背景技术
迄今为止,中空丝膜组件被用于无菌水、饮料水、高纯净水的制造、空气的净化等多种用途。在这些用途的基础上,近年来在污水处理的2次处理、3次处理、净化槽中的固液分离以及对工业废水中的SS(悬浮物)进行固液分离等方面得到应用,近来又逐渐被用于高污浊性水处理的用途。
作为适合于高污浊性水过滤的中空丝膜组件,可举出把薄膜状的中空丝膜束的端部收容在如特开平5-261253号公报、特开平6-342号公报、特开平6-340号公报等所揭示的那样的矩形支承盒中,使用固定用树脂进行固定后形成的中空丝膜组件。
这些中空丝膜组件按如下上述的方法制造:把固定用树脂注入支承盒中,用固定用树脂将中空丝膜束的端部固定在支承盒中后,为使中空丝膜的端部产生开口,而将固定用树脂的一部分割去。
但是,在这种制造方法中,为了使割刀能插入支承盒内,需要支承盒的口径较大。为此,就需要将中空丝膜组件作多个排列,使其聚集后组成中空丝膜组件单元。此时,这样组成的中空丝膜组件单元存在着单位体积中的中空丝膜组件的聚集率降低的问题。
为解决这一问题,可列举在特开平10-57775号公报中所记载的中空丝膜组件。这种中空丝膜组件的制造方法是:在由市售的管子组成的支承管本体上开出缝槽,在缝槽的周围设置树脂注入堤部,将中空丝膜的端部预先开过口的中空丝膜束插入缝槽部中,在不会造成中空丝膜的端部堵塞的情况下,从树脂注入用堤部的内侧注入固定用树脂,由固定树脂将中空丝膜束固定。
在这种中空丝膜组件的制造工序中,用固定树脂将中空丝膜固定在支承管中后,由于省去了为将中空丝膜的端部开口而将固定树脂的一部分割去的工序,因此支承管的口径可以做得小些。
另外,在特开2000-84373公报中,提出了一种对特开平10-57775号公报中所揭示的中空丝膜组件进行改良后的中空丝膜组件。图27是这种中空丝膜组件的立体图,图28是图27的中空丝膜组件的支承管部分的剖视图。
这种中空丝膜组件11,大致是由一对支承管12、将多个中空丝膜13成薄膜状集束的中空丝膜束14、接合在支承管12的一端、具有处理水出口16的端盖板17、以及接合在支承管12的另一端上、没有水处理出口的端盖板18等构成。前文所述的中空丝膜束14,在插入支承管内部后的状态下,保持中空丝膜13的开口部19的开口状态,用固定用树脂15将其固定在支承管12内。
前文所述的中空丝膜支承管12,是由其内部形成中空的内部通道21、形成于支承管12表面上的缝槽状开口部22、设置于该开口部22的两侧、且平行于该开口部、与支承管本体23连成一体的堤部24、以及被堤部24围住的树脂注入部25所构成的剖面为U字形的中空柱状部件。
中空丝膜组件11,由于采用了剖面为U字形的支承框管2,支承管12的口径更趋于小径化,聚集率也得以提高。与此同时,支承管12的耐压性能提高了。在对中空丝膜13的外面附着的高污浊性水中的固体物质进行逆清洗时,由于支承管12反复承受着逆清洗水压,这样,在高污浊性水处理时要求支承管12具有耐压性能,这在高污浊性水过滤处理过程中尤为重要。
用这种中空丝膜11进行高污浊性水处理时,作为用于清洗中空丝膜13外面附着的高污浊性水中的固体物质的清洗方法,除了上述方法外,通常还较多使用透气管等的气泡法。这样,在使用中空丝膜组件单元进行过滤运转时,构成的中空丝膜组件11上会受到各种应力作用。尤其由气泡引起的上升气流使得中空丝膜13受到向上的力。这样,以受随上升气流上升的中空丝膜13的牵拉张力的形式,在支承管12中,向着中空丝膜侧壁增加压力。这样,由气泡引起的应力使得支承管12产生挠曲变形,这也是造成中空丝膜13损伤的原因之一。
又,也发生导致支承管12发生挠曲的原因的中空丝膜14的挠曲。其结果,在中空丝膜组件单元中,有互为相邻的中空丝膜组件11与中空丝膜束14之间发生相互缠绕的现象。另外,由于中空丝膜束14之间的缠绕,在中空丝膜组件单元长时间的使用过程中,引起中空丝膜组件11的折断,或加速高污浊性水中的线头、毛发等杂物的堆积。另外,还会产生阻碍均匀气泡的产生等问题。
因此支承管12挠曲的大小,很大程度上左右了中空丝膜组件11以及使用该组件的中空丝膜单元的性能。
这里所说的支承管的挠曲,主要可举出:在中空丝膜组件单元的过滤过程中所发生的二个方向的挠曲,即,在中空丝膜束的长度方向上的挠曲和与中空丝膜束的长度方向相垂直方向的挠曲。其中,与中空丝膜束的长度方向正交方向上的挠曲,例如,把中空丝膜组件组装到单元中时,为了使得支承管之间呈无间隙地平行排列,可以预先设计中空丝膜组件的使用支承管的尺寸。另外,同样在装配中空丝膜单元时,也可使用在中空丝膜组件的支承管的缝槽中插入垫片等的方法,或使用其它的简单方法可防止挠曲的发生。但是,通过抑制中空丝膜束长度方向的支承管的挠曲来解决中空丝膜的缠绕问题,至今尚未形成具体的方案。
还有,在这样的中空丝膜组件11中,在用于收集处理水的存水支承管12中,为把该支承管12的端部封住,有必要使其与端盖板17、18作液密接合。
端盖板17、18与支承管端部的接合,通常是在往支承管12的树脂注入部25里注入固定用树脂15之前实施的。在进行这种接合作业时,在端盖板17、18以及支承管12的材料是聚碳酸脂、丙烯树脂、ABS树脂、聚氯乙稀树脂等材料时,可以使用溶剂型的粘接剂或与固定用树脂15同类的粘接树脂进行粘接。用这些粘接剂涂敷在支承边框12及端盖板17、18的相互接触部分后,再将支承边框12和端盖板17、18接合。
