高度在通道入口126处大致(将近45%)高于衬里100的通道高度。然而,这一高度稳定而均匀地沿通道C的长度减少,以便在通道的尾端使通道高度大致(将近55%)小于现有技术衬里100的出口高度。例如,衬里112的入口通道高度为0.065″(0.16厘米),出口高度例如为0.025″(0.06厘米),这样通道的高度从通道入口端向出口端减小略微高于60%的程度。
比较现有技术衬里100和本发明的衬里112,发现,要与衬里112的冷却气流相称,对衬里100内的通道高度(未示出)的减小并不能提供足够的冷却以在衬里100内产生可接受的金属温度,它也不会有效变化;即,使通过衬里的冷却空气的流量需求最小化了。相反,已经发现在衬里112内部提供可变的冷却通道高度可以优化衬里尾端130的冷却。当通道高度可变时,由于通道内的局部空气速度可以与穿过通道的冷却空气流的局部温度相平衡,就可以达到优化冷却。即,因为通道高度沿每条通道长度逐渐减小,该通道的横截面积也相应减小。这会增加穿过通道C的冷却空气流速度,并沿每一通道全长产生更为恒定的冷却热通量。因而衬里112的优点就是可产生更为均匀的轴向热梯度,并降低衬里内的热应力。这又为衬里增加了有效使用寿命。作为重要的一点,对流过衬里的冷却空气的需求现在实质上已降低了,这种空气能够到达涡轮的燃烧级,从而改善燃烧并减少废气排放,尤其是NOx的排放量。
现在参照图6和图7,示出了冲击套管122的典型实施例。冲击套管122包括第一排129或排0在前端沿圆周设置的通常以132标示的48个开孔。但是,相关领域技术人员会认识到,可设想任何数量的开孔132来适用于所希望的最终目标。每个开孔132的直径大约为0.5英寸。排0或单一排129的开孔132使新鲜空气在进入流动套管环30之前均匀地通过其进入冲击套管环24。排0定位在套管122的有角部分,引导空气流相对横向气流通路成锐角通过环24和30。冷却孔的单独一排129(排0开孔132)朝向冲击套管122的前端布置,其用于控制从流动套管孔的冲击水平,并因而避免冷流层。
更具体讲,流动套管128包括孔配置,其中无需设置套筒,以使衬里112上的气流冲击最小化。这种燃烧室衬里的冷却套筒在美国专利No.6,484,505中已公开,其已转让给本申请的受让人并被完全结合在这里。而且,衬里112完全紊流化,因而降低了衬里112上的背侧冷却传热流层。如美国专利No.6,681,578所描述的一样,完全紊流化的衬里112包括在燃烧室衬里112的冷边上的多个离散的凸起的圆形肋或环140,该专利已转让给本申请的受让人并被完全结合在这里。
根据典型实施例,燃烧室衬里112由多个的圆环形紊流器140形成。每个环形紊流器140包括由凸起的外围肋限定的离散或独立的圆环形物,其可在环形物内形成封闭区域。环形紊流器最好沿衬里112的长度轴向按顺序错开阵列排列,环形物位于在衬里的冷边或背侧表面,径向朝外朝向环绕的流动套管128。环形紊流器也可以随机排列(或成不均匀图案但是以几何方式),但大体以均匀地形式横过衬里的表面。
当提及圆环形紊流器140时,可以理解的是紊流器可能是椭圆形或其他合适的形状,并且其尺度和形状必须形成内部凹陷或深窝,该内部凹陷或深窝足以形成流体混合的涡流。完全紊流与涡流混合相结合的增强特点,连同在衬里112内部提供可变的冷却通路高度一起,用来优化衬里尾端130的冷却,以便改善传热和热量均匀性,其结果使压力损耗低于不用这种增强特点的情况。
还要注意的是排0冷却孔132在套管128内的槽126与套管122内14排154(1-14)的第一排150之间提供冷却界面。排0使该区域发生的热流层最小化。
包含排0的冷却孔132进一步增强了流动套管128和冲击套管122之间的冷却空气分离。已经发现,在两套管128和122之间除了50-50外的空气分离是需要的,以优化冷却,以便减少流层,并降低流过衬里的冷却空气需求。
用于衬里112(流动套管128)和过渡件10(冲击套管122)的冷却系统之间的空气分配可以由通过流动套管128和冲击套管122的空气有效面积分配来控制。在典型的实施例里,根据CFD预测,来自出口压缩机排放的目标冷却空气分离包括流动套管128接收大约32.7%排气和冲击套管122接收大约67.3%排气。
过渡件10及其相关的冲击套管在压缩机排气箱内紧紧地装配在一起。因此,几乎没有多少面积可供压缩机排气流过来冷却过渡管的外侧部分。因而空气非常迅速地穿过邻近的过渡管侧板之间的狭窄缝隙,从而使空气的静压相对较低。由于冲击冷却取决于静压差,因此过渡管的侧板被剧烈过冷。结果可以使过渡管的低周期疲劳寿命达到规定以下。通过冲击冷却来冷却过渡件或过渡管的例子可以在公同拥有的美国专利No.4,719,748中找到。
图8所示为根据典型实施例的过渡件冲击套管122,应用了空气动力“流收集装置”226。在这一典型实施例里,装置226成勺形,其安装在套管的表面223上,且沿着几排冲击套管冷却孔120轴向或周向延伸,或同时轴向和周向延伸,最好沿邻近过渡管相似侧板的侧板延伸。如上所述,在某些燃气轮机设计中,如果燃烧室和过渡件的紧凑、成环形阵列,则过渡件10的侧板最难冷却。通常的收集器完全或部分地围在冷却孔120的周围,(例如,收集器可以为有顶或无顶的半圆柱体形状),或部分或完全盖在孔上,通常部分为球形。也可以使用其它能够提供相似的气流捕获功能的形状。如图8和图9清晰所见,每个收集器都有限定开口侧229的边缘227,所述边缘位于大致垂直于冲击套管122的表面223的平面中。
收集器226最好单个地焊接到套管上,以便引导压缩机排气径向向内穿过开口侧229、孔120,到过渡管的侧板上。在本发明的范围内,收集器226的开口侧229可以与气流的方向有一角度。收集器可以单独、成条或成片制造,所有收集器都在单个操作中被固定。收集器226的数量和位置由冲击套管的形状、压缩机排气箱内的气流和过渡件上的压缩机热负荷确定。
在使用中,空气被空气动力收集器226引向过渡件表面,该收集器突出到通过冲击套管的高速气流中。通过停滞和改向的组合,收集器226捕获先前由于缺乏静压差而通过冲击冷却孔120的空气,以驱动气流通过它们,并引导气流向内到过渡管的热表面(即侧板)上,从而使金属温度降低到可接受的水平并增强冲击套管的冷却能力。
本发明的一个优势在于,它可以被应用到现有的设计中,其相对价格低廉,且易于安装,并可提供能够应用于需要额外冷却的侧板上的任何区域的局部解决方案。
已经利用完全紊流化的衬里112和有优化流动套管孔的流动套管128的设计模型进行了一系列的CFD研究,其中边界条件假定为基本负荷条件之下的9FB 12kCl燃烧系统的边界条件。研究结果表明,在正常的运行条件下,衬里112和流动套管128的设计为燃烧室衬里的背侧提供了足够的冷却。参照图11,所预测的沿流动套管128长度的金属温度表明金属温度变化明显减少。
图10和图11表示现有技术衬里100和流动套管28以及本发明衬里112和流动套管128内部的金属温度。如图11所示,与图10中流动套管28所示的流层相比,衬里流动套管128表现出了更为均匀的金属温度。如上所述,已经发现,仅仅改变或均衡圆周有效面积及其相对于流动套管和冲击套管的分配方式即可优化均匀气流,以消除在以前设计中不希望有的流层,从而在这些增加了的金属温度上产生可接受的热应力。再有,这不仅能帮助提高衬里的使用寿命,还允许一部分先前已引导通过衬里的气流现在流向涡轮的燃烧部分12,以改善燃烧和减少排放量。
对沿衬里长度的冷却进行优化,相对现有的衬里结构来说具有显著的优势。其中特别的优势在于,由于新衬里改善了冷却,要达到所需的衬里金属温度只需很少的空气流过衬里;并且还可以平衡衬里通路内的局部空气速度和局部空气温度。这样就沿衬里长度提供了恒定的冷却热通量。其结果在衬里内部降低了热梯度和热应力。对冷却空气的需求减少,由于降低了燃烧反应温度,也有助于延长衬里的使用寿命。最后,减少了气流需求,可以使更多的空气流向涡轮的燃烧部分,以改善燃烧、减少涡轮排放量。
虽然参照典型实施例说明本发明,本领域技术人员可以理解的是,在不脱离本发明范围的情况下,可以有各种各样的变体并可用等价物来代替其中的元件。此外,在不脱离本发明必要范围的情况下,也可做一些改进以使具体情况或材料与本发明的教示相适应。因此,希望本发明不会被限制于这里所公开的作为实现本发明的最佳方式的特殊实施例,而是本发明能够包括所附权利要求书范围之内的所有实施例。
部件列表
0 | 排 |
10 | 过渡件 |
12 | 燃烧室衬里 |
14 | 涡轮或涡轮部分的第一级 |
16 | 轴向导叶 |
18 | 压缩机排气箱 |
20 | 开孔 |
22 | 过渡件冲击套管 |
24 | 环形区或环 |
26 | 安装法兰 |
28 | 燃烧室流动套管 |
30 | 流环 |
32 | 流向箭头 |
34 | 流动套管孔 |
36 | 流向箭头 |
46 | 过渡区 |
100 | 现有技术衬里 |
102 | 流量计量孔 |
112 | 衬里 |
120 | 冲击套管冷却孔 |
121 | 压缩型密封件 |
122 | 冲击套管 |
123 | 盖板 |
124 | 轴向凸起部分或肋 |
126 | 空气入口槽或开口 |
127 | 开口 |
128 | 流动套管 |
129 | 第一排或单一排 |
130 | 尾端 |
132 | 开孔或冷却孔 |
134 | 角部分 |
140 | 圆形肋或环形紊流器 |
150 | 第一排 |
223 | 表面 |
226 | 流收集装置或收集器 |
227 | 边缘 |
229 | 开口侧 |
Claims (9)
1.一种涡轮燃烧室,其包括:
燃烧室衬里(112),其包括多个轴向沿限定所述燃烧室衬里(112)长度的方向以阵列排列且定位在所述燃烧室衬里(112)的外表面上的圆环形紊流器(140);
围绕所述燃烧室衬里(112)的第一流动套管(128),在所述燃烧室衬里(112)与第一流动套管(128)之间有第一流环(30),所述第一流环(30)包括多个在衬里(112)尾端(130)部分的一部分上延伸的、彼此平行的轴向通道(C),所述第一流动套管(128)有多排围绕所述第一流动套管(128)的圆周形成的冷却孔(34),用以引导冷却空气从压缩机排气进入所述第一流环(30);
