CN1632830A - Automatic Segmentation of Cerebral Ischemic Lesions - Google Patents
Automatic Segmentation of Cerebral Ischemic Lesions Download PDFInfo
- Publication number
- CN1632830A CN1632830A CN 200310121174 CN200310121174A CN1632830A CN 1632830 A CN1632830 A CN 1632830A CN 200310121174 CN200310121174 CN 200310121174 CN 200310121174 A CN200310121174 A CN 200310121174A CN 1632830 A CN1632830 A CN 1632830A
- Authority
- CN
- China
- Prior art keywords
- segmentation
- image
- voxel
- local volume
- dti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 94
- 230000007657 cerebral ischemic lesion Effects 0.000 title abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 66
- 230000000694 effects Effects 0.000 claims abstract description 14
- 238000005259 measurement Methods 0.000 claims description 11
- 201000006474 Brain Ischemia Diseases 0.000 claims description 8
- 206010008120 Cerebral ischaemia Diseases 0.000 claims description 8
- 206010008118 cerebral infarction Diseases 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 3
- 238000003045 statistical classification method Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims 1
- 238000013507 mapping Methods 0.000 claims 1
- 230000008520 organization Effects 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 42
- 238000003745 diagnosis Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000012545 processing Methods 0.000 abstract description 3
- 238000004458 analytical method Methods 0.000 abstract description 2
- 230000007170 pathology Effects 0.000 abstract description 2
- 230000003044 adaptive effect Effects 0.000 description 25
- 230000003902 lesion Effects 0.000 description 16
- 238000002597 diffusion-weighted imaging Methods 0.000 description 9
- 208000006011 Stroke Diseases 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000003709 image segmentation Methods 0.000 description 6
- 210000004885 white matter Anatomy 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 210000003792 cranial nerve Anatomy 0.000 description 4
- 210000004884 grey matter Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000003708 edge detection Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 206010008190 Cerebrovascular accident Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000007654 ischemic lesion Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 238000012307 MRI technique Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 201000008247 brain infarction Diseases 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002598 diffusion tensor imaging Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 208000023516 stroke disease Diseases 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明涉及图像处理技术,特别涉及一种基于多尺度统计分类以及局部容积分类方法对脑缺血病灶区的自动分割方法。该方法包括以下步骤:(1)估计DTI图像的弥散张量和弥散各向异性;(2)计算尺度空间;(3)多尺度统计分类;(4)局部容积体素再分类。本发明方法有效的克服了噪声、弥散各项异性、局部容积效应和强度不均匀性的影响,实现了对DTI图像脑缺血病灶区的自动分割。在医学图像辅助诊断系统、医学图像三维重建系统、以及临床病理定性定量诊断分析等领域中有着重要的应用价值。
The invention relates to image processing technology, in particular to an automatic segmentation method for cerebral ischemic lesion areas based on multi-scale statistical classification and local volume classification methods. The method includes the following steps: (1) estimating the diffusion tensor and diffusion anisotropy of the DTI image; (2) calculating the scale space; (3) multi-scale statistical classification; (4) reclassifying local volume voxels. The method of the invention effectively overcomes the influence of noise, diffusion anisotropy, local volume effect and intensity inhomogeneity, and realizes automatic segmentation of cerebral ischemic lesion areas in DTI images. It has important application value in the fields of medical image aided diagnosis system, medical image three-dimensional reconstruction system, and clinical pathology qualitative and quantitative diagnosis analysis.
Description
技术领域technical field
本发明涉及图像处理技术,特别涉及一种基于多尺度统计分类以及局部容积分类方法对脑缺血病灶区的自动分割方法。The invention relates to image processing technology, in particular to an automatic segmentation method for cerebral ischemic lesion areas based on multi-scale statistical classification and local volume classification methods.
背景技术Background technique
所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。从处理对象角度来讲,分割是在图像矩阵中确定所关心的目标的定位。显然,只有把“感兴趣的目标物体”从复杂的景象中提取出来,才有可能进一步对各个子区域进行定量分析或者识别,进而对图像进行理解。图像分割包括阈值分割、边缘检测、统计分类等等方法。图像分割可用的特征包括图像灰度、颜色、纹理、局部统计特征或频谱特征等,利用这些特征的差别可以区分图像中不同目标物体。既然我们只能利用图像信息中某些部分特征分割区域,因此各种方法必然带有局限性和针对性,只能针对各种实际应用领域的需求来选择合适的分割方法。The so-called image segmentation refers to distinguishing different regions with special meaning in the image, these regions do not cross each other, and each region satisfies the consistency of a specific region. From the perspective of processing objects, segmentation is to determine the location of the target of interest in the image matrix. Obviously, only by extracting the "target object of interest" from the complex scene, can further quantitative analysis or identification of each sub-region be possible, and then the image can be understood. Image segmentation includes methods such as threshold segmentation, edge detection, and statistical classification. The features available for image segmentation include image grayscale, color, texture, local statistical features or spectral features, etc. The difference of these features can be used to distinguish different target objects in the image. Since we can only use some features in the image information to segment regions, various methods must have limitations and pertinence, and we can only choose appropriate segmentation methods according to the needs of various practical application fields.
目前,图像分割方法最重要的一个实际应用领域是医学图像的分割。医学图像包括CT,MR,及其它医学影象设备所获得的图像,目前医学图像分割的研究多数是针对MR图像或是以MR图像为例的。医学图像分割方法的研究有两个显著的特点,一个是一般要用到医学中的领域知识,如心室的大致形状,颅内白质和灰质的含量和相对位置关系等等,另一个是经常采用三维分割的方式,这是因为一般的图像中仅仅具有二维数据,即三维景物通过摄象机或其它成象设备得到的二维投影,而医学图像中则直接给出了以二维切片形式组织的三维数据,这就为三维分割提供了可能。针对医学图像,具体的分割方法有许多种,如基于区域的阈值分割、区域生长和分裂合并、分类器和聚类、以及基于随机场的方法等;另外还有基于边缘的并行微分算子、曲面拟合法、边界曲线拟合法等。Currently, one of the most important practical applications of image segmentation methods is the segmentation of medical images. Medical images include images obtained by CT, MR, and other medical imaging equipment. At present, most researches on medical image segmentation focus on MR images or take MR images as examples. The research on medical image segmentation methods has two notable features. One is the general use of medical domain knowledge, such as the general shape of the ventricle, the content and relative position of intracranial white matter and gray matter, etc., and the other is often used. The way of three-dimensional segmentation, because the general image only has two-dimensional data, that is, the two-dimensional projection of the three-dimensional scene through the camera or other imaging equipment, while the medical image directly gives the data in the form of two-dimensional slices. Organized 3D data, which provides the possibility for 3D segmentation. For medical images, there are many specific segmentation methods, such as region-based threshold segmentation, region growth and split merging, classifiers and clustering, and methods based on random fields; in addition, there are edge-based parallel differential operators, Surface fitting method, boundary curve fitting method, etc.