但是,在如上所述的中空丝膜组件11中,支承管12在受到外力作用时,接合在支承管12上的端盖板17、18在持续受到过大的外力作用时,涂敷有粘结剂的部分有破损现象发生。另外发现,往端盖板17、18上涂敷粘接剂的作业也不太容易,有着生产效率低下的问题。
再有,上述支承管12根据其成形状态不同,设置在支承管本体23外面的堤部24以及被其围在中间的树脂注入部25的尺寸参差不齐,有时,会发生堤部24向内侧顷斜的情况。还有,当把中空丝膜13插入支承管12内时,在固定被开口部22围住的中空丝膜13时,会发生因开口部22和中空丝膜13的尺寸的变化而导致中空丝膜13塌陷的情况。发生这样的情况时,则无法确保树脂注入部25的容量。在往树脂注入部25注入固定用树脂15时,发生了固定树脂15从支承管12向外漏出的现象。由此造成注入的树脂没有被充分使用。由于固定用树脂15不能完全充满型腔产生不良品,注入树脂量不足等,均有可能影响中空丝膜组件的耐久、耐压等性能。
因此,本发明的目的在于提供一种中空丝膜组件及其制造方法,上述中空丝膜组件没有中空丝膜、中空丝膜支承边框(管、盒)的损伤,耐久性优良。
具体的说,本发明的主要目的在于:提供一种中空丝膜组件及使用该中空丝膜组件的中空丝膜组件单元,所述中空丝膜组件不仅能提高使中空丝膜组件单元的单位体积的中空丝膜组件的聚集率,而且能减小支承边框由于气泡等的影响而产生的挠曲,不发生中空丝膜缠绕。
另外,本发明目的还在于:提供一种支承边框和端盖板的接合部分机械强度高的中空丝膜组件,以及能够简便、高效地制造出这种中空丝膜组件的制造方法。
此外,本发明的目的也在于:提供一种能有效地注入树脂、增加树脂的注入量,在确保能够用树脂固定中空丝膜的同时,也能提高耐压性能的支承边框及使用该支承边框的中空丝膜组件。
发明内容
本发明的第1形态的中空丝膜组件,系这样一种中空丝膜组件,将由多个中空丝膜集束成薄膜状的中空丝膜束的两端部,在保持中空丝膜开口端部的开口状态的同时,用固定用树脂分别固定于两个不同的支承边框(管、盒)内,其特征在于,在对于如前所述的中空丝膜的长度方向垂直剖面上的、与所述中空丝膜的长度方向正交方向上的最大宽度(A)在25mm以下,按下述挠曲量测量方法测量的所述支承边框的最大挠曲量在2个支承边框间间距的1%以下。这样的中空丝膜组件,不仅中空丝膜组件单元的单位体积的聚集率可以提高,而且因气泡等的影响而引起的支承边框的挠曲会减小,并可抑制中空丝膜的缠绕,不会出现中空丝膜的损坏。
(挠曲量的测量方法)
使中空丝膜在下方地,支承测量对象支承边框的两端;
支承另一边的支承边框,使其质量不至加到被测对象量的支承边框上;
从测量对象支承边框的一端到另一端,每隔5cm间隔,悬挂0.05kg的砝码;
在测量对象支承边框的上面放置直尺量具,
测量对象支承边框的上面和直尺量具之间的距离,将该距离的最大值作为最大挠曲量。
再则,在这种中空丝膜组件中,上述的支承边框最好有固定用树脂注入的树脂注入部、中空丝膜束的端部可插入的开口部、与中空丝膜连通的内部通道、以及加强支承边框强度的加强筋部。支承边框有了增强强度的加强筋部,便能抑制支承边框挠曲的发生。
又,较好的是,如上所述支承边框的剖面形状为近似H形。这样的丝膜组件单元在制造时的操作处理性能良好。可设计高的中空丝膜组件中的中空丝膜组件的聚集率,大大提高支承边框的挠曲强度。
较好的是,上述的支承边框具有用于固定支承中空丝膜组件的外部支承体的卡合手段。在这样的中空丝膜中,由于外部支承体形成对支承边框的支承和增强,支承边框的挠曲量可以达到极小。
另外,较好的是,上述支承边框的侧面上形成有由2条加强筋部夹持而形成的凹部,在该加强筋的凹部侧上,作为上述的卡合手段,形成有在支承边框的长度方向上的互为对向延伸的2条凸条。在这样的中空丝膜组件中,可可靠进行外部支承体对支承边框的卡合,同时,外部支承体的脱卸也很容易。
另外,本发明的中空丝膜组件单元系将其第一形态的中空丝膜组作大致呈平行多个排列的中空丝膜组件单元,其特征在于,中空丝膜组件支承边框的宽度方向的中心(a)和与之相邻的中空丝膜组件支承边框的宽度方向的中心(a’)之间的间距(C)在25mm以内。这样的中空丝膜组件单元在可提高其单位体积的聚集率的同时,也可将因气泡等的影响引起的支承边框的挠曲降到最小。并可防止长期使用后中空丝膜组件的折断。
根据本发明的中空丝膜组件中使用的支承边框,其特征在于,在沿着长度方向形成缝槽状开口部的中空柱状的膜组件用支承边框中,在夹持中空部的开口部的反向一侧,形成沿着长度方向的2条凸条部,由支承边框外侧向凸条部施加压力,藉此,可增大开口部的宽度。使用具有这一特征的膜组件的支承边框,膜组件的生产性就会提高。
另外,在这种膜组件用的支承边框中,形成了2条平行的凸条部,最好支承边框本体的侧面和凸条部的侧面在同一个平面上。籍由使用这样的支承边框,膜组件单元化时能大大提高其聚集率。
本发明的第2形态的膜组件的特征在于:所述膜组件具有上述膜组件用支承边框和过滤膜,上述过滤膜至少一边的端部从上述支承边框的开口部插入,在此状态下,在保持过滤膜开口部的开口状态的同时,用固定用树脂将其固定在上述支承边框内。根据这样的膜组件的过滤膜,几乎不会发生过滤膜破损和塌陷,发生不良品的概率极低。
另外,本发明的第2形态的膜组件制造方法的特征是:从上述膜组件用支承边框的侧面给凸条部施加压力,使开口部宽度增大后,由该开口部插入过滤膜,保持过滤膜端部的开口状态,同时由固定用树脂把过滤膜固定在上述支承边框中。使用这样的制造方法,可以高效率地制造出过滤膜不会破损和塌陷的中空丝膜组件。