连接至所述燃烧室衬里(112)的过渡件(10),所述过渡件(10)适于将热的燃烧气体送至涡轮级;
围绕所述过渡件(10)的第二流动套管(122),所述第二流动套管(122)有第二多排冷却开孔(120),用以引导冷却空气从压缩机排气进入第二流动套管(122)和过渡件(10)之间的第二流环(24),所述第一流环(30)与所述第二流环(24)相连;
其中,所述第一多个冷却孔(34)和第二多个冷却开孔(120)每一个都配置有效面积,以便将少于50%的压缩机排气分配入所述第一流动套管(128),并与来自所述第二流环(24)的冷却空气混合。
2.如权利要求1所述的燃烧室,其特征在于,所述第二流动套管(122)内的所述多排冷却开孔(120)的第一排(129)位于邻近与所述第一流动套管(128)接口的一端。
3.如权利要求2所述的燃烧室,其特征在于,冷却开孔(120)的所述第一排(129)允许所述压缩机排气在进入所述第二流环(24)之前进入所述第一流环(30)。
4.如权利要求3所述的燃烧室,其特征在于,冷却开孔(120)的所述第一排(129)位于所述第二流动套管(122)的有角部分(134)上,引导空气流相对通过所述第一和第二流环(30、24)的横向气流通路成锐角地通过所述有角部分(134)。
5.如权利要求4所述的燃烧室,其特征在于,每一个冷却开孔(132)的直径为0.5英寸。
6.如权利要求1所述的燃烧室,其特征在于,所述第一多个冷却孔(34)和第二多个冷却开孔(120)每一个都配置有效面积,以便将少于三分之一的压缩机排气分配入所述第一流动套管(128),并与从所述第二流环(24)流动的剩余压缩机排气混合。
7.如权利要求1所述的燃烧室,其特征在于,每个通道的截面面积沿通道的长度从接纳空气进入每个通道的空气入口向空气从衬里(112)的衬里端部排出的空气出口均匀减少。
8.如权利要求7所述的燃烧室,其特征在于,每个通道的高度沿通道的长度从空气入口端向衬里(112)的空气出口端均匀减少,从而降低了衬里(112)尾端(130)处出现的热应力,以延长衬里(112)的使用寿命,并减少需要流过衬里(112)以影响过渡区(46)中要求的冷却水平的空气量。
9.如权利要求1所述的燃烧室,其进一步包括多个流收集装置(226),每个流收集装置(226)包括围绕所述冷却开孔(120)的相应的一个的一部分固定在所述第二流动套管(122)外部表面(223)上的收集器(226),并有由位于垂直于所述外部表面(223)的平面内的收集器(226)的边缘(227)限定且面向压缩机排气气流方向布置的开口侧(229),从而使所述流收集装置(226)重新定向压缩机排气气流通过所述第二流动套管(122)并到达所述过渡件(10)上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/709,886 US7010921B2 (en) | 2004-06-01 | 2004-06-01 | Method and apparatus for cooling combustor liner and transition piece of a gas turbine |
US10/709886 | 2004-06-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1704573A CN1704573A (zh) | 2005-12-07 |
CN1704573B true CN1704573B (zh) | 2011-07-27 |
Family
ID=35433367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200510076026.5A Expired - Fee Related CN1704573B (zh) | 2004-06-01 | 2005-06-03 | 用于冷却燃气轮机的燃烧室衬里和过渡件的设备 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7010921B2 (zh) |
JP (1) | JP2005345093A (zh) |
CN (1) | CN1704573B (zh) |
DE (1) | DE102005025823B4 (zh) |
Families Citing this family (204)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100908234B1 (ko) * | 2003-02-13 | 2009-07-20 | 삼성모바일디스플레이주식회사 | 전계 발광 표시 장치 및 이의 제조방법 |
US7010921B2 (en) * | 2004-06-01 | 2006-03-14 | General Electric Company | Method and apparatus for cooling combustor liner and transition piece of a gas turbine |
US20060010874A1 (en) * | 2004-07-15 | 2006-01-19 | Intile John C | Cooling aft end of a combustion liner |
US7574865B2 (en) * | 2004-11-18 | 2009-08-18 | Siemens Energy, Inc. | Combustor flow sleeve with optimized cooling and airflow distribution |
US7310938B2 (en) * | 2004-12-16 | 2007-12-25 | Siemens Power Generation, Inc. | Cooled gas turbine transition duct |
US7571611B2 (en) * | 2006-04-24 | 2009-08-11 | General Electric Company | Methods and system for reducing pressure losses in gas turbine engines |
US7524167B2 (en) * | 2006-05-04 | 2009-04-28 | Siemens Energy, Inc. | Combustor spring clip seal system |
US7603863B2 (en) * | 2006-06-05 | 2009-10-20 | General Electric Company | Secondary fuel injection from stage one nozzle |
US7669422B2 (en) * | 2006-07-26 | 2010-03-02 | General Electric Company | Combustor liner and method of fabricating same |
US20100225902A1 (en) * | 2006-09-14 | 2010-09-09 | General Electric Company | Methods and apparatus for robotically inspecting gas turbine combustion components |
US8522557B2 (en) * | 2006-12-21 | 2013-09-03 | Siemens Aktiengesellschaft | Cooling channel for cooling a hot gas guiding component |
US8312627B2 (en) * | 2006-12-22 | 2012-11-20 | General Electric Company | Methods for repairing combustor liners |
US8281600B2 (en) * | 2007-01-09 | 2012-10-09 | General Electric Company | Thimble, sleeve, and method for cooling a combustor assembly |
US8387396B2 (en) * | 2007-01-09 | 2013-03-05 | General Electric Company | Airfoil, sleeve, and method for assembling a combustor assembly |
US7878002B2 (en) * | 2007-04-17 | 2011-02-01 | General Electric Company | Methods and systems to facilitate reducing combustor pressure drops |
US20100136258A1 (en) * | 2007-04-25 | 2010-06-03 | Strock Christopher W | Method for improved ceramic coating |
US8544277B2 (en) * | 2007-09-28 | 2013-10-01 | General Electric Company | Turbulated aft-end liner assembly and cooling method |
