Nothing Special   »   [go: up one dir, main page]

CN1309407A - 电子发射器件、冷阴极场发射器件和显示器及其制造方法 - Google Patents

电子发射器件、冷阴极场发射器件和显示器及其制造方法 Download PDF

Info

Publication number
CN1309407A
CN1309407A CN00120667A CN00120667A CN1309407A CN 1309407 A CN1309407 A CN 1309407A CN 00120667 A CN00120667 A CN 00120667A CN 00120667 A CN00120667 A CN 00120667A CN 1309407 A CN1309407 A CN 1309407A
Authority
CN
China
Prior art keywords
carbon film
emitting device
cathode
vitellarium
field emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00120667A
Other languages
English (en)
Inventor
室山雅和
斋藤一郎
井上浩司
八木贵郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1309407A publication Critical patent/CN1309407A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/15Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen with ray or beam selectively directed to luminescent anode segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

冷阴极场发射器件包括(a)支承基底上形成的阴极,和(b)阴极上形成的有开口的栅极,和还包括(c)开口部分底部中的阴极部分表面上形成的碳膜构成的电子发射部件。

Description

电子发射器件、冷阴极场发射器件和显示器及其制造方法
本发明涉及从碳膜发射电子的电子发射器件,有碳膜构成的电子发射部件的冷阴极场发射器件及其制造方法,还涉及有这种冷阴极场发射器件的冷阴极场发射显示器及其制造方法。
电视接收机和信息终端用的显示器领域中,根据减小厚度、减小重量,更大的荧屏和高精度的要求,已经研究了用平板显示器代替常规的主流阴极射线管(CRT)。这种平板显示器包括液晶显示器(LCD),电致发光显示器(ELD),等离子显示板(PDP)、和冷阴极场发射显示器(FED)。它们中液晶显示器广泛用作信息终端显示器。但是,用作落地式电视接收机的液晶显示器仍然存在要待解决的有关更高的亮度和尺寸增大的问题。反之,用冷阴极场发射器件(以后有时叫做“场发射器件”)的冷阴极场发射显示器,根据量子燧道效应而不是根据热激励,能从固体向真空中发射电子。而它最重要的是有高亮度和低功耗。
图17展示出用场发射器件的冷阴极场发射显示器(以后有时叫做“显示器”)的结构的一个实例。图17所示场发射器件是有锥形电子发射部件的叫做spindt型的场发射器件。这种场发射器件包括在支承基底110上构成的阴极111,在支承基底110和阴极111上构成的绝缘层112,绝缘层112上构成的栅极113,栅极113和绝缘层112上构成的开口部分114,和位于开口部分114的底部中的极极111上构成的锥形电子发射部件115。通常,阴极111和栅极113是在这两个成直角交叉的电极的投影图像方向中的带形电极。通常,在上述两个电极重叠的投影图像区(相当于一个象素,该区域以后叫做重叠区)中设置多个场发射器件。而且,通常把这些重叠区按矩阵形设置在阴极板CP的有效场中(它是实际的显示部分)。