本发明的第3形态的中空丝膜组件系这样一种中空丝膜组件,多个中空丝膜集束为薄膜状的中空丝膜,保持中空丝膜的开口端部的开口状态,同时由固定用树脂固定在上述支承边框中,其特征在于,所述支承边框具有用于将中空丝膜束的端部插入支承边框内部用的缝槽状开口部,和位于该开口部二侧,且相对开口部平行设置的(浇口)堤部,所述堤部具有堤本体和从该堤本体前端向外侧弯曲的弯曲部。这样的中空丝膜组件几乎可以消除因受支承边框尺精度,即中空丝的塌陷等的影响而导致的浇注不良。而且,由于固定用树脂的厚度均一,具有优异的耐压性能。
另外,在这种中空丝膜组件中,堤部本体的高度应以堤部整体高度的10-90%较为理想,这种中空丝膜组件,可以确保固定用树脂的厚度,所以能够维持中空丝膜组件的耐压性。
另外,在这种中空丝膜组件中,一边堤部的顶端部与另一边堤部顶端部的间隔、一边堤部基端部与另一边堤部基端部的间隔之比是10∶9-2∶1,这样的比例较为理想。因为,在这样的中空丝膜组件中,往树脂注入部里注入固定用树脂很容易,还能够控制固定所需要的树脂量。
上述中空丝膜组件的开口部的理想厚度应是0.1-20mm。这种中空丝膜组件能牢牢把持中空丝膜,确保有效膜面积,并能够维持其耐压性能。
作为本发明的第4形态的中空丝膜组件系这样一种中空丝膜组件,在其从中空丝膜开始的成为处理水通道中的内部通道的支承边框,其至少一端同端盖板紧密接合,同时该中空丝膜的至少一个端部用固定树脂作为固定材料,将其液密地固定在支承边框上。其特征在于,上述固定材料在把中空丝膜固定在支承边框里的同时,也把上述端盖板固定在支承边框中。这样的中空丝膜组件,支承边框和端盖板的接合部分具有优异的机械强度。
另外,这种中空丝膜组件中的端盖板具有:连接插入支承边框的内部通道的小盖部、接触支承边框端面的大盖部、和连接小盖部和大盖部、与支承边框的长度方向正交的剖面的截面积比小盖部面积还要小的的连接部。较好的是,上述固定材料被填入形成于端盖板的连接部的外周壁和支承边框内周壁之间的树脂注入空间内。在这种中空丝膜组件里,为防止端盖板从支承边框内脱开而把端盖板牢牢地固定在支承边框内。
根据本发明的第4形态的中空丝膜组件的制造方法,其特征在于,把中空丝膜的开口端部从在支承边框的侧壁形成的开口部插入收纳在支承边框内。把端盖板装在支承边框的端部,往形成于开口部周围的树脂注入部注入液状固定树脂,将中空丝膜固定在支承边框中的同时,往形成于支承边框和端盖板之间的树脂注入空间内也注入固定用树脂,把端盖板固定在支承边框上。按照这样的中空丝膜组件的制造方法,能够简便、高效地制造出支承边框和端盖板之间具有高接合机械强度的中空丝膜组件。
具体实施方式
以下对本发明作更详细的说明。
(第1形态的中空丝膜组件)
图1是表示本发明的中空丝膜组件的一例的立体图,图2是图1的中空丝膜组件的支承边框部分的剖视图。
这种中空丝膜组件31,是由一对支承边框32、将多个中空丝膜13集束成薄膜状的中空丝膜束14、接合在支承边框32的一端、具有处理水出口36的端盖板37、接合在支承边框32的另一端、不具有处理水出口的端盖板38而大致构成。这里,中空丝膜束14在插入支承边框32内的状态下,保持中空丝膜13的开口端部19的开口状态,由固定用树脂35将其固定在支承边框32内。
支承边框32,是由形成于其内部的中空的内部通道41、设在支承边框本体43的表面、沿长度方向形成的缝槽状开口部42、与该开口部42的两侧平行、与支承边框本体43成一体设置于该开口部42的两侧的堤部44、为堤部44夹持、围住的树脂注入部45、及位于夹持、围住内部通道41的开口部42的反面一侧、沿长度方向与支承边框体43一体形成的2条加强筋部46构成,其剖面为大致H字形的中空柱状部件。这里,使堤部44相互平行地,且使堤部44的侧面47与支承边框本体43的侧面48在同一平面上地形成。另外,加强筋部46的形成,使其相互平行地、且支承边框本体43的侧面48与加强筋部46的侧面49成为同一平面。
在本发明中,在相对支承边框32的长度方向的垂直剖面上、与中空丝膜13的长度方向正交方向的最大宽度A,必须在25mm以下。中空丝膜组件31的支承边框32之间的距离要保持在适当的范围内。由于支承边框32的最大宽度A为25mm以下,因此在对多个中空丝膜组件31进行排列、聚集形成单元时,可提高中空丝膜组件31的聚集率。较好的是,所述最大宽度A在20mm以下,15mm以下则更理想。
另外,为将中空丝膜组件单元能进行小型化设计,相对支承边框32的长度方向的垂直剖面的截面面积以5cm2以下为好,4.5cm2以下更好。如图2所示的支承边框32的截面积,即位于相对支承边框32的长度方向的垂直剖面、中空丝膜13长度方向上的正交方向的最大宽度A与中空丝膜13的长度方向的最大宽度B的乘积值。
这里,支承边框32的截面积,除了支承边框32自身的截面积,还包括支承边框32内的中空丝膜束13、注入固定用树脂35的树脂注入部45、内部通道41以及为加强筋46夹持、围住的凹部50的截面积。
另外,在本发明中,支承边框32的最大挠曲量,在2个支承边框32之间的间距的1%以下是必要的。由于支承边框32的最大挠曲量在2个支承边框之间间距的1%以下,由此,可抑制由中空丝膜组件31组成的中空丝膜组件单元在用于高污浊性水的过滤处理中时、例如,由于使用透气管等的气泡等的影响而导致的、支承边框32对中空丝膜13的长度方向的挠曲。使用该方法可抑制中空丝膜13的挠曲,并藉此避免相邻中空丝膜组件31的中空丝膜13之间的缠绕。