US20090120093A1 (en) | 2007-09-28 | 2009-05-14 | General Electric Company | Turbulated aft-end liner assembly and cooling method |
US8151570B2 (en) * | 2007-12-06 | 2012-04-10 | Alstom Technology Ltd | Transition duct cooling feed tubes |
CA2934541C (en) | 2008-03-28 | 2018-11-06 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
AU2009228062B2 (en) * | 2008-03-28 | 2014-01-16 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
US20090249791A1 (en) * | 2008-04-08 | 2009-10-08 | General Electric Company | Transition piece impingement sleeve and method of assembly |
US8126629B2 (en) * | 2008-04-25 | 2012-02-28 | General Electric Company | Method and system for operating gas turbine engine systems |
US8096133B2 (en) * | 2008-05-13 | 2012-01-17 | General Electric Company | Method and apparatus for cooling and dilution tuning a gas turbine combustor liner and transition piece interface |
US7918433B2 (en) * | 2008-06-25 | 2011-04-05 | General Electric Company | Transition piece mounting bracket and related method |
US9046269B2 (en) * | 2008-07-03 | 2015-06-02 | Pw Power Systems, Inc. | Impingement cooling device |
US8109099B2 (en) * | 2008-07-09 | 2012-02-07 | United Technologies Corporation | Flow sleeve with tabbed direct combustion liner cooling air |
US8245514B2 (en) * | 2008-07-10 | 2012-08-21 | United Technologies Corporation | Combustion liner for a gas turbine engine including heat transfer columns to increase cooling of a hula seal at the transition duct region |
US20100005804A1 (en) * | 2008-07-11 | 2010-01-14 | General Electric Company | Combustor structure |
US20100011770A1 (en) * | 2008-07-21 | 2010-01-21 | Ronald James Chila | Gas Turbine Premixer with Cratered Fuel Injection Sites |
US8291711B2 (en) * | 2008-07-25 | 2012-10-23 | United Technologies Corporation | Flow sleeve impingement cooling baffles |
US20100037622A1 (en) * | 2008-08-18 | 2010-02-18 | General Electric Company | Contoured Impingement Sleeve Holes |
US8397512B2 (en) * | 2008-08-25 | 2013-03-19 | General Electric Company | Flow device for turbine engine and method of assembling same |
US8087228B2 (en) * | 2008-09-11 | 2012-01-03 | General Electric Company | Segmented combustor cap |
US8033119B2 (en) * | 2008-09-25 | 2011-10-11 | Siemens Energy, Inc. | Gas turbine transition duct |
US8079219B2 (en) * | 2008-09-30 | 2011-12-20 | General Electric Company | Impingement cooled combustor seal |
US8056343B2 (en) * | 2008-10-01 | 2011-11-15 | General Electric Company | Off center combustor liner |
EP3489491B1 (en) | 2008-10-14 | 2020-09-23 | Exxonmobil Upstream Research Company | Method and system for controlling the products of combustion |
US8677759B2 (en) * | 2009-01-06 | 2014-03-25 | General Electric Company | Ring cooling for a combustion liner and related method |
US8096752B2 (en) * | 2009-01-06 | 2012-01-17 | General Electric Company | Method and apparatus for cooling a transition piece |
US8701383B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection system configuration |
US8683808B2 (en) * | 2009-01-07 | 2014-04-01 | General Electric Company | Late lean injection control strategy |
US8707707B2 (en) * | 2009-01-07 | 2014-04-29 | General Electric Company | Late lean injection fuel staging configurations |
US8112216B2 (en) * | 2009-01-07 | 2012-02-07 | General Electric Company | Late lean injection with adjustable air splits |
US8701382B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection with expanded fuel flexibility |
US8701418B2 (en) * | 2009-01-07 | 2014-04-22 | General Electric Company | Late lean injection for fuel flexibility |
US20100186415A1 (en) | 2009-01-23 | 2010-07-29 | General Electric Company | Turbulated aft-end liner assembly and related cooling method |
US8051662B2 (en) * | 2009-02-10 | 2011-11-08 | United Technologies Corp. | Transition duct assemblies and gas turbine engine systems involving such assemblies |
US7926283B2 (en) * | 2009-02-26 | 2011-04-19 | General Electric Company | Gas turbine combustion system cooling arrangement |
US8432440B2 (en) * | 2009-02-27 | 2013-04-30 | General Electric Company | System and method for adjusting engine parameters based on flame visualization |
US20100223931A1 (en) * | 2009-03-04 | 2010-09-09 | General Electric Company | Pattern cooled combustor liner |