阳极板AP包括衬底30,在衬底30上形成的并有预定图形的荧光层31,和在其上形成的阳极33。阴极板一边上的阴极111和栅极113的重叠区中设置的一
组场发射器件,和在阳极AP上的对着上述场发射器件组的荧光层31,它们一起构成一个象素。按几百,几千至几百万的数量在有效场中设置这种象素。在衬底30上在一层荧光层31与另一层荧光层31之间,形成黑色象素32。
按场发射器件和荧光层彼此相对的方式安装阳极板AP和阴极板CP,阳极板AP和阴极板CP按它们的圆周部分穿过框架34而相互粘接在一起,由此制成显示器。在环绕有效区的无效区(图17所示例中是阴极板CP的无效区)中构成用于选择象素的外围电路,设置抽真空用的通孔36,端管37接到通孔36并在抽真空后密封。即,被阳极板AP、阴极板CP和框架34包围的空间处于真空状态。
由扫描电路40给阴级111加相对的负电压,由控制电路41给栅极113加相对正电压,并由加速功率源42给阳极33加比栅极113上加的电压高的正电压。当这种显示器用于在它的荧光屏上显示时,从扫描电路40把扫描信号输入到阴极111,从控制电路41把视频信号输入给栅极113。由于电压加到阴极111和栅极113之间时产生电场,根据量子燧道效应,从电子发射部件发射电子,电子吸向阳极33,并与荧光层31相撞。结果荧光层31被激励而发光,能获得所需的图像。即,按原理而论,通过加到栅极113的电压和经阴极111加到电子发射部件115上的电压来控制显示器的工作。
上述的显示器结构中,为了在低激励电压下达到大发射电子电流,削尖电子发射部件的顶端部分是有效的,就这点而言,上述的Spindt型场发射器件的电子发射部件115可以说具有优良性能。但是构成锥形电子发射部件115要用预先处理技术,并增大有效场的面积,由于某些青况下电子发射部件115的总量可高达几千万,因此,要在整个有效场中构成一致的电子发射部件115是很困难的。
现在已经提出了一种称作平面型场发射器件的器件,它用在开口部分底部中露出的扁平电子发射部件而不用锥形电子发射部件。阴极上构成平面型场发射器件的电子发射部件,为了即使电子发射部件是扁平形时也能得到大的发射电子电流,用来构成电子发射部件的材料的功函数应小于构成阴极用的材料的功函数。近年来,已提出用碳材料作为上述材料。
例如,在应用物理学会文献(Applied PhySics Society lectures)(1998)No.59初选文摘第480页的文摘No.15p-p-13中,提出了一种DLC(类金刚石碳)薄膜。碳材料构成薄膜时,需要处理(构图)薄膜的方法。而构图的方法,例如,已在上述文摘(1998)的489页的文摘No.16p-N-11,提出了一种用氧作腐蚀气体处理金刚石薄膜的ECR等离子法。通常含SiO2的材料用作金刚石薄膜的等离子处理中的腐蚀掩模。
而且,在应用物理学会文摘(Appliecl Physics Society Lectures)(1999)的初选文摘N.60第631页的文摘No.2p-H-6(称作文摘(Literature)-11)中,还公开了用金刚石粉末刮擦处理在石英衬底上用电子束淀积法形成的钛薄膜。然后对钛薄膜刻图,在中心部分形成几微米的间隙,之后在钛薄膜上形成没掺杂的金钢石薄膜而制成的平面结构电子发射器。在应用物理学会(1999)初选文摘No.60的第632页的文摘No.2p-H-11(称作文摘(Literature)-2)中还报道了在设有金属交叉线的石英玻璃上构成碳纳米管的方法。