在医学成像方式中,弥散核磁成像是临床诊断的重要手段,尤其对于脑中风疾病。脑中风是一种十分严重的疾病,可能导致人的终身残疾,甚至死亡。弥散加权核磁成像(diffusion weighted magnetic resonanceimaging,简称DWI)技术是非常重要且有效的检测脑缺血病的临床手段。尤其DWI可以在发病急性期检测出病灶,这是常规核磁成像技术所不可比拟的。精确的检测脑缺血病灶的位置和大小,有助于对疾病分类,估计疾病状况,以及指导治疗。然而,由于受到T2加权,旋转密度,T1加权等信号的影响,以及脑白质纤维方向的影响,DWI图像的对比度很低;并且仅仅利用DWI图像不能提供充分的弥散信息。因此,目前在临床上,弥散张量核磁成像(diffusion tensor magnetic resonance imaging,简称DTI)技术被越来越多的用来定量估计、分析病灶区的弥散特征。Among medical imaging methods, diffusion MRI is an important means of clinical diagnosis, especially for stroke diseases. Stroke is a very serious disease, which may lead to permanent disability and even death. Diffusion weighted magnetic resonance imaging (DWI) is a very important and effective clinical method for detecting cerebral ischemia. In particular, DWI can detect lesions in the acute stage of onset, which is unmatched by conventional MRI techniques. Accurate detection of the location and size of cerebral ischemic lesions is helpful for classifying diseases, estimating disease status, and guiding treatment. However, due to the influence of signals such as T2 weighting, rotational density, T1 weighting, and the direction of white matter fibers, the contrast of DWI images is very low; and only using DWI images cannot provide sufficient diffusion information. Therefore, in clinical practice, diffusion tensor magnetic resonance imaging (DTI) technology is increasingly used to quantitatively estimate and analyze the diffusion characteristics of the lesion area.
大量的学者利用DWI或者DTI技术,研究脑缺血病人随着病情的转变,病灶区体积的变化;以及利用DTI技术,定量分析病灶区水分子的弥散各向同性、各向异性。在以前的研究中,多采用手动方法分割脑缺血病灶区,但是手动分割是非常耗时的,而且分割结果依赖于操作者的主观判定。由于噪声、局部容积效应、强度不均匀性和弥散各向异性等因素的影响,到目前为止,自动或者半自动分割DWI、DTI图像的脑缺血区域仍然是困难的问题。局部容积效应的产生是由于核磁扫描线圈的有限的空间分辨率造成的;强度不均匀性的产生是由于射频脉冲的不均匀性(radio frequency inhomogeneities)造成的;强度重叠是由于在DWI或者DTI图像中脑缺血病灶区与脑神经纤维强度的相似性造成的。A large number of scholars use DWI or DTI technology to study the volume change of the lesion area in patients with cerebral ischemia as the condition changes; and use DTI technology to quantitatively analyze the diffusion isotropy and anisotropy of water molecules in the lesion area. In previous studies, manual methods were used to segment cerebral ischemic lesions, but manual segmentation is very time-consuming, and the segmentation results depend on the subjective judgment of the operator. Due to the influence of factors such as noise, local volume effect, intensity inhomogeneity and diffusion anisotropy, automatic or semi-automatic segmentation of cerebral ischemic regions in DWI and DTI images is still a difficult problem. The local volume effect is caused by the limited spatial resolution of the MRI scanning coil; the intensity inhomogeneity is caused by the radio frequency inhomogeneities; the intensity overlap is caused by the DWI or DTI image This is caused by the similarity between the ischemic lesion area of the midbrain and the strength of the cranial nerve fibers.
关于自动或者半自动分割DWI、DTI图像的脑缺血病灶区的文献非常有限。Martel等提出了一种半自动的分割方法,即吸收空间约束的自适应阈值分割;并采用迭代条件模式(iterative conditional mode,简称ICM)方法来寻找局部最优解。但是,由于弥散各向异性所造成的强度重叠的影响,他们不能满意的区分病灶区和神经束。The literature on automatic or semi-automatic segmentation of cerebral ischemic lesions in DWI and DTI images is very limited. Martel et al. proposed a semi-automatic segmentation method, that is, adaptive threshold segmentation that absorbs space constraints; and iterative conditional mode (ICM) method is used to find the local optimal solution. However, they could not satisfactorily distinguish the lesion from the nerve bundle due to the influence of intensity overlap caused by diffusion anisotropy.
对于常规MR图像的病灶区的分割,通常采用基于图谱(atlas-based)的分割方法。利用非线性配准方法,解剖模板可以成功的识别不同的正常解剖结构。然而,病灶区不可能利用正常的解剖模板生成,因此就不可能利用图谱直接分割获得病灶区。Leemput等采用统计分类方法自动分割核磁(MR)图像的不同组织结构,利用正常人的图谱作为正常组织的初始分割和几何形状约束,而将脑部病灶区设为局外组织(outliers)。该方法成功的应用于MR图像的多发性硬化(multiple sclerosis)病灶区的分割。基于Leemput的方法,Moon等改变了空间图谱,将病灶组织作为先验知识,大致设定病灶区的位置。但是,由于弥散图像的低对比度和各向异性,这些方法均不适合DTI图像的脑梗塞区域分割。For the segmentation of lesion regions in conventional MR images, an atlas-based segmentation method is usually used. Using nonlinear registration methods, anatomical templates can successfully identify different normal anatomical structures. However, the lesion area cannot be generated using a normal anatomical template, so it is impossible to obtain the lesion area by direct segmentation using the atlas. Leemput et al. used a statistical classification method to automatically segment different tissue structures in nuclear magnetic (MR) images, using the atlas of normal people as the initial segmentation and geometric shape constraints of normal tissue, and set the brain lesion area as outliers. This method was successfully applied to the segmentation of multiple sclerosis lesions in MR images. Based on Leemput's method, Moon et al. changed the spatial map, took the lesion tissue as prior knowledge, and roughly set the location of the lesion. However, due to the low contrast and anisotropy of diffusion images, none of these methods are suitable for the segmentation of brain infarct regions in DTI images.
一些解决局部容积效应方法被陆续提出。Laidlaw等利用基于体素区域的灰度直方图来代表体素的不同组织的混合情况,并且利用Bayesian概率途径来匹配灰度直方图,以判决单个体素内部的最可能的不同组织混合情况。但是,一个体素的强度究竟是由多少个组织类混合而成的并不清楚,并且该算法忽略了强度的不均匀性的影响。Shattuck等以及Noe等将局部容积体素作为一种新的组织类别,然后再估计每个体素中可能的纯组织的混合情况。但是,这种方法可能造成分类结果的过度平滑。Some methods to solve the local volume effect have been proposed one after another. Laidlaw et al. used the gray histogram based on the voxel region to represent the mixture of different tissues of the voxel, and used the Bayesian probability approach to match the gray histogram to determine the most likely mixture of different tissues within a single voxel. However, it is not clear how many tissue classes the intensity of a voxel is mixed from, and the algorithm ignores the influence of intensity inhomogeneity. Shattuck et al. and Noe et al. (2006) introduced local volumetric voxels as a new tissue class and then estimated the possible mixture of pure tissues in each voxel. However, this approach may cause over-smoothing of the classification results.