US8307657B2 (en) * | 2009-03-10 | 2012-11-13 | General Electric Company | Combustor liner cooling system |
US20100236248A1 (en) * | 2009-03-18 | 2010-09-23 | Karthick Kaleeswaran | Combustion Liner with Mixing Hole Stub |
US20100269513A1 (en) * | 2009-04-23 | 2010-10-28 | General Electric Company | Thimble Fan for a Combustion System |
US8276253B2 (en) * | 2009-06-03 | 2012-10-02 | General Electric Company | Method and apparatus to remove or install combustion liners |
US8707705B2 (en) * | 2009-09-03 | 2014-04-29 | General Electric Company | Impingement cooled transition piece aft frame |
US8646276B2 (en) * | 2009-11-11 | 2014-02-11 | General Electric Company | Combustor assembly for a turbine engine with enhanced cooling |
MX341477B (es) | 2009-11-12 | 2016-08-22 | Exxonmobil Upstream Res Company * | Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos. |
US8707708B2 (en) | 2010-02-22 | 2014-04-29 | United Technologies Corporation | 3D non-axisymmetric combustor liner |
RU2530685C2 (ru) * | 2010-03-25 | 2014-10-10 | Дженерал Электрик Компани | Структуры ударного воздействия для систем охлаждения |
US20110239654A1 (en) | 2010-04-06 | 2011-10-06 | Gas Turbine Efficiency Sweden Ab | Angled seal cooling system |
US8713776B2 (en) | 2010-04-07 | 2014-05-06 | General Electric Company | System and tool for installing combustion liners |
US8359867B2 (en) | 2010-04-08 | 2013-01-29 | General Electric Company | Combustor having a flow sleeve |
US8590314B2 (en) * | 2010-04-09 | 2013-11-26 | General Electric Company | Combustor liner helical cooling apparatus |
US8276391B2 (en) * | 2010-04-19 | 2012-10-02 | General Electric Company | Combustor liner cooling at transition duct interface and related method |
US8894363B2 (en) | 2011-02-09 | 2014-11-25 | Siemens Energy, Inc. | Cooling module design and method for cooling components of a gas turbine system |
US8959886B2 (en) | 2010-07-08 | 2015-02-24 | Siemens Energy, Inc. | Mesh cooled conduit for conveying combustion gases |
US8307655B2 (en) | 2010-05-20 | 2012-11-13 | General Electric Company | System for cooling turbine combustor transition piece |
US8726670B2 (en) * | 2010-06-24 | 2014-05-20 | General Electric Company | Ejector purge of cavity adjacent exhaust flowpath |
CA2801499C (en) | 2010-07-02 | 2017-01-03 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
CN102985665A (zh) | 2010-07-02 | 2013-03-20 | 埃克森美孚上游研究公司 | 低排放三循环动力产生系统和方法 |
SG186157A1 (en) | 2010-07-02 | 2013-01-30 | Exxonmobil Upstream Res Co | Stoichiometric combustion of enriched air with exhaust gas recirculation |
US9732673B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler |
US8499566B2 (en) * | 2010-08-12 | 2013-08-06 | General Electric Company | Combustor liner cooling system |
CH703657A1 (de) | 2010-08-27 | 2012-02-29 | Alstom Technology Ltd | Verfahren zum betrieb einer brenneranordnung sowie brenneranordnung zur durchführung des verfahrens. |
US8201412B2 (en) | 2010-09-13 | 2012-06-19 | General Electric Company | Apparatus and method for cooling a combustor |
JP2012145098A (ja) | 2010-12-21 | 2012-08-02 | Toshiba Corp | トランジションピースおよびガスタービン |
US8813501B2 (en) | 2011-01-03 | 2014-08-26 | General Electric Company | Combustor assemblies for use in turbine engines and methods of assembling same |
US20120186260A1 (en) * | 2011-01-25 | 2012-07-26 | General Electric Company | Transition piece impingement sleeve for a gas turbine |
US8353165B2 (en) | 2011-02-18 | 2013-01-15 | General Electric Company | Combustor assembly for use in a turbine engine and methods of fabricating same |
US20120210717A1 (en) * | 2011-02-21 | 2012-08-23 | General Electric Company | Apparatus for injecting fluid into a combustion chamber of a combustor |
US8870523B2 (en) * | 2011-03-07 | 2014-10-28 | General Electric Company | Method for manufacturing a hot gas path component and hot gas path turbine component |
US9249679B2 (en) | 2011-03-15 | 2016-02-02 | General Electric Company | Impingement sleeve and methods for designing and forming impingement sleeve |
US8887508B2 (en) | 2011-03-15 | 2014-11-18 | General Electric Company | Impingement sleeve and methods for designing and forming impingement sleeve |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
US8955330B2 (en) * | 2011-03-29 | 2015-02-17 | Siemens Energy, Inc. | Turbine combustion system liner |