当用抗蚀剂层作腐蚀掩模用氧气等离子腐蚀像DLC的碳膜时,在腐蚀反应系统中会产生作为反应副产品的以(CHx)-或(CFx)一为基的碳聚合物沉淀物。等离子腐蚀中在腐蚀反应系统中产生沉淀物时,通常在抗蚀剂层的有低离子入射概率的侧壁表面上,或在要腐蚀的材料的经处理后的末端表面上,形成沉淀物,构成所说的侧壁保护膜,这有助于完成对要腐蚀的材料的各向异性处理。然而,用氧气作腐蚀气时,随着它的形成氧气能除去碳聚合物构成的侧壁保护膜。而且,用氧气作腐蚀气,会大量消耗抗腐剂层。为此,金刚石薄膜的常规氧等离子处理中,金刚石薄膜从掩模的图形转移差很大,各向异性处理也困难。
而且,文摘-1和文摘-2中公开的技术中,是在金属薄膜层上形成碳膜。但是,碳膜是形成在金属薄层的任何部分中,因此不能认为是实际上用了这些技术。例如,用于制造冷阴极场发射器件。而且如上所述把碳膜刻图制成所需的碳膜也很困难。
因此,本发明的目的是,提供具有在导电层的规定部分中可靠地形成的碳膜的电子发射器件,有在阴极的规定部分中可靠地形成的碳膜的冷阴极场发射器件及其制造方法。本发明的另一目的是,提供装有这种冷阴极场发射器件的冷阴极场发射显示器及其制造方法。
为达到上述目的,有电子发射部件的按本发明的电子发射器件包括:
(a)在其表面上形成有碳膜选择生长区的导电层,和
(b)碳膜选择生长区中形成的碳膜构成的电子发射部件。
为达到上述目的,按本发明的第1方案,提供装有按本发明的电子发射器件的冷阴极场发射显示器。即,按本发明的第1方案的包括许多象素的冷阴极场发射显示器。
每个象素包括冷阴极场发射器件,衬底上形成的与冷阴极场发射器件相对的阳极和荧光层。
冷阴极场发射器件包括:
(a)有在其表面上形成的碳膜选择生长区的导电层;和
(b)碳膜选择生长区上形成的碳膜构成的电子发射部件。
按本发明的第1方案,为了使电子发射器件或冷阴极场发射显示器中的碳膜发射电子,构成碳膜放在合适的电场中(例如,电场强度为106伏/cm的电场)的状态是有效的。
为达到本发明的上述目的,按本发明第1方案的冷阴极场发射器件包括:
(a)支承基底上构成的阴极,和
(b)阴极上构成的有开口部分的栅极,
还包括:
(c)位于开口部分底部中的阴极部分的表面上形成的碳膜构成的电子发射部件。
按本发明的第2方案,为了达到上述目的,提供装有按本发明第1方案的冷阴极场发射器件的冷阴极场发射显示器。即,按本发明第2方案的包含许多象素的冷阴极场发射显示器。
每个象素包括冷阴极场发射器件,阳极和荧光层,衬底上形成的阳极和荧光层与冷阴极场发射器件相对,和
冷阴极场发射器件包括:
(a)支承基底上构成的阴极;和
(b)阴极上构成的有开口部分的栅极;
还包括:
(c)位于开口部分的底部中的阴极部分的表面上形成的碳膜构成的电子发射部件。
按本发明第1方案的冷阴极场发射器件中,或按本发明第2方案的冷阴极场发射显示器中的阴极最好用铜(Cu)、银(Ag)或金(Au)构成,以降低阴极的电阻值。
按本发明第1方案的冷阴极场发射器件中或按本发明第2方案的冷阴极场发射显示器中,最好用这样的结构,其中,在支承基底和阴极上形成绝缘膜,与栅极中形成的开口部分相通的第2开口部分形成于绝缘层中。但是,本发明不限于上述结构。例如,可用在带栅极支承件的电子发射部件上设置构成有开口部分的栅极的金属层(例如,用金属构成的金属片或带形件)的结构。
为达到上述目的,按本发明第2方案的冷阴极场发射器件包括:
(a)支承基底上构成的阴极;和
(b)阴极上构成的有开口部分的栅极;
还包括:
(c)至少在位于开口部分的底部中的阴极部分的表面上构成的碳膜选择生长区,和
(d)碳膜选择生长区上构成的碳膜构成的电子发射部件。
为达到上述目的,按本发明第3方案,提供包括按本发明第2方案的冷阴极场发射器件的冷阴极场发射显示器。即,按本发明第3方案的冷阴极场发射显示器包括许多象素。