Rajapakse等利用一个统计模型来代表主要组织类的分布,强度测量模型充分考虑了噪声和强度不均匀性的影响。对于许多临床的常规脑部MR图像的分割结果证明了该算法的鲁棒性和充分的精确度。但是,该算法仍然有其约束性:没有考虑局部容积效应;分割结果依赖于初始分割;该算法不适用于病灶区的分割,即使是对于常规脑部MR图像。Rajapakse et al utilized a statistical model to represent the distribution of the main tissue classes, and the intensity measurement model fully considered the effects of noise and intensity inhomogeneity. Segmentation results on many clinical routine brain MR images demonstrate the robustness and sufficient accuracy of the proposed algorithm. However, the algorithm still has its limitations: the local volume effect is not considered; the segmentation result depends on the initial segmentation; the algorithm is not suitable for the segmentation of the lesion, even for conventional brain MR images.
基于DTI图像本身的特点和现有的图像处理方法,我们提出一种全新的自适应的方法,自动分割脑中风病人DTI图像中的脑缺血病灶区。该方法充分考虑了噪声、弥散各项异性、局部容积效应和强度不均匀性的影响。Based on the characteristics of DTI images and existing image processing methods, we propose a new adaptive method to automatically segment cerebral ischemic lesions in DTI images of stroke patients. The method takes full account of noise, diffusion anisotropy, local volume effect and intensity inhomogeneity.
发明内容Contents of the invention
本发明的目的是提供一种自动的分割DTI图像脑缺血病灶区的方法,该方法充分考虑了噪声、弥散各项异性、局部容积效应和强度不均匀性的影响,提出了基于多尺度统计分类和局部容积分类的自动分割方法,辅助临床医生定性、定量诊断和指导治疗。The purpose of the present invention is to provide an automatic method for segmenting cerebral ischemic lesions in DTI images, which fully considers the influence of noise, diffusion anisotropy, local volume effect and intensity inhomogeneity, and proposes a method based on multi-scale statistics The automatic segmentation method of classification and local volume classification assists clinicians in qualitative and quantitative diagnosis and guides treatment.
本发明的核心思想是我们提出一种全新的自适应的方法,自动分割脑中风病人DTI图像中的脑缺血病灶区。该方法包括以下几个步骤:图像预处理,弥散张量场计算,弥散各向异性的测量,自适应多尺度统计分类(multi-scale statistical classification,简称MSSC),以及局部容积体素再分类(partial volume voxel reclassification,简称PVVR)。自适应MSSC模型考虑到DTI图像的空间信息,强度梯度、弥散各项异性、以及组织特性等信息;PVVR模型利用局部参数信息提高局部容积分割的准确性。The core idea of the present invention is that we propose a brand-new self-adaptive method to automatically segment the cerebral ischemic lesion area in the DTI image of a stroke patient. The method includes the following steps: image preprocessing, calculation of diffusion tensor field, measurement of diffusion anisotropy, adaptive multi-scale statistical classification (MSSC for short), and local volume voxel reclassification ( partial volume voxel reclassification, referred to as PVVR). The adaptive MSSC model takes into account the spatial information of DTI images, intensity gradient, diffusion anisotropy, and tissue characteristics; the PVVR model uses local parameter information to improve the accuracy of local volume segmentation.
基于上述目的和思想,基于多尺度统计分类和局部容积分类方法来自动分割DTI图像脑缺血病灶区算法包括:Based on the above purpose and ideas, the algorithms for automatically segmenting cerebral ischemic lesions in DTI images based on multi-scale statistical classification and local volume classification methods include:
(1)图像预处理,对原始图像进行滤波;(1) Image preprocessing, filtering the original image;
(2)弥散张量场(tensor field)计算,求出三维空间每一个体素所对应的张量场;(2) Diffusion tensor field (tensor field) calculation, to obtain the tensor field corresponding to each voxel in the three-dimensional space;
(3)弥散各向异性的测量,对三维空间每一个体素的各向异性进行量化;(3) Measurement of diffusion anisotropy, which quantifies the anisotropy of each voxel in three-dimensional space;
(4)尺度空间的计算,包括原始DTI图像尺度空间,以及弥散各向异性映射图尺度空间;(4) Calculation of the scale space, including the scale space of the original DTI image and the scale space of the diffusion anisotropy map;
(5)自适应多尺度统计分类(multi-scale statistical classification,简称MSSC),在寻找基于最优的病灶区域的同时,克服由于噪声、弥散各项异性以及强度不均匀性所带来的影响;(5) Adaptive multi-scale statistical classification (MSSC for short), while looking for the optimal lesion area, it overcomes the influence caused by noise, diffusion anisotropy and intensity inhomogeneity;
(6)局部容积体素再分类(partial volume voxel reclassification,简称PVVR),在自适应多尺度统计分类的基础上,进一步优化分割结果,克服局部容积效应所带来的干扰。(6) Partial volume voxel reclassification (PVVR for short), on the basis of adaptive multi-scale statistical classification, further optimizes the segmentation results and overcomes the interference caused by the local volume effect.
本发明利用自适应多尺度统计分类与局部容积体素再分类,有效的克服噪声、弥散各项异性、局部容积效应和强度不均匀性的影响,实现了对DTI图像脑缺血病灶区的自动分割。在医学图像辅助诊断系统、医学图像三维重建系统、以及临床病理定性定量诊断分析等领域中有着重要的应用价值。The present invention uses self-adaptive multi-scale statistical classification and local volume voxel reclassification to effectively overcome the influence of noise, diffusion anisotropy, local volume effect and intensity inhomogeneity, and realizes automatic detection of cerebral ischemic lesion areas in DTI images. segmentation. It has important application value in the fields of medical image aided diagnosis system, medical image three-dimensional reconstruction system, and clinical pathology qualitative and quantitative diagnosis analysis.