US9127551B2 (en) * | 2011-03-29 | 2015-09-08 | Siemens Energy, Inc. | Turbine combustion system cooling scoop |
US9511447B2 (en) * | 2013-12-12 | 2016-12-06 | General Electric Company | Process for making a turbulator by additive manufacturing |
US8973376B2 (en) | 2011-04-18 | 2015-03-10 | Siemens Aktiengesellschaft | Interface between a combustor basket and a transition of a gas turbine engine |
US8727714B2 (en) | 2011-04-27 | 2014-05-20 | Siemens Energy, Inc. | Method of forming a multi-panel outer wall of a component for use in a gas turbine engine |
US20120304652A1 (en) * | 2011-05-31 | 2012-12-06 | General Electric Company | Injector apparatus |
US8966910B2 (en) * | 2011-06-21 | 2015-03-03 | General Electric Company | Methods and systems for cooling a transition nozzle |
US9810050B2 (en) | 2011-12-20 | 2017-11-07 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
US9506359B2 (en) | 2012-04-03 | 2016-11-29 | General Electric Company | Transition nozzle combustion system |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US9133722B2 (en) * | 2012-04-30 | 2015-09-15 | General Electric Company | Transition duct with late injection in turbine system |
US20130318991A1 (en) * | 2012-05-31 | 2013-12-05 | General Electric Company | Combustor With Multiple Combustion Zones With Injector Placement for Component Durability |
US9476322B2 (en) | 2012-07-05 | 2016-10-25 | Siemens Energy, Inc. | Combustor transition duct assembly with inner liner |
US9222672B2 (en) | 2012-08-14 | 2015-12-29 | General Electric Company | Combustor liner cooling assembly |
US8684130B1 (en) * | 2012-09-10 | 2014-04-01 | Alstom Technology Ltd. | Damping system for combustor |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9869279B2 (en) * | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US10138815B2 (en) | 2012-11-02 | 2018-11-27 | General Electric Company | System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
US9163837B2 (en) | 2013-02-27 | 2015-10-20 | Siemens Aktiengesellschaft | Flow conditioner in a combustor of a gas turbine engine |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
CA2902479C (en) | 2013-03-08 | 2017-11-07 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US9228747B2 (en) * | 2013-03-12 | 2016-01-05 | Pratt & Whitney Canada Corp. | Combustor for gas turbine engine |
US9528701B2 (en) * | 2013-03-15 | 2016-12-27 | General Electric Company | System for tuning a combustor of a gas turbine |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US9010125B2 (en) * | 2013-08-01 | 2015-04-21 | Siemens Energy, Inc. | Regeneratively cooled transition duct with transversely buffered impingement nozzles |
WO2015023576A1 (en) * | 2013-08-15 | 2015-02-19 | United Technologies Corporation | Protective panel and frame therefor |
WO2015031816A1 (en) | 2013-08-30 | 2015-03-05 | United Technologies Corporation | Gas turbine engine wall assembly with support shell contour regions |
EP2846096A1 (de) * | 2013-09-09 | 2015-03-11 | Siemens Aktiengesellschaft | Rohrbrennkammer mit einem Flammrohr-Endbereich und Gasturbine |
EP3044444B1 (en) | 2013-09-13 | 2019-11-06 | United Technologies Corporation | Combustor for a gas turbine engine with a sealed liner panel |
EP3066386B1 (en) | 2013-11-04 | 2020-04-29 | United Technologies Corporation | Turbine engine combustor heat shield with multi-height rails |
US10808937B2 (en) | 2013-11-04 | 2020-10-20 | Raytheon Technologies Corporation | Gas turbine engine wall assembly with offset rail |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
EP3084310A4 (en) | 2013-12-19 | 2017-01-04 | United Technologies Corporation | Gas turbine engine wall assembly with circumferential rail stud architecture |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
CN106796034A (zh) | 2014-09-05 | 2017-05-31 | 西门子公司 | 联焰导管 |
EP3002519B1 (en) * | 2014-09-30 | 2020-05-27 | Ansaldo Energia Switzerland AG | Combustor arrangement with fastening system for combustor parts |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
KR101867050B1 (ko) | 2015-05-27 | 2018-06-14 | 두산중공업 주식회사 | 공기유도부재를 포함하는 연소기 챔버. |
US10088167B2 (en) | 2015-06-15 | 2018-10-02 | General Electric Company | Combustion flow sleeve lifting tool |