这里,支承边框2的最大挠曲量,用下述测量方法来测定。
(挠曲量测量方法)
首先,如图3所示,把测量对象的支承边框32的两端用支承棒51、51支承,使中空丝膜束14位于支承边框的下方。同时,将另外一支承边框32’放置在台座52上,使其质量不致加在测量对象支承边框32上。从测量对象32的一端到另一端,按每5cm间隔悬挂一个0.05kg的法码53,53...。接着,把直尺量规放到测量对象支承边框32的上面,测量出从测量对象支承边框32的上面和直尺量规54之间的距离,把该距离的最大值作为最大挠曲量。
还有,2个支承边框间的距离指,配置2只支承边框32且不使中空丝膜束14弯曲时,这两个支承边框32之间可取的最大间距。换言之,即2个支承边框32之间的中空丝膜束14的长度。
开口部42为用于把中空丝膜束14的端部插入到内部通道41的插入口的缝槽状孔。在支承边框32上设置的开口部42的缝槽宽度,最好是以不至于压塌中空丝膜13的压着力,可将中空丝膜束14从支承边框32的外侧插入、并保持中空丝膜13的宽度。开口部的最合适的缝槽宽度,因使用的中空丝膜13的外径不同而不同,并无特别的限定。例如,较好的是,所述外径在0.3-5mm的范围。
堤部44用于防止固定用树脂35的塌陷。堤部44的高度并无特别的限制,只要是所注入的固定用树脂35满足中空丝膜组件31所需的耐压性,满足中空丝膜束14的固定部分的稳定性的厚度即可。例如,较好的是,所述高度在1-20mm的范围内,在1-15mm的范围内更好。
加强筋部46,为使上述支承边框32的最大挠曲量在中空丝膜组件31的2个支承边框32之的间距的1%以下,可以任意地用于设计支承边框32的强度。其形状也可以不限于图中所示的那样,只要能使支承边框32的挠曲强度加强的结构,其形状不限。
支承边框32的长度方向的长度,在最大挠曲量满足上述条件的范围内可适当确定。为提高中空丝膜组件31的聚集率,所述长度以500mm以上为理想,1000mm以上则更佳。
然而,当支承边框32的长度方向的长度达到2000mm以上时,有时,要使最大挠曲量在上述条件的范围内是相当困难的。此时,可按图4所示,将用于固定剖面为T字形的外部支承体54的2根凸条形成的卡合部55,设置在面向凹部50内面的加强筋部46的内壁面的沿支承边框32的长度方向上。籍由设置这种卡合部55,作为外部支承体的54起到支承支承边框32增强强度的作用,从而使得支承边框32的挠曲量可以减小到极小。这里的外部支承体54,被固定在设置有中空丝膜组件单元的水槽、包围中空丝膜组件单元的框架等上(图示省略)。
卡合部55,只要是具有可籍由该单元以外的固定部位支承构成中空丝膜组件单元的中空丝膜组件31的功能的话,其形状、尺寸均无特别地限定。如图4所示,将卡合部55的形状作成夹持外部支承体54地、沿支承边框32的长度方向对向而置并延伸的2条凸条,藉此,可确保剖面T字型的外部支承体54与支承边框32的连结的同时,使外部支承体54从支承边框32上的脱卸也很容易。作为卡合部55的固定方法,可以使用螺栓和螺帽,将卡合部55固定在支承边框32的加强筋部46上的方法,也可使用粘接、焊接把支承部55连接固定在支承边框32的加强筋部46上的方法等。
作为支承边框32的材质,只要是具有良好的机械强度及耐久性材料即可。例如,可以使用聚碳酸脂、聚砜、聚烯烃、PVC(聚氯乙烯)、丙烯酸树脂、ABS树脂、改性PPE(聚苯醚)等。在使用后需要作燃烧处理的场合,最好使用能够在燃烧过程中不产生有毒气体、且能够完全燃烧的聚烯烃等碳氢类树脂作为材料。
本发明的中空丝膜组件的支承边框,主要由注入固定用树脂的树脂注入部、可插入中空丝膜束端部的开口部、及与中空丝膜连通的内部通道等要素构成。且只要是满足所要求特性,不一定局限于图示形式。另外,如果支承边框具有良好的挠曲强度的话,也不一定非得设置加强筋部。
另外,支承边框的剖面形状也不一定限定于图示例的H型,也可以采用圆柱形、多角形、U字形等。但是,中空丝膜束14在支承边框32的开口部夹持下,制造中空丝膜组件31时的操作处理性良好。中空丝膜组件单元中的中空丝膜组件31的聚集率可以设计得较高。又由于有了加强筋部46,使得支承边框32的挠曲强度加强了。从以上几点看,正如图示那样,支承边框的剖面形状还是接近H型为好。
如上所述,使用由中空丝膜组件所构成的中空丝膜组件单元时,籍由上述支承边框32的使用,可使得制造中空丝膜时的操作处理性良好,同时,还能够将中空丝膜31的聚集率设计的较高。
又,中空丝膜13可以使用各种材质,如纤维素类、聚烯烃系、聚乙烯醇系、PMMA(聚甲基丙烯酸甲脂)系、聚砜系、PVDF(聚偏二氟乙烯)及PTFE(聚四氟乙烯)等的氟系等,可以使用各种材料的中空丝膜。其中,使用聚乙烯等的高延伸率材质制成的中空丝膜最为理想。
还有,对可作为过滤膜使用的中空丝膜,其孔径、空孔率、膜厚、外径等均无特别限定。例如:其外径可在20-2000μm、孔径在0.001-1μm、空径率在20-90%、膜厚在5-300μm的范围。
作为中空丝膜束14,也可将中空丝膜13并丝(股)形成的中空丝膜束,把中空丝膜13用作纬丝织成织物,再将该织物折叠成好几层,这很适用于中空丝膜组件31的加工。这里所说的由多层织物折叠成的中空丝膜束,也包括不剪断而将其折叠成适当长度的中空丝膜束。织物折叠的层厚(折叠)的枚数、织物的厚度,即中空丝膜13的粗细、随编织织物时使用的中空丝膜13的枚数而变,通常是5枚左右较合适。