每个象素包括冷阴极场发射器件,阳极和荧光层,在衬底上构成的阳极和荧光层与冷阴极场发射器件相对,和
冷阴极场发射器件包括:
(a)支承基底上构成的阴极,
(b)阴极上构成的有开口部分的栅极,
(c)至少在位于开口部分底部中的阴极部分的表面上构成的碳膜选择生长区,和
(d)碳膜选择生长区上构成的碳膜构成的电子发射部件。
按本发明第1方案的冷阴极场发射器件中,根据加到阴极和栅极上的电压所产生的电场(例如强度约为106v/cm的电场),从碳膜构成的电子发射部件发射电子。按本发明第2或第3方案的冷阴极场发射显示器中,根据加到阴极和栅极上的电压所产生的电场(例如,强度为106v/cm的电场),从碳膜构成的电子发射部件发射电子,并允许这些电子与荧光层碰撞,由此得到图像。
按本发明的电子发射器件中,按本发明第2方案的冷阴极场发射器件中,或按本发明第1或第3方案的冷阴极场发射显示器中,碳膜选择生长区最好是导电层或阴极的其表面上附着有金属颗粒的部分,或者是导电层或阴极的其表面上构成有金属薄层或金属有机化合物薄层的部分。为了使碳膜选择区上的碳膜更可靠地按要求选择生长,碳膜选择生长区的表面上附着有硫(S),硼(B),或磷(P)。要求上述材料起到催化剂之类的作用,这些材料存在能更进一步提高碳膜的选择生长性能。
按本发明第2方案的冷阴极场发射器件或按本发明第3方案的冷阴极场发射显示器中,在位于开口部分底部中的阴极部分的表面上形成碳膜选择生长区就足够了。碳膜选择生长区可构成为从位于开口部分底部中的阴极部分延伸到不是位于开口部分底部中的阴极部分的表面。而且,碳膜选择生长区可形成在位于开口部分底部中的阴极部分的整个表面上,或形成在上述部分的一部分中。
按本发明第2方案的冷阴极场发射器件中,或按本发明第3方案的冷阴极场发射显示器中,可用这样的结构,其中在支承基底和阴极上形成绝缘层,与栅极中形成的开口部分(以下有时叫“第1开口部分”)连通的第2开口部分形成在所说绝缘层中,碳膜在第2开口的底部中。第1开口部分与第2开口部分呈一一对应的关系。即,每个第1开口部分要形成一个第2开口部分。按本发明第2方案的冷阴极场发射器件和按本发明第3方案的冷阴极场发射显示器不限于上述结构。例如可用这样的结构,该结构中,在带有栅极支承件的电子发射部件上设置构成有开口部分的栅电极的金属层(例如,金属片或金属带状件)。
为达到上述目的,按本发明第1方案的制造冷阳极场发射器件的方法,包括以下步骤:
(A)支承基底上构成阴极;
(B)支承基底和阴极上形成绝缘层;
(C)绝缘层上形成有开口部分的栅极;
(D)绝缘层中形成与栅极中形成的开口部分连通的第2开口部分;
(E)位于第2开口部分底部中的阴极部分的表面上形成碳膜选择生长区(碳膜选择区形成步骤),和
(F)碳膜选择生长区上形成碳膜。
为达到上述目的,按本发明第1方案的冷阴极场发射显示器的制造方法,是把按本发明第1方案的冷阴极场发射器件的制造方法用于冷阴极场发射显示器制造方法中。即,按本发明第1方案的上述方法包括,设置其上已形成有阳极和荧光层的衬底和其上形成有冷阴极场发射器件的支承基底,使荧光层与冷阳极场发射器件彼此相对,并在其圆周部分使衬底和支承基底粘接。
其中,按有以下步骤的方法制造冷阴极场发射器件:
(A)支承基底上构成阴极;
(B)支承基底和阴极上形成绝缘层;
(C)绝缘层上形成有开口部分的栅极;
(D)绝缘层中形成与栅极中构成的开口部分连通的第2开口;
(E)位于第2开口部分底部中的阴极部分的表面上形成碳膜选择生长区(碳膜选择生长区形成步骤),和
(F)碳膜选择生长区上形成碳膜。