US10520193B2 (en) | 2015-10-28 | 2019-12-31 | General Electric Company | Cooling patch for hot gas path components |
US10641491B2 (en) | 2016-03-25 | 2020-05-05 | General Electric Company | Cooling of integrated combustor nozzle of segmented annular combustion system |
US11428413B2 (en) | 2016-03-25 | 2022-08-30 | General Electric Company | Fuel injection module for segmented annular combustion system |
US10830442B2 (en) | 2016-03-25 | 2020-11-10 | General Electric Company | Segmented annular combustion system with dual fuel capability |
US10563869B2 (en) | 2016-03-25 | 2020-02-18 | General Electric Company | Operation and turndown of a segmented annular combustion system |
US10520194B2 (en) | 2016-03-25 | 2019-12-31 | General Electric Company | Radially stacked fuel injection module for a segmented annular combustion system |
US11002190B2 (en) | 2016-03-25 | 2021-05-11 | General Electric Company | Segmented annular combustion system |
US10584880B2 (en) | 2016-03-25 | 2020-03-10 | General Electric Company | Mounting of integrated combustor nozzles in a segmented annular combustion system |
US10584876B2 (en) | 2016-03-25 | 2020-03-10 | General Electric Company | Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system |
US10605459B2 (en) | 2016-03-25 | 2020-03-31 | General Electric Company | Integrated combustor nozzle for a segmented annular combustion system |
US10260356B2 (en) * | 2016-06-02 | 2019-04-16 | General Electric Company | Nozzle cooling system for a gas turbine engine |
CN106499518A (zh) * | 2016-11-07 | 2017-03-15 | 吉林大学 | 一种燃气轮机过渡段中强化冷却的肋式仿生换热表面 |
US10690350B2 (en) | 2016-11-28 | 2020-06-23 | General Electric Company | Combustor with axially staged fuel injection |
US11156362B2 (en) | 2016-11-28 | 2021-10-26 | General Electric Company | Combustor with axially staged fuel injection |
US10641490B2 (en) | 2017-01-04 | 2020-05-05 | General Electric Company | Combustor for use in a turbine engine |
US10706189B2 (en) | 2017-02-28 | 2020-07-07 | General Electric Company | Systems and method for dynamic combustion tests |
US10823418B2 (en) | 2017-03-02 | 2020-11-03 | General Electric Company | Gas turbine engine combustor comprising air inlet tubes arranged around the combustor |
DE102017207487A1 (de) * | 2017-05-04 | 2018-11-08 | Siemens Aktiengesellschaft | Brennkammer |
US20190017392A1 (en) * | 2017-07-13 | 2019-01-17 | General Electric Company | Turbomachine impingement cooling insert |
KR101986729B1 (ko) * | 2017-08-22 | 2019-06-07 | 두산중공업 주식회사 | 실 영역 집중냉각을 위한 냉각유로 구조 및 이를 포함하는 가스 터빈용 연소기 |
US11988145B2 (en) * | 2018-01-12 | 2024-05-21 | Rtx Corporation | Apparatus and method for mitigating airflow separation around engine combustor |
CN111380077B (zh) * | 2018-12-28 | 2024-07-09 | 中国联合重型燃气轮机技术有限公司 | 燃气轮机的燃烧器 |
US11105510B2 (en) * | 2019-01-22 | 2021-08-31 | General Electric Company | Alignment tools and methods for assembling combustors |
US11859818B2 (en) * | 2019-02-25 | 2024-01-02 | General Electric Company | Systems and methods for variable microchannel combustor liner cooling |
CN111365734A (zh) * | 2020-03-25 | 2020-07-03 | 中国船舶重工集团公司第七0三研究所 | 一种混合分级超低排放火焰筒 |
US11994293B2 (en) | 2020-08-31 | 2024-05-28 | General Electric Company | Impingement cooling apparatus support structure and method of manufacture |
US11614233B2 (en) | 2020-08-31 | 2023-03-28 | General Electric Company | Impingement panel support structure and method of manufacture |
US11460191B2 (en) | 2020-08-31 | 2022-10-04 | General Electric Company | Cooling insert for a turbomachine |
US11371702B2 (en) | 2020-08-31 | 2022-06-28 | General Electric Company | Impingement panel for a turbomachine |
US11994292B2 (en) | 2020-08-31 | 2024-05-28 | General Electric Company | Impingement cooling apparatus for turbomachine |
US11255545B1 (en) | 2020-10-26 | 2022-02-22 | General Electric Company | Integrated combustion nozzle having a unified head end |
CN112800607B (zh) * | 2021-01-27 | 2023-10-13 | 辽宁科技大学 | 一种冲击射流强化换热特性的离散化测试方法及装置 |
CN114046538A (zh) * | 2021-11-12 | 2022-02-15 | 中国航发沈阳发动机研究所 | 一种扰流式的高效火焰筒冷却结构 |
CN114542287A (zh) * | 2022-02-17 | 2022-05-27 | 中国航发沈阳发动机研究所 | 一种降低机匣壁面周向温度不均匀性的引气结构 |
CN115200041B (zh) * | 2022-07-19 | 2023-06-20 | 中国航发沈阳发动机研究所 | 一种低排放燃烧室火焰筒 |