作为适合固定用树脂35的材料,可适宜地选用如环氧树脂,不饱和聚脂树脂,聚氨酯树脂,硅系充填材料,各类热溶树脂等。对于固化前的固定用树脂35的粘度也没有特殊限制。所述粘度比较理想的是在500-5000mPa·s的范围,更好的应在2000-3000mPa·s的范围。当固化前固定用树脂35的粘度在500mPa·s以上时,固定用树脂35在流向开口部19时的流动缓慢,开口部不能闭塞。另外,固化前固定用树脂35的粘度在5000mPa·s以下的话,固定用树脂则很容易浸渗多个中空丝膜13之间。
固定用树脂35在宽度窄的开口部42和在宽度宽的树脂注入部45被固化,由此,其剖面变成凸字形。由于固定用树脂35的剖面呈凸字形,就便可防止中空丝膜13因接触支承边框32而产生外伤。
较好的是,内部通道41为这样的结构:在用固定树脂35将中空丝膜束14固定在支承边框32中时,能进行充分的通水。而且,最好该构造能满足各种不同用途的要求,如重复耐压性等的机械特性要求。
正如以上说明的那样,由于中空丝膜31的支承边框32的最大挠曲量在2个支承边框之间间距的1%以下,位于相对支承边框32的长度方向的垂直剖面上、在中空丝膜13长度方向的正交方向的最大宽度A为25mm以下,不仅能提高中空丝膜组件单元的单位体积的中空丝膜组件的聚集率,而且能使因气泡等的影响引起的支承边框的挠曲减少,不会使中空丝膜发生缠绕。
下面,就中空丝膜组件31的制造方法加以说明。
首先,把构成中空丝膜束14的各中空丝膜13的端部预先切割开口。
其次,将中空丝膜13的开口端部19被切割的中空丝膜束14的端部插入支承边框32的开口部42中,使中空丝膜13的开口端部19位于支承边框32的内部通道41的位置。这里,当开口部42的缝槽窄,中空丝膜束14不易插入时,则也可以使用后面的将要叙述的、在插入时把开口部42的开口扩大的办法。
把中空丝膜14的端部插入并收纳在空器32内后,保持中空丝膜13的开口端部19的开口状态,将液体固定用树脂35从支承边框32的外侧填充到树脂注入部45及开口部42处,使其固化,中空丝膜束14被固定在支承边框32内,从而得到中空丝膜组件31。
往树脂注入部45及开口部42注入固定用树脂35时,为使固定用树脂35在构成中空丝膜束14的多个中空丝膜13之间得到充分填充,最好采用往中空丝膜束14里吹气,使得中空丝膜束14开纤(开松)的方法。不过,并不限于使用把中空丝膜束14开纤的方法,也可以使用合适的其他方法。
另外,该固定用树脂35的注入量,应根据支承边框32的形状适宜地决定,可在堤部44所能拦阻的范围内进行注入。
又,根据这里列举的中空丝膜组件31的制造方法,是预先把中空丝膜13的端部切割开口,在保持中空丝膜13的开口端部19的开口的状态下,注入固定用树脂35。当然,本发明的中空丝膜的制造方法并不只限于此。例如,还有这样一些方法,即将未预先对中空丝膜13的端部进行切割的中空丝膜束14的端部插入到支承边框32内,把将固定用树脂35注入到支承边框32的内部通道41处止,并使之固化以覆盖中空丝膜13的所有端部,把内部通道41内的固定用树脂35同中空丝膜13的端部一起切割,使中空丝膜13的端部开口。
图5是本发明的中空丝膜组件单元一个例子。中空丝膜组件单元60是把上述中空丝膜组件31进行多个排列,这些支承边框32通过集水头61连接成一体。
图6是上述中空丝膜组件单元60的集水头61的一个例子。集水头61上设有用于连通至端盖板37的处理水出口36的多个连设孔62,其内部有使过滤液通过的圆柱形集水通道63。这些连设孔62分别连接着多个中空丝膜组件31、31...,同时它们被固定成一体。另外,上述集水通道63同集水头61的外部相通,同吸水泵(图示省略)连接。集水头61的形状要做成能与多个中空丝膜组件31进行简易地连接、固定。集水头最好采用能够固定的多歧管形式。中空丝膜组件31,31...,只要是过滤液能够从中空丝膜组件中取出的构造的话,对其构造也没有特别限定。
另外,图5中所示的中空丝膜组件单元60,可通过集水头61,将各中空丝膜组件31,31…的支承边框32的一端部形成一体,也可将支承边框32的两端部通过集水头61固定。
中空丝膜组件单元60中的中空丝膜组件31的支承边框32的宽度方向的中心a,和与其邻接的中空丝膜组件的支承边框的宽度方向的中心a’之间的间隔C,为达到高聚集率,较好的是在25mm以下,更好的是在20mm以下,15mm以下最理想。并且,所有相邻连接的中空丝膜组件31的间隔C,为使均等气泡的效果得到发挥,其间隔还是一致为好。
在中空丝膜组合单元60中,根据其用途、设置空间、过滤能力等情况,对中空丝膜13的种类、中空丝膜组件31的数量、中空丝膜组件31的尺寸、中空丝膜组合单元60的尺寸、以及中空丝膜的清洗方法等均可以作适宜的选择。
在这样的中空丝膜组件单元60中,对上述中空丝膜组件31进行多个配置,由于是根据集水头61进行叠层、使其一体化,因此,在能够进行高聚集率设计的同时,也能够简便地进行中空丝膜组件的更换。
(第2形态的膜组件)