附图说明Description of drawings
图1.基于多尺度统计分类和局部容积分类方法的自动进行DTI图像脑缺血病灶区分割的方法结构框图;Figure 1. A block diagram of a method for automatically segmenting cerebral ischemic lesions in DTI images based on multi-scale statistical classification and local volume classification methods;
图2.一个急性脑中风病人的弥散张量体数据的一个切面;图中每一个子图象代表该层面弥散张量D的一个组成部分的标量映射图;Fig. 2. A slice of the diffusion tensor volume data of a patient with acute cerebral apoplexy; each sub-image in the figure represents a scalar map of a component of the diffusion tensor D at that slice;
图3.对图1张量切面的弥散各向异性测量;其中:(a)trace图;(b)FA图;Figure 3. Diffusion anisotropy measurement of the tensor section in Figure 1; where: (a) trace map; (b) FA map;
图4.尺度空间图示;Figure 4. Diagram of scale space;
图5.MSSC分类后可能的不同组织类间的边界情况,其中:(a)显示由两个组织类组成的区域;(b)显示由三个组织类组成的边界;Figure 5. Possible boundary conditions between different tissue classes after MSSC classification, where: (a) shows a region composed of two tissue classes; (b) shows a boundary composed of three tissue classes;
图6.对DTI图像不同分割方法的分割结果比较,其中:(a)原始的脑缺血病人的DTI图象;(b)在较好的初始分割的条件下的自适应MAP分割,其中箭头指向误分为病灶区的脑神经束;(c)MSSC分割;(d)MSSC-PVVR分割;Figure 6. Comparison of segmentation results of different segmentation methods for DTI images, in which: (a) original DTI image of cerebral ischemia patients; (b) adaptive MAP segmentation under better initial segmentation conditions, where the arrow Pointing to the cranial nerve bundle that was misclassified as the lesion; (c) MSSC segmentation; (d) MSSC-PVVR segmentation;
图7.对DTI图像不同分割方法的分割结果比较,其中:(a)原始的脑缺血病人的DTI图象;(b)在较好的初始分割的条件下的自适应MAP分割,其中箭头指向误分为病灶区的脑神经束;(c)MSSC分割;(d)MSSC-PVVR分割;Figure 7. Comparison of segmentation results of different segmentation methods for DTI images, in which: (a) original DTI image of cerebral ischemia patients; (b) adaptive MAP segmentation under better initial segmentation conditions, where the arrow Pointing to the cranial nerve bundle that was misclassified as the lesion; (c) MSSC segmentation; (d) MSSC-PVVR segmentation;
图8.对DTI图像不同分割方法的分割结果比较,(a)原始的脑缺血病人的DTI图象;(b)在较好的初始分割的条件下的自适应MAP分割,其中箭头指向误分为病灶区的脑神经束;(c)MSSC分割;(d)MSSC-PVVR分割。Figure 8. Comparison of segmentation results of different segmentation methods for DTI images, (a) original DTI image of cerebral ischemia patient; (b) adaptive MAP segmentation under the condition of better initial segmentation, where the arrow points to the wrong Cranial nerve bundles divided into lesion areas; (c) MSSC segmentation; (d) MSSC-PVVR segmentation.
具体实施方式Detailed ways
下面结合附图详细描述本发明的自动分割方法。作为一种具体的实现方案,结构框图见图1,该分割方法包括以下几个步骤:图像预处理,弥散张量场计算,弥散各向异性的测量,自适应多尺度统计分类,以及局部容积体素再分类。The automatic segmentation method of the present invention will be described in detail below in conjunction with the accompanying drawings. As a specific implementation scheme, the structural block diagram is shown in Figure 1. The segmentation method includes the following steps: image preprocessing, calculation of diffusion tensor field, measurement of diffusion anisotropy, adaptive multi-scale statistical classification, and local volume Voxel reclassification.
主要包括四个步骤:(1)估计DTI图像的弥散张量和弥散各向异性;(2)计算尺度空间;(3)多尺度统计分类;(4)局部容积体素再分类。下面对其逐一介绍。It mainly includes four steps: (1) estimation of diffusion tensor and diffusion anisotropy of DTI images; (2) calculation of scale space; (3) multi-scale statistical classification; (4) local volume voxel reclassification. The following introduces them one by one.
步骤1:估计DTI图像的弥散张量和弥散各向异性Step 1: Estimate the diffusion tensor and diffusion anisotropy of the DTI image
DTI用来测量水分子在生物组织内部的弥散特性。弥散是一个三维的过程。但是,由于生物组织的结构特点,水分子的运动在三维的各个方向并不是相等的。通常利用弥散张量来完整描述水分子沿不同坐标轴的运动特性,以及它们之间的相互关联性。DTI is used to measure the diffusion characteristics of water molecules in biological tissues. Diffusion is a three-dimensional process. However, due to the structural characteristics of biological tissues, the movement of water molecules is not equal in all three-dimensional directions. The diffusion tensor is usually used to fully describe the motion characteristics of water molecules along different coordinate axes, as well as the interrelationship between them.
D代表弥散张量。从原始DTI图像计算张量D比较复杂,详细方法Bihan在参考文献中有详细叙述。图2代表一个急性脑中风病人的弥散张量体数据的一个层面。图2中每一个子图像代表该层面弥散张量D的一个组成部分的标量映射图。D stands for Diffusion Tensor. Calculating the tensor D from the original DTI image is more complicated, and the detailed method Bihan has described in detail in the reference. Figure 2 represents a slice of the diffusion tensor volume data for an acute stroke patient. Each sub-image in Fig. 2 represents a scalar map of a component of the diffusion tensor D at that level.
利用张量D的特征值λ1,λ2,λ3,其中λ1>λ2>λ3,可以获得不同的各向异性测量。本文中我们采用分布各向异性(fractional anisotropy,简称FA),来定量估计弥散各向异性。Using the eigenvalues λ 1 , λ 2 , λ 3 of the tensor D, where λ 1 >λ 2 >λ 3 , different anisotropy measures can be obtained. In this paper, we use fractional anisotropy (FA for short) to quantitatively estimate the diffusion anisotropy.
Tr(D)=(λ1+λ2+λ3)/3Tr(D)=(λ 1 +λ 2 +λ 3 )/3
其中Tr(D)是D的迹,代表各个不同方向的平均弥散度。图3展示了对图2张量切面的 迹(trace)图和分布各向异性(FA)图。从图3(b)可以观察到正常脑白质区域的各向异性明显高于脑灰质和脑脊液区域。where Tr(D) is the trace of D, representing the average diffusivity in different directions. Figure 3 shows the trace ( trace) diagram and distribution anisotropy (FA) diagram of the tensor section in Figure 2. From Figure 3(b), it can be observed that the anisotropy of normal white matter regions is significantly higher than that of gray matter and CSF regions.
步骤2:计算尺度空间Step 2: Calculate the scale space
尺度空间可以基于许多不同的准则产生。线性尺度空间技术容易模糊图像的重要特征,例如不同组织结构的边界。非线性尺度空间克服了这个缺点,使得区域内的平滑力度大于区域间平滑。Perona与Malik提出了一个计算非线性尺度空间的偏微分方程。中心思想是在滤波的同时引入了边缘检测,允许不同尺度级别间的交互。Scale spaces can be generated based on many different criteria. Linear scale space techniques tend to blur important features of images, such as the boundaries of different tissue structures. The non-linear scale space overcomes this shortcoming, making smoothing within a region greater than smoothing between regions. Perona and Malik proposed a partial differential equation for computing nonlinear scale spaces. The central idea is to introduce edge detection while filtering, allowing interaction between different scale levels.
c(i,t)=g(|y(i,t)|)c(i,t)=g(|y(i,t)|)
在我们的分割方法中,y(i,t)代表DTI图像在尺度级t,位置i的图像强度值;c(i,t)是扩散参数,依赖于空间位置而变化,是图像强度变化的模的函数;div代表发散算子;和Δ分别代表梯度算子和拉普拉斯(Laplacian)算子。在本文,我们采用下面的扩散函数g(·)来产生尺度空间。In our segmentation method, y(i, t) represents the image intensity value of the DTI image at scale level t, position i; c(i, t) is the diffusion parameter, which varies depending on the spatial position, and is the variation of the image intensity The function of the modulus; div represents the divergence operator; and Δ represent the gradient operator and the Laplacian operator, respectively. In this paper, we adopt the following diffusion function g( ) to generate the scale space.
常量Ks要么被手工设定或使用Canny提出的方法来产生。The constant Ks is either set manually or generated using the method proposed by Canny.