US11767766B1 (en) | 2022-07-29 | 2023-09-26 | General Electric Company | Turbomachine airfoil having impingement cooling passages |
CN115325569B (zh) * | 2022-09-02 | 2023-05-26 | 华能国际电力股份有限公司 | 一种燃烧室、燃气轮机及燃烧控制方法 |
CN116045745A (zh) * | 2023-01-31 | 2023-05-02 | 南京航空航天大学 | 一种基于氮化铝陶瓷燃气舵片的喷管推力矢量控制系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4719748A (en) * | 1985-05-14 | 1988-01-19 | General Electric Company | Impingement cooled transition duct |
US6494044B1 (en) * | 1999-11-19 | 2002-12-17 | General Electric Company | Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method |
US6681578B1 (en) * | 2002-11-22 | 2004-01-27 | General Electric Company | Combustor liner with ring turbulators and related method |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1074785A (en) * | 1965-04-08 | 1967-07-05 | Rolls Royce | Combustion apparatus e.g. for a gas turbine engine |
US4191011A (en) * | 1977-12-21 | 1980-03-04 | General Motors Corporation | Mount assembly for porous transition panel at annular combustor outlet |
US4195475A (en) * | 1977-12-21 | 1980-04-01 | General Motors Corporation | Ring connection for porous combustor wall panels |
US4236378A (en) * | 1978-03-01 | 1980-12-02 | General Electric Company | Sectoral combustor for burning low-BTU fuel gas |
US4232527A (en) * | 1979-04-13 | 1980-11-11 | General Motors Corporation | Combustor liner joints |
US4653279A (en) * | 1985-01-07 | 1987-03-31 | United Technologies Corporation | Integral refilmer lip for floatwall panels |
CA1263243A (en) * | 1985-05-14 | 1989-11-28 | Lewis Berkley Davis, Jr. | Impingement cooled transition duct |
CA1309873C (en) * | 1987-04-01 | 1992-11-10 | Graham P. Butt | Gas turbine combustor transition duct forced convection cooling |
GB2204672B (en) * | 1987-05-06 | 1991-03-06 | Rolls Royce Plc | Combustor |
GB2219653B (en) * | 1987-12-18 | 1991-12-11 | Rolls Royce Plc | Improvements in or relating to combustors for gas turbine engines |
EP0402693B1 (de) * | 1989-06-10 | 1996-03-20 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Gasturbinentriebwerk mit Diagonal-Verdichter |
US5329773A (en) * | 1989-08-31 | 1994-07-19 | Alliedsignal Inc. | Turbine combustor cooling system |
US5024058A (en) * | 1989-12-08 | 1991-06-18 | Sundstrand Corporation | Hot gas generator |
EP0489193B1 (de) * | 1990-12-05 | 1997-07-23 | Asea Brown Boveri Ag | Gasturbinen-Brennkammer |
US5181377A (en) * | 1991-04-16 | 1993-01-26 | General Electric Company | Damped combustor cowl structure |
US5353865A (en) * | 1992-03-30 | 1994-10-11 | General Electric Company | Enhanced impingement cooled components |
US5461866A (en) * | 1994-12-15 | 1995-10-31 | United Technologies Corporation | Gas turbine engine combustion liner float wall cooling arrangement |
GB9505067D0 (en) * | 1995-03-14 | 1995-05-03 | Europ Gas Turbines Ltd | Combustor and operating method for gas or liquid-fuelled turbine |
JPH08285284A (ja) * | 1995-04-10 | 1996-11-01 | Toshiba Corp | ガスタービン用燃焼器構造体 |
JP3619599B2 (ja) * | 1995-11-30 | 2005-02-09 | 株式会社東芝 | ガスタービンプラント |
US5758504A (en) * | 1996-08-05 | 1998-06-02 | Solar Turbines Incorporated | Impingement/effusion cooled combustor liner |
GB2328011A (en) * | 1997-08-05 | 1999-02-10 | Europ Gas Turbines Ltd | Combustor for gas or liquid fuelled turbine |
US5974805A (en) * | 1997-10-28 | 1999-11-02 | Rolls-Royce Plc | Heat shielding for a turbine combustor |
GB9803291D0 (en) * | 1998-02-18 | 1998-04-08 | Chapman H C | Combustion apparatus |
US6098397A (en) * | 1998-06-08 | 2000-08-08 | Caterpillar Inc. | Combustor for a low-emissions gas turbine engine |
US6314716B1 (en) * | 1998-12-18 | 2001-11-13 | Solar Turbines Incorporated | Serial cooling of a combustor for a gas turbine engine |
GB9926257D0 (en) * | 1999-11-06 | 2000-01-12 | Rolls Royce Plc | Wall elements for gas turbine engine combustors |
US6484505B1 (en) | 2000-02-25 | 2002-11-26 | General Electric Company | Combustor liner cooling thimbles and related method |
US6334310B1 (en) * | 2000-06-02 | 2002-01-01 | General Electric Company | Fracture resistant support structure for a hula seal in a turbine combustor and related method |
US6526756B2 (en) * | 2001-02-14 | 2003-03-04 | General Electric Company | Method and apparatus for enhancing heat transfer in a combustor liner for a gas turbine |