图7是本发明的第二种形式的膜组件使用的支承边框的图。支承边框32为剖面为大致H型的中空柱状部材,该部件具有同其内部形成的中空的内部通路41(中空部)、沿长度方向形成于支承边框本体43表面的缝槽状开口部42、与该开口部42平行、与支承边框本体43成一体地设置于该开口部42的两侧的堤部44、为堤部44所夹持、围住的树脂注入部45、沿长度方向与支承边框本体43一体地夹持、围住内部通道41、形成于开口部42的反面一侧的2条加强筋部46(凸条部)构成。这里,为保持堤部44相互平行,应使堤部44的侧面47、支承边框本体43的侧面48在同一平面上。另外,为保持加强筋部46相互平行,应使支承边框本体43的侧面48、加强筋部46的侧面49形成同一平面。
在支承边框32中,因对加强筋部加上来自支承边框32侧面的压力,受力的加强筋部46侧面成为受力点64,且位于夹持、围住内部通道41的开口部42的反面一侧的支承边框本体43,其壁面中央付近由于成为支点65,因而开口部42的开口宽度可以增加。
加强筋部16的高度无特殊限定。但在支承边框32中,为发挥开口部32的加宽作用,其高度较好的是在5mm以上,更理想的是在10-100mm的范围。如加强筋部46的高度不到5mm,则因使开口部32宽度加宽时需要相当高的压力,所以是不希望的。而加强筋部46的高度超过100mm后,则在将膜组件单元化时,支承边框32所需的设置空间过度增大,造成膜面积减少,也不理想。
成为支点65的支承边框本体43的壁面的厚度,在给加强筋部46加压时,该支承边框本体43的壁面作为支点65,开口部42的宽度就有可能增加。而且,如果支承边框壁厚能够满足膜组件要求的耐压性的范围内即可,并无特殊的限定,该壁厚例如可在0.5-10mm的范围内。
堤部44的高度,只要注入的固定用树脂35能满足膜组件的耐压性要求的厚度即可,也无特殊的限定,例如可在1-50mm的范围内。开口部42的缝槽的宽度,以能够以不致于使过滤膜破裂的压紧力,从支承边框32的外侧插入过滤膜的宽度即可。开口部最合适的宽度,当然因使用的过滤膜不同而异,也无特殊的限定。例如可在0.3-5mm的范围内。
关于支承边框32的尺寸,可根据固定的过滤膜的尺寸和膜组件的用途进行适宜的调整。
在由上述支承边框32的侧面向加强筋部46施压,使开口部宽度增加后,从该开口部42中插入过滤膜的端部,一边保持过滤膜端部的开口状态,一边用固定用树脂把过滤膜固定在支承边框32上,由此方法进行本发明的第二形态的膜组件的制造。
根据上述制造方法,因为是在开口部宽度增大的状态下插入过滤膜,因而不会损坏过滤膜,可以高效率地制造出几乎无过滤膜破损,无塌陷的膜组件。
这里,过滤膜可使用中空丝膜束14。又,过滤膜可以使用除中空丝膜束以外的其它薄膜状的材料。例如使用单层或是多层折叠在一起的薄膜。
(第3形态的中空丝膜组件)
图8是本发明的中空丝膜组件的一个例子的立体图。图9是图8的中空丝膜组件的支承边框的剖视图。
中空丝膜组件71是由一对支承边框72、多个中空丝膜13集束成薄膜状的中空丝膜束14、接合在支承边框72的一端、具有处理水出口76的端盖板77、接合于支承边框72的另一端、不具有处理水出口的端盖板78大致构成。中空丝膜束14,在插入支承边框72内的状态下,保持中空丝膜13的开口端部19的开口状态,由固定用树脂75固定在支承边框72内。
支承边框72,如图10所示,是由其内部形成的中空的内部通道81、形成于支承边框72的侧面上的缝槽状开口部82、相对开口部82的两侧平行、与支承边框本体83一体设置于该开口部82两侧的堤部84、和被该堤部84夹持、围住的树脂注入部85等构成剖面为U字形筒状部材。另外,上述堤部84有着大致平行于中空丝膜13、且基端部86连接于支承边框本体83的堤部本体87、及从该堤部本体的顶端部88向外侧弯曲的弯曲部89。
堤部84的弯曲部89,由于其具有从该堤部本体87的顶端部88开始向外侧弯曲的结构,因而可以抑制支承边框72因成形精度引起的支承边框72堤部84的尺寸参差不齐及向堤部84的内侧倾斜的情况。使得向树脂注入部85内注入固定用树脂变得容易。另外,弯曲部89起到加强筋的作用,使得支承边框72在成型时的变形减小。并且,既使树脂注入时的树脂量有些变动,注入后的固定用树脂75的厚度的变化也很小。
使弯曲部89从堤部84的基端部86处成形后,不仅使固定用树脂75的厚度变薄,还会形成这样的结构:所述结构容易因吸附过滤时所发生的负压及逆向液清洗时所发生的正压等施于支承边框内部的压力而产生树脂剥离,可能影响支承边框的耐压性能。另外,支承边框72的宽度太大的话,在将中空丝膜组件71多个聚集形成单元时,会影响聚集根数,会引起单位体积的膜面积比率下降的问题。
从这一点上看,堤部本体87高度D,应该是可以确保固定用树脂75的厚度,且能维持中空丝膜组件71的耐压性能所需要的高度。也即,所述高度设定在堤部84全高E的10%-90%范围内为宜。堤部87的高度D,低于堤部84全高E的10%的话,中空丝膜组件71的耐压性可能会不足。而超过90%的话,则堤部84的尺寸不均匀、可能不能抑制向堤部84内侧的倾斜、且得不到由于弯曲部89的作用使得树脂能容易地向树脂浇入部注入的效果。这里、从堤部84的基端部到堤部本体87的顶端部88的尺寸D为自堤部84的基端部86至堤部本体87的高度。堤部84的整体高度E,是自堤部84的基端部86到顶端部90的高度。
又,一侧堤部84的顶端部90同另一侧堤部84的顶端部90之间的间隔F和一侧的堤部84的基端部86与另一侧的堤部84的基端部86的基端部86之间的间隔G的比(F∶G)以10∶9-2∶1为适宜。如该比率小于10∶9,则固定用树脂有可能难以浇注。如这一比例大于2∶1,则中空丝膜组件的操作处理性能会恶化,同时,固定所需要的树脂量会增加。这里,间隔F为相对的浇注口堤部84的顶端部90的内壁面之间的距离,间隔G为相对的堤部84的基端部86的内壁面间的距离。