图4显示了尺度空间示意图。不同的尺度级t代表不同的图像空间分辨率。尺度级t=0代表原始图像,尺度空间中的最高分辨率。随着尺度级增加,图像越来越模糊,所包含图像信息越来越少。高分辨率的图像与低分辨率的图像有密切的对应关系,这便于我们从低分辨率的图像上提取整体结构信息,而从高分辨率的图像上获取细节信息。Figure 4 shows a schematic diagram of the scale space. Different scale levels t represent different image spatial resolutions. Scale level t=0 represents the original image, the highest resolution in the scale space. As the scale level increases, the image becomes more blurred and contains less and less image information. High-resolution images have a close correspondence with low-resolution images, which facilitates us to extract overall structural information from low-resolution images and obtain detailed information from high-resolution images.
步骤3:多尺度统计分类(MSSC)Step 3: Multiscale Statistical Classification (MSSC)
一幅图像是由相互彼此相邻的体素集合构成。I代表体素在图像中的坐标位置,y=(yi,i∈I)代表图像的强度值,yi代表图像在体素位置i的强度值。设定图像的组织类的个数为K,每一个组织类用一个集合Λ={1,2...k}中的一个数值表示;对图像的分割实际上就是将各个体素归类为不同的组织类。xi=k代表在位置i的体素属于组织类k,k∈Λ。x=(xi,i∈I)代表图像y的一种分类结果。An image is composed of a collection of voxels that are adjacent to each other. I represents the coordinate position of the voxel in the image, y=(y i , i∈I) represents the intensity value of the image, and y i represents the intensity value of the image at the voxel position i. Set the number of tissue classes of the image as K, and each tissue class is represented by a numerical value in a set Λ={1, 2...k}; the segmentation of the image is actually to classify each voxel into different tissue classes. xi = k means that the voxel at position i belongs to tissue class k, k∈Λ. x=( xi , i∈I) represents a classification result of image y.
分割的过程就是寻找合适的x,来代表图像y在每个体素位置所属于的正确的组织类。我们采用最大后验估计(maximum a posteriori,简称MAP)对原始图像进行分割。设x=x*代表最优分割The process of segmentation is to find the appropriate x to represent the correct tissue class that the image y belongs to at each voxel position. We segment the original image using maximum a posteriori (MAP) estimation. Let x=x * represent the optimal split
其中Ω代表所有可能的分割,p(x|y)代表在已知图像y条件下的获得x分割的概率。由于先验概率p(y)独立于分割x,根据Bayesian理论,where Ω represents all possible segmentations, and p(x|y) represents the probability of obtaining x segmentation given image y. Since the prior probability p(y) is independent of the split x, according to Bayesian theory,
p(x|y)∝p(x,y)=p(y|x)p(x)p(x|y)∝p(x, y)=p(y|x)p(x)
假定图像的噪声符合高斯白噪声分布,如果xi=k,那么Assuming that the noise of the image conforms to the Gaussian white noise distribution, if xi =k, then
其中μk,,i,nk,,I和σk,,i分别代表在位置i组织类k的强度均值,噪声,以及噪声的标准方差。θ={θi,i∈I}代表测量模型的参数集,θi={θk,i=(μk,,i,σk,,i),k∈Λ}。代表组织类在图像中各个体素的均值和标准方差,考虑到生物组织的变化和图像空间强度的不均匀性。where μ k , i , n k , I and σ k , i denote the mean intensity of tissue class k at position i, the noise, and the standard deviation of the noise, respectively. θ={θ i , i∈I} represents the parameter set of the measurement model, θ i ={θ k, i =(μ k,, i , σ k,, i ), k∈Λ}. Represents the mean and standard deviation of each voxel of the tissue class in the image, taking into account the variation of biological tissue and the inhomogeneity of the spatial intensity of the image.
假设Rk代表所有属于组织类k的体素位置,那么条件概率p(y|x)可写作Assuming that R k represents all voxel positions belonging to tissue class k, then the conditional probability p(y|x) can be written as
我们利用马尔科夫随机场(Markov Random Field,简称MRF)来定义先验模型,则概率p(x)服从Gibbs分布,We use Markov Random Field (MRF for short) to define the prior model, then the probability p(x) obeys the Gibbs distribution,
其中β是归整化常量,C代表体素点的集合,并且集合中体素之间彼此相邻。Where β is a normalization constant, C represents a set of voxel points, and the voxels in the set are adjacent to each other.
我们得到we got
p(x|y)∝exp{-U(x)}p(x|y)∝exp{-U(x)}
U(x)为能量函数,如下U(x) is an energy function, as follows
U(x)的前两项代表原始图像数据和分割结果之间的相互约束关系;最后一项代表先验模型对分割结果的平滑约束。寻找分割的最大后验估计(MAP)估计问题等价于能量函数U(x)的最小化问题。The first two terms of U(x) represent the mutual constraint relationship between the original image data and the segmentation result; the last term represents the smooth constraint of the prior model on the segmentation result. The maximum a posteriori (MAP) estimation problem for finding partitions is equivalent to the minimization problem of the energy function U(x).
在步骤2中,我们获得在不同分辨率下的序列图像。当我们增加尺度级别时,图像的细节信息下降。模糊化的图像序列用y(t)=(y(i,t),i∈I,t∈N),N={1,2...n}表示。(t代表尺度级别,n代表最高的尺度级)。对y(t)相应的分割用x(t)来表示,x(t)=(x(i,t),i∈I)。In step 2, we obtain sequential images at different resolutions. As we increase the scale level, the detail information of the image decreases. The blurred image sequence is denoted by y(t)=(y(i, t), i∈I, t∈N), N={1, 2...n}. (t represents the scale level, n represents the highest scale level). The corresponding segmentation for y(t) is denoted by x(t), x(t)=(x(i, t), i∈I).
如果在尺度级t+1获得了分割x(t+1),那么就可以相应的估计参数θ(t+1)。应用已知的参数θ(t+1),我们就可以获得在尺度级t图像y(t)的新的分割。在尺度级t+1分割结果x(t+1)相应的参数θ(t+1)可用来获得在尺度级t的下一个分割。完成了分割和参数估计的N次迭代,当到达拥有最高分辨率的原始图像(t=0)时,我们就获得了最终的最优分割结果。因此,分割可以用下面两个过程来描述:If the segmentation x(t+1) is obtained at scale level t+1, then the parameter θ(t+1) can be estimated accordingly. Applying the known parameter θ(t+1), we can obtain a new segmentation of the image y(t) at scale level t. The corresponding parameter θ(t+1) of the segmentation result x(t+1) at scale level t+1 can be used to obtain the next segmentation at scale level t. After completing N iterations of segmentation and parameter estimation, when the original image with the highest resolution (t=0) is reached, we obtain the final optimal segmentation result. Therefore, segmentation can be described by the following two processes:
已知每个组织类的模型参数,来估计最可能的分割;已知分割,来估计最优模型参数。测量模型参数的选择是根据图像数据的最大化原则。自适应多尺度统计分类(MSSC)过程经过多次迭代,来估计能量函数U(t)的最小值。Ui(t)代表在尺度级t位置i的局部能量函数,如下式:The model parameters of each tissue class are known to estimate the most likely segmentation; the segmentation is known to estimate the optimal model parameters. The selection of measurement model parameters is based on the principle of maximization of image data. The adaptive multi-scale statistical classification (MSSC) process goes through multiple iterations to estimate the minimum value of the energy function U(t). U i (t) represents the local energy function at position i at scale level t, as follows:
其中μk,,i(t)和σk,,i(t)分别是DTI图像在尺度级t的μk,,i和σk,,i。这里Vc(xi(t))定义为满足xj(t)=xi(t),i,j∈C,的体素数目。where μ k,, i (t) and σ k,, i (t) are respectively μ k,, i and σ k,, i of the DTI image at scale level t. Here V c ( xi (t)) is defined as the number of voxels satisfying x j (t)= xi (t), i, j∈C.