按本发明第1方案的冷阴极场发射器件制造方法,或按本发明第1方案的冷阳极场发射显示器的制造方法中,(以下把这些制造方法通称为“按本发明第1方案的制造方法”),碳膜选择生长区形成步骤包括用第2开口部分底部的中心部分中露出的阴极表面形成掩膜层的步骤,(即,至少在第2开口部分的侧壁上形成掩膜层),之后,允许金属颗粒附在掩模层和露出的阴极表面上,或在掩模层和露出的阴极表面上形成金属或金属有机化合物薄层。
用以下方法能构成上述掩模层,例如,整个表面上形成抗蚀剂层或硬掩膜材料层,用刻板法在位于第2开口部分的底部中心部分中的抗蚀剂层或硬掩模材料层的一部分中构成孔。在掩膜层盖住位于第2开口部分底部中心部分中的阴极部分,第1开口部分侧壁,第2开口部分侧壁,绝缘层和栅极的状态下,位于第2开口部分底部的中心部分的阴极表面上形成碳膜选择生长区。能可靠防止栅极与阴极之间经金属颗粒或金属薄层短路。某些情况下,掩膜层可以只盖住栅极。另外,掩摸也可以只覆盖第1开口部分附近的栅极,或者,掩摸层可以覆盖第1开口部分,和第1开口部分侧壁和第2开口部分侧壁附近的栅极。这些情况下,可根据构成栅极用的导电材料,可在栅极上形成碳膜。但是,上述碳膜没有放在有强电场的地方时不会发射电子。最好在碳膜选择生长区上形成碳膜之前去掉掩模层。
按本发明第1方案的制造方法中,绝缘层上形成有第1开口部分的栅极用的方法包括以下步骤:在绝缘层上形成用于栅极的导电材料层;之后,导电材料层上形成已刻图的第1掩模材料层;用第1掩模材料层作腐蚀掩模,腐蚀导电材料层,构成导电材料层图形;之后,去除第1掩模材料层;之后,在导电材料层和绝缘层上形成已构图的第2掩模材料层;用第2掩模材料层作腐蚀掩模,腐蚀导电材料层,构成第1开口部分,用例如丝网印刷法直接形成有第1开口部分的栅极。这些情况下,在绝缘层中形成与栅极中构成的第1开口部分连通的第2开口部分所用的形成方法,可以是用上述的第2掩摸材料层作腐蚀掩模腐蚀绝缘层的方法,也可以用在栅极中构成的第1开口部分作腐蚀掩模腐蚀绝缘层的方法。第1开口部分与第2开口部分成--对应的关系。即,每个第1开口部分形成一个第2开口部分。
为达到上述目的,按本发明第2方案的冷阴极场发射器件的制造方法包括以下步骤:
(A)支承基底上构成阴极;
(B)阴极表面上形成碳膜选择生长区(碳膜选择生长区形成步骤),
(C)碳膜选择生长区上形成碳膜;和
(D)碳膜上形成有开口部分的栅极。
为达到上述目的,按本发明第2方案的冷阴极场发射显示器的制造方法,是把按本发明第2方案的冷阴极场发射器件的制造方法用于制造冷阴极场发射显示器的制造方法中。即,上述的按本发明第2方案的方法包括设置其上已形成有阳极和荧光层的衬底,和其上已形成有冷阴极场发射器件的支承基底,使荧光层与冷阴极场发射器件彼此相对,并在其圆周部分粘接衬底和支承基底。
其中,制造冷阴极场发射器件的方法包括以下步骤:
(A)支承基底上构成阴极;
(B)阴极表面上形成碳膜选择生长区(碳膜选择生长区形成步骤),
(C)碳膜选择生长区上形成碳膜;和
(D)碳膜上形成有开口部分的栅极。
为达到上述目的,按本发明第3方案的冷阴极场发射器件的制造方法,包括以下步骤:
(A)支承基底上构成阴极;
(B)阴极表面上形成碳膜选择生长区(碳膜选择生长区形成步骤),
(C)碳膜选择生长区上形成有开口部分的栅极,和
(D)碳膜选择生长区上形成碳膜。
为达到上述目的,按本发明第3方案的冷阴极场发射显示器的制造方法,是按本发明第3方案的冷阴极场发射器件的制造方法用于冷阴极场发射显示器的制造方法中。即,上述的按本发明第3方案的方法包括:设置其上已构成有阳极和荧光层的衬底,和其上已形成有冷阴极场发射器件的支承基底,使荧光层与冷阴极场发射器件彼此相对,在它们圆周部分使衬底和支承基底粘接在一起。
其中,制造冷阴极场发射器件的方法包括以下步骤:
(A)支承衬底上构成阴极;
(B)阴极表面上形成碳膜选择生长区(碳膜选择生长区形成步骤),
(C)碳膜选择生长区上形成有开口部分的栅极。