开口部82的厚度会影响到浇注质量。因此,需要很好地把握中空丝膜13的最低限尺寸,该尺寸设定在0.1-30mm的范围内为宜。为确保有效膜面积,维持耐压性,更好的是,设定在0.3-20mm的范围内。
关于支承边框72的尺寸,可根据固定的中空丝膜束14的尺寸、中空丝膜组件71的用途等进行适当调整。
另外,支承边框72的材质,可以使用与上述支承边框32同样的材质。另外,固定用树脂75,可使用与上述固定用树脂35一样的材质。
在这样的中空丝膜组件71中,支承边框72在开口部82的两侧具有相对开口部82平行设置的堤部84。但是,此堤部84有着从浇注口本体的顶端部88开始向外侧弯曲的弯曲部89。所以很容易往固定用树脂的树脂注入部85内注入树脂。并且由于有了弯曲部89,使得支承边框72成形时的变形减少,能够充分确保注入到围在堤部84中间的树脂注入部85的容量。这样,中空丝膜束14被固定用树脂牢牢地固定在支承边框72内,中空丝膜组件71的成品率上升。
又,在这样的中空丝膜组件71中,堤部84具有从堤部本体87的顶端部88向外侧弯曲的弯曲部89。因此,由堤部84夹持、围成的树脂注入部85的容量能够得到充分保证。即使浇注时注入的树脂量多少有些变动,浇注后的固定树脂75的厚度的变化却很小。因此,中空丝膜组件71的耐压性提高。
又,在这样的中空丝膜组件71中,堤部84的弯曲部89起了加强筋的作用,因此耐压性优良,在把多个中空丝膜组件71聚集组成单元时,能够提高中空丝膜组件的设计聚集率。所以,这样的中空丝膜组件71比较适合在单元的空间受限的场所进行过滤处理等。
(第4形态的中空丝膜组件)
图11-图14是本发明中的中空丝膜组件的一个例子。这种中空丝膜组件91,是由具有内部通道的支承边框93、接合在支承边框93的一端、具有处理水出口94的端盖板95、接合在支承边框的另一端无处理水出口的端盖板96、多个中空丝膜13集束成薄膜状的中空丝膜束14而大致构成。中空丝膜束14的端部以插入支承边框93内的状态,且保持中空丝膜13的开口端部19的开口状态,由固定用树脂组成的固定材料99固定在支承边框93内。又,上述端盖板95、96中一部分保持插入在支承边框93的内部通道92内的状态,用固定材料99固定在支承边框93内。
支承边框93如图15所示,是由形成于其内部的中空的内部通道92、形成于支承边框93的侧面的缝槽状开口部100、夹住开口部100、与支承边框93一体形成的浇注口堤部101、受浇注口堤部101夹持、围住的剖面凹状的树脂注入部102等所构成。
开口部100是为把中空丝膜束14的端部插入内部通道92的插入口的一个缝槽状孔。并且它是把固定用树脂形成于由插入支承边框93的内部通道92及插入其中的端盖板95、96之间形成的、下述流入树脂注入用空间的流入口。又,上述堤部101用于防止固定用树脂塌陷用。
支承边框93的材质可使用如同上述支承边框32同样的材料。
端盖板95如图16的及图17所示,由插入支承边框93的内部通道92、用于封住内部通道的小盖部103、接触支承边框93端面104的平板状大盖部105、连接小盖部103和大盖部105、相对支承边框93的长度方向正交、截面积小于小盖部103的连接部106、穿过小盖部103、连接部106及大盖部105而设的连通孔107、同连通孔107相连接、设在大盖部105表面的处理水出口94而构成。
端盖板96如图18和图19所示,是由插入支承边框93的内部通道92、用于封住内部通道的小盖部103、接触支承边框93端面104的大盖部105、连接小盖部103和大盖部105、相对支承边框93的长度方向正交的截面积小于小盖部103的连接部106而构成。
小盖部103长度和宽度的尺寸作成如同内部通道92的开口同等程度的尺寸,以保持微小的间隙,使下述的固定用树脂不致流入支承边框93的内部通道92中。在支承边框93的内周壁和小盖部103周缘的之间的间隙因固定用树脂的粘度不同而变化,但通常在1mm以内。小盖部103的厚度因固定用树脂的粘度而变化,但通常在0.1mm以上即可。为能更确切地防止固定用树脂流入内部通道,所述厚度在1mm以上为理想。
关于大盖部105的长和宽的尺寸,为在接触支承边框93的外壁时,封住内部通道92并挡住树脂注入部102,所述长和宽可作成与支承边框93剖面的长和宽的尺寸相同。
连结部106设在小盖部103和大盖部105之间,并与其成一体。连结部106在相对支承边框93的长度方向正交的剖面的截面积小于小盖部。于是,当将端盖板95、96安装在支承边框93上时,在连结部106的外周壁和支承边框93的内周壁之间,为连结部106,小盖部103,大盖部105以及支承边框93内周壁所围,且形成跨越连结部106的整个外周、连续的树脂注入空间108。又,连通于树脂注入空间108的开口部100成了树脂流入口109。
籍由将连结部106的截面积作成小于小盖部103的表面积,可在位于连结部106周边的小盖部103处形成台阶部110。这一台阶部110,受填充到树脂注入空间108内的固定材料99的牵拉,由此,可防止端盖板95、96从支承边框93中的脱落,可将端盖板95、96确实地固定在支承边框93内。
从提高与固定材料99的粘接性能考虑,连结部106的外周壁表面最好用砂磨等进行微细的粗面加工。