在DTI图像中,脑缺血病灶区显示高信号,而由于各向异性的影响,脑白质神经纤维处也呈现高信号。由于强度值重叠,精确分割出脑缺血病灶区非常困难。我们通过在模型中加入弥散各向异性的控制来解决这个问题。In DTI images, the cerebral ischemic lesion area shows high signal, and due to the influence of anisotropy, the white matter nerve fibers also show high signal. Due to the overlap of intensity values, it is very difficult to accurately segment the cerebral ischemic lesion. We address this issue by including a control for diffusion anisotropy in the model.
αi(t)=|yi(t)-ri(t)|α i (t)=|y i (t)-r i (t)|
ri(t)=α·FAi(t)ri(t)代表原始DTI图像在尺度级t的位置i的分布各向异性值FAi(t)。因子a确保FA与y有一致的强度空间。αi(t)描述yi(t)和ri(t)的差异性。我们修改能量函数Ui(t)公式如下:r i (t)=α·FA i (t) r i (t) represents the distribution anisotropy value FA i (t) of the original DTI image at position i at scale level t. The factor a ensures that FA has a consistent intensity space with y. α i (t) describes the difference between y i (t) and r i (t). We modify the energy function U i (t) formula as follows:
其中γ是归整化常量。where γ is a normalization constant.
我们可以获得在尺度级t的测量模型参数θ(t)={θi(t),i∈I},其中θi(t)={θk,i(t)=(μk,,i(t),σk,,i(t)),k∈Λ}。通过对log p(y(t)|x(t),θ(t+1))相对于μk,,i(t)及σk,,i(t)求偏微分,并使之为零。可以获得μk,,i(t)和σk,,i(t)的估计如下:We can obtain the measurement model parameters θ(t)={ θi (t), i∈I} at scale level t, where θi (t)={θk ,i (t)=(μk ,,i (t), σ k,, i (t)), k ∈ Λ}. By partial differentiation of log p(y(t)|x(t), θ(t+1)) with respect to μ k,, i (t) and σ k,, i (t), and make it zero . Estimates of μ k,, i (t) and σ k,, i (t) can be obtained as follows:
其中Rk(t)代表在尺度级t所有属于组织类k的区域,即体素位置集。where R k (t) represents all regions belonging to tissue class k at scale level t, ie the set of voxel locations.
步骤4:局部容积体素再分类(PVVR)Step 4: Partial Volumetric Voxel Reclassification (PVVR)
由于图像低的空间分辨率所造成的局部容积效应,被分割区域边缘的体素可能被错误分类。Shattuck与Noe在分割常规MR图像时,将局部容积体素分类为一种新的组织类,来处理局部容积效应。但这种方法不适合DTI图像的分割。DTI图像对比度很低,甚至难以区分脑白质和脑灰质;而且局部容积体素通常具有与纯组织类相似的强度值。所有这些使得对DTI图像的分割比常规MR图像更加困难。为解决这个问题,在利用自适应多尺度统计分类(MSSC)分类之后,我们检测不同类的边缘区域,重新分类局部容积体素,以进一步精确分割结果。我们利用Canny边缘检测器,检测出不同组织类的边缘区域。我们利用多尺度统计分类(MSSC)方法分割结果,来估计可能的原始DTI图像的组织边缘。由于分割结果中不同组织类内部灰度值相等,在组织类之间边缘检测很容易估计。边缘区域的体素被认为是可能的局部容积体素,对这些体素用局部容积体素再分类(PVVR)方法进行再次分类。图5示例了在多尺度统计分类(MSSC)分类后可能的不同组织类间的边界情况。在图5(a)(b)情况下均有可能发生局部容积体素的误分类。Due to the local volume effect caused by the low spatial resolution of the image, voxels at the edge of the segmented region may be misclassified. Shattuck and Noe classified local volume voxels as a new tissue class to deal with local volume effects when segmenting conventional MR images. But this method is not suitable for the segmentation of DTI images. DTI images have very low contrast, and it is even difficult to distinguish white matter from gray matter; and local volumetric voxels often have similar intensity values to pure tissue classes. All these make the segmentation of DTI images more difficult than conventional MR images. To address this issue, after classification with adaptive Multi-Scale Statistical Classification (MSSC), we detect edge regions of different classes and reclassify local volumetric voxels to further refine the segmentation results. We use the Canny edge detector to detect the edge regions of different tissue classes. We segment the results using a multi-scale statistical classification (MSSC) method to estimate possible tissue margins in the original DTI image. Since the internal gray values of different tissue classes are equal in the segmentation results, edge detection between tissue classes is easy to estimate. Voxels in the edge region are considered as possible local volume voxels, and these voxels are reclassified using the local volume voxel reclassification (PVVR) method. Figure 5 illustrates possible boundary cases between different tissue classes after multiscale statistical classification (MSSC) classification. Misclassification of local volume voxels may occur in both cases of Fig. 5(a) and (b).
我们认为局部容积体素是已分割出的不同组织类的线性联合,We consider the local volume voxel to be a linear union of different tissue classes that have been segmented,
θ={θi,i∈I},其中θi=(μk,,i,σk,,i),k∈Λ},代表已知的测量模型参数。θ=θ(0)从多尺度统计分类(MSSC)的分割结果直接获得。πi,k代表在可能的局部容积体素i位置上的权值,0<πi,k<=1。θ={θ i , i∈I}, where θ i =(μ k,, i , σ k,, i ), k∈Λ}, represents known measurement model parameters. θ = θ(0) is obtained directly from the segmentation results of Multi-Scale Statistical Classification (MSSC). π i,k represents the weight value at the position of possible local volume voxel i, 0<π i,k <=1.
通过求解上式来决定不同的类在局部容积体素上所占的权重。根据实际,我们认为局部容积体素是由2个不同类k1,k2组成的。The weights of different classes on the local volume voxels are determined by solving the above formula. According to reality, we think that the local volume voxel is composed of two different classes k 1 and k 2 .
θ1 i=(μ1, k,i,σ1 k,i),k∈Λ,代表在位置i邻近区域R1 i中组织类k的平均强度和标准差。θ 1 i =(μ 1, k, i , σ 1 k, i ), k∈Λ, represents the average intensity and standard deviation of tissue class k in region R 1 i adjacent to position i.