EP1284391A1 (de) * | 2001-08-14 | 2003-02-19 | Siemens Aktiengesellschaft | Brennkammeranordnung für Gasturbinen |
US6530225B1 (en) * | 2001-09-21 | 2003-03-11 | Honeywell International, Inc. | Waffle cooling |
GB2380236B (en) * | 2001-09-29 | 2005-01-19 | Rolls Royce Plc | A wall structure for a combustion chamber of a gas turbine engine |
JP2003286863A (ja) * | 2002-03-29 | 2003-10-10 | Hitachi Ltd | ガスタービン燃焼器及びガスタービン燃焼器の冷却方法 |
US6772595B2 (en) * | 2002-06-25 | 2004-08-10 | Power Systems Mfg., Llc | Advanced cooling configuration for a low emissions combustor venturi |
US6761031B2 (en) * | 2002-09-18 | 2004-07-13 | General Electric Company | Double wall combustor liner segment with enhanced cooling |
US7104067B2 (en) * | 2002-10-24 | 2006-09-12 | General Electric Company | Combustor liner with inverted turbulators |
US7043921B2 (en) * | 2003-08-26 | 2006-05-16 | Honeywell International, Inc. | Tube cooled combustor |
US7010921B2 (en) * | 2004-06-01 | 2006-03-14 | General Electric Company | Method and apparatus for cooling combustor liner and transition piece of a gas turbine |
US7373778B2 (en) * | 2004-08-26 | 2008-05-20 | General Electric Company | Combustor cooling with angled segmented surfaces |
US7310938B2 (en) * | 2004-12-16 | 2007-12-25 | Siemens Power Generation, Inc. | Cooled gas turbine transition duct |
US7082766B1 (en) * | 2005-03-02 | 2006-08-01 | General Electric Company | One-piece can combustor |
-
2004
- 2004-06-01 US US10/709,886 patent/US7010921B2/en not_active Expired - Lifetime
-
2005
- 2005-04-19 US US10/907,866 patent/US7493767B2/en active Active
- 2005-06-02 DE DE102005025823A patent/DE102005025823B4/de not_active Expired - Fee Related
- 2005-06-02 JP JP2005162147A patent/JP2005345093A/ja not_active Withdrawn
- 2005-06-03 CN CN200510076026.5A patent/CN1704573B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4719748A (en) * | 1985-05-14 | 1988-01-19 | General Electric Company | Impingement cooled transition duct |
US6494044B1 (en) * | 1999-11-19 | 2002-12-17 | General Electric Company | Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method |
US6681578B1 (en) * | 2002-11-22 | 2004-01-27 | General Electric Company | Combustor liner with ring turbulators and related method |
Also Published As
Publication number | Publication date |
---|---|
JP2005345093A (ja) | 2005-12-15 |
US20050268615A1 (en) | 2005-12-08 |
US7010921B2 (en) | 2006-03-14 |
CN1704573A (zh) | 2005-12-07 |
US20050268613A1 (en) | 2005-12-08 |
DE102005025823B4 (de) | 2011-03-24 |
US7493767B2 (en) | 2009-02-24 |
DE102005025823A1 (de) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1704573B (zh) | 用于冷却燃气轮机的燃烧室衬里和过渡件的设备 | |
US8544277B2 (en) | Turbulated aft-end liner assembly and cooling method | |
EP2378200B1 (en) | Combustor liner cooling at transition duct interface and related method | |
JP4754097B2 (ja) | 衝突冷却遷移ダクトの側板冷却を強化する空力装置及び関連方法 | |
US6557350B2 (en) | Method and apparatus for cooling gas turbine engine igniter tubes | |
US8033119B2 (en) | Gas turbine transition duct | |
US8166764B2 (en) | Flow sleeve impingement cooling using a plenum ring | |
US8516822B2 (en) | Angled vanes in combustor flow sleeve | |
US20100186415A1 (en) | Turbulated aft-end liner assembly and related cooling method | |
JP6176723B2 (ja) | 燃焼器キャップアセンブリ | |
US8959886B2 (en) | Mesh cooled conduit for conveying combustion gases | |
US20090120093A1 (en) | Turbulated aft-end liner assembly and cooling method | |
US8528839B2 (en) | Combustor nozzle and method for fabricating the combustor nozzle | |
US7574865B2 (en) | Combustor flow sleeve with optimized cooling and airflow distribution | |
US9038396B2 (en) | Cooling apparatus for combustor transition piece | |
US20150292438A1 (en) | Method and apparatus for cooling combustor liner in combustor | |
CN102759121A (zh) | 用于减小动力且改善传热性能的充分冲击冷却的文氏管 | |
CN102818287A (zh) | 具有湍流器的燃烧衬套 | |
CN105276622B (zh) | 燃气涡轮机的环形燃烧室和带有这种燃烧室的燃气涡轮机 | |
CN101725977A (zh) | 燃烧器衬套冷却流散布件及相关方法 | |
CN102401382A (zh) | 在涡轮发动机中使用的燃烧器组件和组装该组件的方法 | |
US20140130504A1 (en) | System for cooling a hot gas component for a combustor of a gas turbine | |
US20100300107A1 (en) | Method and flow sleeve profile reduction to extend combustor liner life |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110727 Termination date: 20210603 |