端盖板95、96的材料可以使用聚碳酸脂、聚砜、丙烯酸树脂、ABS树脂、改性PPE树脂,聚氯乙烯树脂,聚烯烃树脂(聚丙烯、聚乙烯等)等。端盖板95、96可以用切削加工,模具成形等方式加工成形。具有处理水出口94的端盖板95在每个中空丝膜组件中须至少备1个。
固定材料99所充填的树脂注入空间108的尺寸,即连结部106的外周壁与支承边框93的内周壁之间的间隔(以下记作厚度)以及支承边框93的长度方向的深度(进深),根据使用的固定用树脂的粘度特性,并无特殊限定。只要固定用树脂能流通端盖板95、96的接续部106的整个外周,固定材料99能连续成形即可。即,只要与所使用的固定用树脂配合,调整注入空间的尺寸即可。固定用树脂的粘度高时,要适当把树脂注入空间的尺寸调大,使其减少流体磨擦的损失。
例如,作为固定用树脂,在使用混合初期粘度达1500mPa·s的2种液体混合型聚氨酯树脂(适用期:5000mPa·s,到达时间25分),端盖板95、96的连接部106的外周长为300mm的场合,树脂注入空间108在支承边框93的长度方向正交的截面积在0.4mm2以上(树脂注入空间108的尺寸:厚度0.2mm以上,进深2mm以上)是,固定材料99的连续性便有保证。而当树脂注入空间108的尺寸厚度不到0.2mm,进深不到2mm时,树脂注入空间108会变窄,流体磨擦变大便得聚氨酯树脂流动性不好。聚氨酯树脂注入时间长便会发生失去流动性的欠胶状态。为此,树脂注入空间的尺寸应尽可能确保。
关于固定材料99,它使支承边框93内的中空丝膜13的开口部19保持开口状态被固定的同时,让中空丝膜13发挥作为过滤膜的作用,因此,可用作将被处理水同处理水严格分开的功能,还具有将端盖板95、96液密地固定在支承边框93里的固定材料的功能。
形成固定材料99的固定用树脂,通常可以选用环氧树脂,不饱和聚酯树脂,聚氨酯树脂,各种热溶树脂等,可以作适当选用。
固定用树脂关系到支承边框93和端盖板95,96的粘结性。作为固定树脂要考虑支承边框93及端盖板95、96的材质,选择适合的为好。如支承边框93及端盖板95、96的材质均为ABS树脂时,作为固定用树脂用粘结性能较好的环氧树脂及聚氨酯树脂为好。
固化前的固定用树脂的粘度无特殊限定,较好的是500-5000mPa·s,更好的是2000-3000mPa·s的范围。如固定用树脂的粘度达不到500mPa·s,则固定用树脂会流动至中空丝膜13的开口端部19处,成为堵塞开口端部19的主要原因。而当固定用树脂的粘度超出5000mPa·s,则在多个中空丝膜13之间很难浸渍,因此不可取。
在上述中空丝膜组件91中,用固定材料99把中空丝膜束14固定在支承边框93内,同时把端盖板95、96固定在支承边框93内,把中空丝膜束14固定在支承边框93内的固定材料和把端盖板95、96固定在支承边框93内的固定材料形成一体。因此,支承边框93和端盖板95、96的接合部分附近的刚性增加,支承边框93和端盖板95、96的接合部分的机械性强度提高。
又,端盖板95、96,因小盖部103同连接部106的截面积的不同而产生出台阶部110,而台阶部110受填充至树脂注入空间108内的固定材料99的牵拉,使端盖板95、96的支承边框93中的脱落得到防止,端盖板95、96得以确实地固定在支承边框93内。
本发明中的中空丝膜组件并不仅限于图中所示的中空丝膜组件91,也可如图20中所示,为将作U字型弯曲的中空丝膜束14的两端部固定在一个支承边框93内的中空丝膜组件111。
又,支承边框形状也并不仅限于图中所例示的矩形,圆桶形也可以。这时,端部的小盖部将呈圆板形。
关于中空丝膜组件91的制造方法的说明。
首先,将构成中空丝膜束的各中空丝膜13的端部预先切割、开口,接着把中空丝膜束14的端部插入支承边框93的开口部100内,使中空丝膜13的开口端部19位于插入支承边框93的内部通道92内。
把中空丝膜束14的端部收纳在支承边框93内后,如图21、22所示,将端盖板95、96的小盖部103及连接部106插入内部通道92,将端盖板95、96安装在支承边框93上。
然后,按图23、24所示,保持中空丝膜13的开口部19的开口状态,用液状的固定用树脂99’从支承边框93的外侧,填充至注入部102及开口部100。
同时,固定用树脂99’在自重作用下,通过作为开口部100的一部分的树脂流入口109,流入在支承边框93和端盖板95、96之间形成的树脂注入空间108。然后,如图25、26所示,固定树脂99’把树脂注入空间108完全填满,围住端盖板95、96的连接部106。通过固定用树脂99’的固化作用,完成支承边框93和端盖板95、96之间的接合。
较好的是,将中空丝膜束14的端部放入支承边框93内的作业在把支承边框93的开口部100扩大后进行。为使开口部100的扩大更容易些,有必要使支承边框93的两端部的至少一端开口。为此,端盖板95、96在中空丝膜束插入支承边框93中后再安装。
在制造中空丝膜组件91时,支承边框93和端盖板95、96之间的接合,不需要对端盖板95、96涂敷粘接剂等作业,只需将端盖板95、96插入支承边框93中即可。因此,籍由向支承边框93中注入固定树脂99’,固定树脂则99’流入树脂注入部102,再在自重作用下流向树脂注入空间108。其后,随着固定树脂99’的固化,中空丝膜束14在支承边框93中的固定和端盖板95、96在支承边框93中的固定随即同时完成。因此,端盖板95、96与支承边框93的接合作业等能够高效地进行。