其中|R1 k,1|代表中区域R1 i中所包含的属于组织类k的体素总个数。为了克服原始DTI图像的强度的不均匀性,用θ1 i来替代θi。Where |R 1 k, 1 | represents the total number of voxels belonging to tissue class k contained in the middle region R 1 i . In order to overcome the inhomogeneity of the intensity of the original DTI image, θ i is replaced by θ 1 i .
由于已知图像强度分布y,以及通过多尺度统计分类(MSSC)可获得测量模型参数θ,分类x,θ1 i=(μ1, k,i,σ1 k,i),k∈Λ,可以方便的获取;通过求解πi,k,继而重新分类局部容积体素为权重较大的组织类。Since the image intensity distribution y is known, and the measurement model parameters θ can be obtained by multi-scale statistical classification (MSSC), the classification x, θ 1 i = (μ 1, k, i , σ 1 k, i ), k∈Λ, It can be obtained conveniently; by solving π i, k , and then reclassifying the local volume voxels into tissue classes with larger weights.
运行结果operation result
进一步验证我们的算法,我们选取了20个脑缺血病人的DTI图像。这些DTI图像采用GE 1.5T或3.0T核磁系统,使用弥散张量成像获得(TR/TE:6000-7000/98ms;采集矩阵:128×128;扫描轴位;FOV:24cm;层厚5mm;间距1.0mm;b值:1000s/mm2;弥散方向:13个方向)。在急性或亚急性脑中风阶段,在DTI图像中,脑缺血病灶区呈现高信号。我们将图像分为三个不同的组织类K=3:脑脊液、脑白质和脑灰质、以及脑缺血病灶区。To further verify our algorithm, we selected 20 DTI images of cerebral ischemia patients. These DTI images were acquired by GE 1.5T or 3.0T nuclear magnetic system, using diffusion tensor imaging (TR/TE: 6000-7000/98ms; acquisition matrix: 128×128; scanning axis; FOV: 24cm; slice thickness 5mm; spacing 1.0mm; b value: 1000s/mm 2 ; diffusion direction: 13 directions). In the stage of acute or subacute cerebral apoplexy, the cerebral ischemic lesion area presents high signal in DTI images. We classified images into three distinct tissue classes K=3: CSF, white and gray matter, and ischemic lesion.
自适应多尺度统计分类(MSSC)-局部容积体素再分类(PVVR)方法有效的提高了DTI图像脑缺血病灶区的分割准确性。我们将几种分割方法进行了比较:自适应最大后验估计(MAP)分割,自适应多尺度统计分类(MSSC)分割,自适应多尺度统计分类(MSSC)-局部容积体素再分类(PVVR)分割。如图6、图7、图8所示。(图2,图3和图6均来源于同一组DTI数据)这里,自适应最大后验估计(MAP)分割的初始化均采用较好的阈值分割结果;如果初始分割比较差,自适应最大后验估计(MAP)分割的效果将远远差于目前的效果。然而,自适应多尺度统计分类(MSSC)分割与自适应多尺度统计分类(MSSC)-局部容积体素再分类(PVVR)分割方法利用区域分裂、合并算法完成初始分割,相比较自适应最大后验估计(MAP)分割,更加鲁棒、方便。从实验结果可明显看出,自适应最大后验估计(MAP)分割不能有效的解决强度值重叠的问题;自适应多尺度统计分类(MSSC)分割与自适应多尺度统计分类(MSSC)-局部容积体素再分类(PVVR)分割方法由于在模型中吸收了弥散各向异性的控制,很好的解决了这个问题;与自适应最大后验估计(MAP)分割和自适应多尺度统计分类(MSSC)分割方法比较,自适应多尺度统计分类(MSSC)-局部容积体素再分类(PVVR)分割有效的降低了局部容积效应的影响。Adaptive multi-scale statistical classification (MSSC)-volume voxel reclassification (PVVR) method effectively improves the segmentation accuracy of cerebral ischemic lesions in DTI images. We compared several segmentation methods: adaptive maximum a posteriori (MAP) segmentation, adaptive multiscale statistical classification (MSSC) segmentation, adaptive multiscale statistical classification (MSSC)-partial volumetric voxel reclassification (PVVR )segmentation. As shown in Figure 6, Figure 7, and Figure 8. (Figure 2, Figure 3 and Figure 6 are all from the same set of DTI data) Here, the initialization of adaptive maximum a posteriori estimation (MAP) segmentation adopts better threshold segmentation results; Experimental Estimation (MAP) segmentation will perform far worse than current performance. However, adaptive multi-scale statistical classification (MSSC) segmentation and adaptive multi-scale statistical classification (MSSC)-partial volumetric voxel reclassification (PVVR) segmentation methods use region splitting and merging algorithms to complete the initial segmentation. Experimental estimation (MAP) segmentation is more robust and convenient. It can be clearly seen from the experimental results that adaptive maximum a posteriori estimation (MAP) segmentation cannot effectively solve the problem of overlapping intensity values; adaptive multi-scale statistical classification (MSSC) segmentation and adaptive multi-scale statistical classification (MSSC)-local The Volumetric Voxel Reclassification (PVVR) segmentation method solves this problem well because it absorbs the control of diffusion anisotropy in the model; it is compatible with adaptive maximum a posteriori estimation (MAP) segmentation and adaptive multi-scale statistical classification ( Compared with the MSSC) segmentation method, the adaptive multi-scale statistical classification (MSSC)-local volume voxel reclassification (PVVR) segmentation effectively reduces the influence of the local volume effect.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101211745A CN1305008C (en) | 2003-12-22 | 2003-12-22 | Automatic dividing method for cerebral ischemia focus area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101211745A CN1305008C (en) | 2003-12-22 | 2003-12-22 | Automatic dividing method for cerebral ischemia focus area |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1632830A true CN1632830A (en) | 2005-06-29 |
CN1305008C CN1305008C (en) | 2007-03-14 |
Family
ID=34844083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003101211745A Expired - Fee Related CN1305008C (en) | 2003-12-22 | 2003-12-22 | Automatic dividing method for cerebral ischemia focus area |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1305008C (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010009596A1 (en) * | 2008-07-21 | 2010-01-28 | 深圳先进技术研究院 | Brain characteristic parameter obtaining method and system, thrombolysis indication generating system |
CN100595791C (en) * | 2008-06-18 | 2010-03-24 | 陕西高科医疗信息股份有限公司 | Mixed organization image full-automatic partition method of virtual colonoscope |
CN101067867B (en) * | 2006-05-05 | 2010-07-21 | 美国西门子医疗解决公司 | Diffusion tensor image visualization method and device |
CN101061951B (en) * | 2005-07-15 | 2010-10-13 | 美国西门子医疗解决公司 | Apparatus for classifying tissue using image data |
WO2010142085A1 (en) * | 2009-06-12 | 2010-12-16 | 深圳先进技术研究院 | Method and system for obtaining brain characteristic parameters, thrombolysis decision guideline system and method thereof |
CN101515364B (en) * | 2009-03-26 | 2011-05-04 | 哈尔滨工业大学 | Anisotropic picture flatting method based on most frequency value filtering |
CN102509123A (en) * | 2011-12-01 | 2012-06-20 | 中国科学院自动化研究所 | Brain functional magnetic resonance image classification method based on complex network |
CN101558321B (en) * | 2006-12-11 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | Fibre tracking on the basis of macroscopic information |
CN104504657A (en) * | 2014-12-11 | 2015-04-08 | 中国科学院深圳先进技术研究院 | Method and device for de-noising magnetic resonance diffusion tensor |
CN104749540A (en) * | 2013-12-31 | 2015-07-01 | 西门子(深圳)磁共振有限公司 | Method and device for indicating inter-tissue distinction degree |