(D)碳膜选择生长区上形成碳膜;
按本发明第2方案的冷阴极场发射器件的制造方法中,或按本发明第2方案的冷阴极场发射显示器的制造方法中,(这些制造方法在以下有时通称为“按本发明第2方案的制造方法”)可用这样一些步骤组成,其中,上述步骤(C)后在整个表面上形成绝缘层,上述步骤(D)后,在绝缘层中形成与栅极中形成的开口部分连通的第2开口部分,并露出第2开口部分底部中的碳膜。按本发明第3方案的冷阴极发射器件的制造方法中,或者,按本发明第3方案的冷阴极场发射显示器的制造方法中,(这些制造方法以下有时通称为“按本发明第3方案的制造方法”),可用以这样一些步骤组成,其中,在上述的步骤(B)之后,在整个表面上形成绝缘层,上述步骤(C)之后,在绝缘层中形成与栅极中形成的开口部分连通的第2开口部分,露出第2开口部分底部中的碳膜选择生长区。这些情况中,在绝缘层上形成有第一开口部分的栅极的方法包括以下方法:在绝缘层上形成用于栅极的导电材料;之后,在导电材料层上形成已构图的第1掩膜材料层;用第1掩膜材料层作腐蚀掩膜腐蚀导电材料层,给导电材料层构图;之后,除去第1掩模材料层;之后,导电材料层和绝缘层上形成已构图的第2掩模材料层;用第2掩膜材料层作腐蚀掩模腐蚀导电材料层,形成第1开口部分;例如利用丝网印刷,直接形成有第1开口的栅极的方法。这些情况下。在绝缘层中形成与栅极中形成的第1开口部分连通的第2开口部分的方法中,可以用上述的第2掩模材料层作腐蚀掩模腐蚀绝缘层的方法,或者,用栅极中构成的第1开口部分作掩模,腐蚀绝缘层的方法。第1开口部分与第2开口部分成--对应关系。即,每个第1开口部分要形成一个第2开口部分。
或者,按本发明第2方案的制造方法中,或者,按本发明第3方案的制造方法中,碳膜上形成有开口部分的栅极的步骤,或碳膜选择生长区上形成有开口部分的栅极的步骤,包括在支承基底上形成绝缘材料构成的带形栅极支承件的步骤和在碳膜或碳膜选择生长区上设置其中有多个开口部分用条形或片形金属层构成的栅极,使金属层与栅极支承件的顶表面接触的步骤。
按本发明第1、第2或第3方案的制造方法中(这些方法在以下有时通称为“按本发明方法”),碳膜选择生长区形成步骤最好包括,在阴极中要形成碳膜选择生长区的部分的表面上,允许附着金属颗粒,或形成金属薄层,或形成金属有机化合物的步骤,用其表面上附有金属颗粒,或其表面上形成有金属薄层或金属有机化合物薄层的阴极部分构成碳膜选择生长区。该情况下,为了使碳膜选择生长区上的碳膜选择生长更可靠,希望允许硫(S),硼(B)或磷(P)附着到碳膜选择生长区表面上,由此,使碳膜能更好地改善选择生长性能。允许硫、硼或磷附着到碳膜选择生长区表面上的方法包括,例如,在碳膜选择生长区表面上形成含硫、硼或磷的化合物构成的化合物层,之后,对化合物层热处理使其分解,使硫、硼或磷留在碳膜选择生长区表面上。含硫化合物包括:硫茚,并噻吩和噻吩。含硼的化合物包括三苯基硼。含磷化合物包括三苯基磷。另外,为了使碳膜选择生长区上碳膜生长更可靠,阴极表面上附着了金属颗粒,或形成了金属薄层或形成了金属有机化合物薄层之后,最好除去金属颗粒表面上或金属薄层表面上或金属有机化合物薄层表面上的氧化物(所称的天然氧化物)。最好是例如在氢气气氛中,用微波等离子法,变压器耦合等离子法,感应耦合等离子法,电子回旋共振等离子或射频(RF)等离子法,进行等离子还原处理,在氩气气氛中溅射;或用清洗法,例如用氢氟酸或碱清洗,除去每个金属颗粒表面上或金属薄层表面上或金属有机化合物表面上的金属氧化物。按本发明第3方案的制造方法中,最好有允许硫、硼或磷附着到碳膜选择生长区表面上的步骤,或在有开口部分的栅极形成之后和碳膜选择生长区上碳膜形成之前进行的除去金属颗粒表面上或金属薄层表面上或金属有机化合物薄层表面上的金属氧化物的步骤。另外,在按本发明的电子发射器件制造中,上述的各个步骤可用于导电层中要形成碳膜选择生长区的部分的表面上。“导电层中要形成碳膜选择生长区的部分”有时简称为“导电层部分”,和“阴极中要形成碳膜选择生长区的部分”以后有时也简称为“阴极部分”。
允许金属颗粒附着到导电层部分表面或阴极部分表面的方法包括,例如,在该方法中,在导电层或阴极中除了要形成碳膜选择生长区的区域之外的区域用合适的材料,例如,掩模层)覆盖的状态下,在导电层部分或阴极部分的表面上形成溶剂和金属颗粒构成的膜层,之后,除去溶剂,而留下金属颗粒。或者,允许金属颗粒附着到导电层部分或阴极部分的表面上的步骤包括,例如,该方法中,在导电层或阴极中除了要形成碳膜形成区的区域之外的区域用合适的材料(例如,掩模层)覆盖的状态下,允许含有构成金属颗粒的金属原子的金属化合物颗粒附着到导电层或阴极的表面上,之后,对金属化合物加热使其分解,由此制成其表面上附有金属颗粒的部分导电层和部分阴极构成的碳膜选择生长区。上述方法中,具体地说是在导电层部分或阴极部分的表面上形成溶剂和金属化合物颗粒构成的膜层,之后,去掉溶剂而留下金属化合物颗粒。上述的金属化合物颗粒最好至少含一种选自金属卤化物(例如,碘化物、氯化物、溴化物),金属氧化物和金属氢氧化物和含构成金属颗粒的金属有机化合物的化合物材料。上述方法中,在适当的阶段去掉覆盖导电层或阴极中除要形成碳膜选择生长区的区域之外的区域的材料(例如,掩模层)。
尽管根据构成金属薄层的材料不同而不同,但在用合适的材料覆盖导电层或阴极中除了要形成碳膜选择生长区的区域之外的区域的状态下选择不同的在导电层部分或阴极部分的表面上形成金属薄层的方法,例如,镀覆法,例如电镀法和无电镀敷去,包括MOCVD法的化学汽相淀积法(CVD)、物理气化淀积法(PVD法)和金属有机化合物热分解法。物理气化淀积法包括(a)真空淀积法,如电子束加热法,电阻加热法和辉光淀积法,(b)等离子淀积法,(c)溅射法,如双极溅射法,直流(DC)溅射法、DC磁控溅射法,高频溅射法,磁控溅射法,离子束溅射法和偏压溅射法,和(d)离子镀膜法,如直流(DC)法,射频(RF)法,多阴极法,和激化反应法,电场淀积法,高频离子镀膜法和反应离子镀膜法。
按本发明的电子发射器件中,按本发明第2方案的冷阴极场发射器件,按本发明第3方案的冷阴极场发射显示器或按本发明第1至第3方案中的任一方案的制造方法,最好用选自钼(Mo)、镍(Ni)、钛(Ti)、铬(Cr)、钴(Co)、钨(W)、锆(Zr)、钽(Ta)、铁(Fe)、铜(Cu)、铂(Pt)、锌(Zn)、镉(Cd)、汞(Hg)、锗(Ge)、锡(Sn)、铅(Pb)、铋(Bi)、银(Ag)、金(Au)、铟(In)和铊(Tl)中的至少一种金属构成用于形成碳膜选择生长区的金属颗粒或金属薄层。
按本发明的电子发射器件中,按本发明第2方案的冷阴极场发射器件和按本发明第3方案的冷阴极场显示器件中,用含有至少一种选自锌(Zn)、锡(Sn)、铝(Al)、铅(Pb)、镍(Ni)和钴(Co)的元素的金属有机化合物形成用于构成碳膜选择生长区的金属有机化合物薄层。而且它最好用配位化合物构成。构成上述配位化合物的配位体的实例包括:乙酰丙酮,六氟乙酰丙酮,二叔戊酰甲烷和环戊二烯基。金属有机化合物薄层可含部分金属有机化合物的分解产物。
按本发明的第1至第3方案中任一方案的制造方法中,阴极部分表面上形成金属有机化合物薄层的步骤可以是在阴极部分上形成金属有机化合物溶液构成的膜层的步骤,或者是在阴极部分上升华金属有机化合物来淀积金属有机化合物膜层的步骤。这些情况中,最好用含有选自锌(Zn)、锡(Sn)、铝(Al)、铅(Pb)、镍(Ni)和钴(Co)中的至少一种元素的金属有机化合物形成用于构成碳膜选择生长区的金属有机化合物薄层。而且,它最好用配位化合物构成。构成上述配位化合物的配位体的实例包括:乙酰丙酮,六氟乙酰丙酮,二叔戊酰甲烷和环戊二烯基。金属有机化合物薄层可含部分金属有机化合物的分解产物。