CN106780641A (en) * | 2016-11-14 | 2017-05-31 | 西安交通大学 | A kind of Low-dose X-ray CT image reconstruction method |
CN108665465A (en) * | 2018-05-14 | 2018-10-16 | 沈阳东软医疗系统有限公司 | Divide method, apparatus, storage medium and the equipment of cerebral ischemic penumbra |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5526446A (en) * | 1991-09-24 | 1996-06-11 | Massachusetts Institute Of Technology | Noise reduction system |
JP2770849B2 (en) * | 1995-09-29 | 1998-07-02 | 日本電気株式会社 | Image processing device |
US5848193A (en) * | 1997-04-07 | 1998-12-08 | The United States Of America As Represented By The Secretary Of The Navy | Wavelet projection transform features applied to real time pattern recognition |
CN1184796C (en) * | 2001-07-26 | 2005-01-12 | 佳能株式会社 | Image processing method and equipment, image processing system and storage medium |
US7428338B2 (en) * | 2002-01-10 | 2008-09-23 | Ricoh Co., Ltd. | Header-based processing of images compressed using multi-scale transforms |
-
2003
- 2003-12-22 CN CNB2003101211745A patent/CN1305008C/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101061951B (en) * | 2005-07-15 | 2010-10-13 | 美国西门子医疗解决公司 | Apparatus for classifying tissue using image data |
CN101067867B (en) * | 2006-05-05 | 2010-07-21 | 美国西门子医疗解决公司 | Diffusion tensor image visualization method and device |
CN101558321B (en) * | 2006-12-11 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | Fibre tracking on the basis of macroscopic information |
CN100595791C (en) * | 2008-06-18 | 2010-03-24 | 陕西高科医疗信息股份有限公司 | Mixed organization image full-automatic partition method of virtual colonoscope |
WO2010009596A1 (en) * | 2008-07-21 | 2010-01-28 | 深圳先进技术研究院 | Brain characteristic parameter obtaining method and system, thrombolysis indication generating system |
CN101515364B (en) * | 2009-03-26 | 2011-05-04 | 哈尔滨工业大学 | Anisotropic picture flatting method based on most frequency value filtering |
WO2010142085A1 (en) * | 2009-06-12 | 2010-12-16 | 深圳先进技术研究院 | Method and system for obtaining brain characteristic parameters, thrombolysis decision guideline system and method thereof |
CN102509123B (en) * | 2011-12-01 | 2013-03-20 | 中国科学院自动化研究所 | Brain function magnetic resonance image classification method based on complex network |
CN102509123A (en) * | 2011-12-01 | 2012-06-20 | 中国科学院自动化研究所 | Brain functional magnetic resonance image classification method based on complex network |
CN104749540A (en) * | 2013-12-31 | 2015-07-01 | 西门子(深圳)磁共振有限公司 | Method and device for indicating inter-tissue distinction degree |
CN104749540B (en) * | 2013-12-31 | 2017-11-17 | 西门子(深圳)磁共振有限公司 | The method and apparatus of discrimination between a kind of instruction tissue |
CN104504657A (en) * | 2014-12-11 | 2015-04-08 | 中国科学院深圳先进技术研究院 | Method and device for de-noising magnetic resonance diffusion tensor |
CN104504657B (en) * | 2014-12-11 | 2017-05-03 | 中国科学院深圳先进技术研究院 | Method and device for de-noising magnetic resonance diffusion tensor |
US10620287B2 (en) | 2014-12-11 | 2020-04-14 | Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences | Method and apparatus for denoising magnetic resonance diffusion tensor, and computer program product |
CN106780641A (en) * | 2016-11-14 | 2017-05-31 | 西安交通大学 | A kind of Low-dose X-ray CT image reconstruction method |
CN106780641B (en) * | 2016-11-14 | 2020-07-28 | 西安交通大学 | Low-dose X-ray CT image reconstruction method |
CN108665465A (en) * | 2018-05-14 | 2018-10-16 | 沈阳东软医疗系统有限公司 | Divide method, apparatus, storage medium and the equipment of cerebral ischemic penumbra |
Also Published As
Publication number | Publication date |
---|---|
CN1305008C (en) | 2007-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7573021B2 (en) | 3D Object Segmentation of Localized Medical Images Using Object Detection | |
JP7515502B2 (en) | Deep Convolutional Neural Networks for Tumor Segmentation Using Positron Emission Tomography | |
Roy et al. | Robust skull stripping using multiple MR image contrasts insensitive to pathology | |
Nitzsche et al. | A stereotaxic breed-averaged, symmetric T2w canine brain atlas including detailed morphological and volumetrical data sets | |
Rorden et al. | Stereotaxic display of brain lesions | |
Lladó et al. | Automated detection of multiple sclerosis lesions in serial brain MRI | |
US7876938B2 (en) | System and method for whole body landmark detection, segmentation and change quantification in digital images | |
EP2102675B1 (en) | Segmentation of magnetic resonance diffusion data | |
US9042616B2 (en) | Medical image processing device | |
DE102006038485A1 (en) | System and method for feature-prominent 3D multi-modality registration of medical images | |
Somasundaram et al. | Contour-based brain segmentation method for magnetic resonance imaging human head scans | |
Yang et al. | Multiscale segmentation of the skull in MR images for MRI-based attenuation correction of combined MR/PET | |
CN1632830A (en) | Automatic Segmentation of Cerebral Ischemic Lesions | |
Kim et al. | Accurate cortical tissue classification on MRI by modeling cortical folding patterns | |
Adler et al. | Reconstruction of the human hippocampus in 3D from histology and high-resolution ex-vivo MRI | |
Rohr et al. | Tracking and quantitative analysis of dynamic movements of cells and particles | |
Undeman et al. | Fully automatic segmentation of MRI brain images using probabilistic anisotropic diffusion and multi-scale watersheds | |
del Toro et al. | Hierarchical multi–structure segmentation guided by anatomical correlations | |
Currie et al. | The transformational potential of molecular radiomics | |
Mihaylova et al. | A brief survey of spleen segmentation in MRI and CT images | |
Dickscheid et al. | Towards 3D reconstruction of neuronal cell distributions from histological human brain sections | |
Han et al. | Three dimensional nuclei segmentation and classification of fluorescence microscopy images | |
Somasundaram et al. | Brain extraction method for T1-weighted magnetic resonance scans | |
Steyer et al. | Cryo-imaging of fluorescently labeled single cells in a mouse | |
Cherradi et al. | Fully automatic method for 3D T1-weighted brain magnetic resonance images segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070314 Termination date: 20181222 |
|
CF01 | Termination of patent right due to non-payment of annual fee |