按本发明第2方案的冷阴极场发射器件中,或按本发明第3方案的冷阴极场发射显示器中,附着到阴极部分的表面上的金属颗粒可以是针形。这种情况下,针形金属颗粒最好用选自铜(Cu)、铁(Fe)、钨(W)、钽(Ta)、钛(Ti)和锆(Zr)中的至少一种金属构成。用这样的针形金属颗粒形成碳膜选择生长区时,其上形成的碳膜会凸起。结果,能制成有高电子发射效率的冷阴极场发射器件,能制成的有高电子发射效率的冷阴极场发射器件与碳膜的形成条件无关。
按本发明的第1至第3方案中的任一方案的制造方法中,允许金属颗粒附着到阴极部分的表面上的步骤是升华金属化合物而淀积构成阴极部分表面上的金属化合物用的金属构成的针形金属化合物颗粒的步骤。这种情况下,针形的金属颗粒最好是用选自铜(Cu)、铁(Fe)、钨(W)、钽(Ta)、钛(Ti)和锆(Zr)中的至少一种金属构成。金属化合物最好是上述金属的卤化物,如上述金属的氯化物、溴化物、氟化物或碘化物。
本发明中,碳膜包括石墨薄膜,非晶碳薄膜,类金刚石碳薄膜和富勒烯薄膜。形成碳膜的方法包括以微波等离子法、变亚器耦合的等离子法,感应耦合等离子法、电子回旋振荡等离子法,RF等离子法,螺旋波等离子法和电容耦合等离子CVD法和用二极管平行板等离子增强型CVD系统的CVD法为基础的CVD法。碳膜形式包括薄膜形式,它还包括碳晶须形式和碳纳米管(包括空管和实管)形式。形成碳膜用的气源包括:碳气,如甲烷(CH4)、乙烷(C2H6)、丙烷(C3H6)、丁烷(C4H10),乙烯(C2H4),和乙炔(C2H2),和它们中任何几种气体的混合物,和这些碳气中任何一种与氢气的混合物。也能用气化甲醇、乙醇、丙酮、苯、甲苯或二甲苯制成的气体或这些气体与氢的混合物。而且,为了稳定放电和促进等离子离解,还要引入惰性气体,如氦气(He)或氩气(Ar)。
按本发明第1和第2方案中的任何一种方案的冷阴极场发射器件中,按本发明第2和第3方案中任一方案的冷阴极场发射显示器中,和按本发明第1至第3方案中的任一方案的制造方法中(这些以下有时通称为“按本发明的冷阴极场发射器件等等、或”按本发明的制造方法),通常,阴极的外形是条形,栅极的外形也是条形。条形阴极在一个方向延伸,条形栅极按另一个方向延伸。条形阴极的投影图像与条形栅极的投影图像最好按直角相互交叉。在两个这种电极的重叠区中(相当于一个象素的区域,也是阴极与栅极的重叠区)有一碳膜选择生长区或多个碳膜选择生长区。阴极板的有效场中(作为实际显示部件的区域),按两维矩阵形式设置这些重叠区。
按本发明的冷阴极场发射器件等等或按本发明的制造方法中,每个第1开口部分和第2开口部分均有任何一种平面形状(是切割有与阴极平行的虚构平面的那些开口部分而得到的)。如圆形、椭圆形、矩形、多边形。带圆形的矩形、带圆形的多边形等。
按本发明的冷阴极场发射器件等等中或按本发明的制造方法中,阴极可以有任何结构,如,导电材料层的单层结构,下层导电材料层,在下导电材料层上形成的电阻层和电阻层上形成的上层导电材料层构成的三层结构。后一种情况下,在上层导电材料层表面上形成碳膜选择生长区。上面形成的电阻层用来使电子发射部件具有均匀电子发射特性。
按本发明的冷阴极场发射器件等等,或按本发明的制造方法,可以用这样的构成,其中,再在栅极和绝缘层上形成第2绝缘层,并在第2绝缘层上形成聚焦电极。另外,聚焦电极也能形成在栅极上。设置上述的聚焦电极是为了会聚经过开口部分发射并吸向阳极的电子的通道,因而能提高亮度,并能防止相邻象素之间的光学干扰。聚焦电极对阳极和阴极间的电位差在几千伏和相互间距离极大的所称的高压型显示器特别有效。由聚焦功率源给聚焦电极加相对负电压。不必为每个冷阴极场发射器件设聚焦电极。例如,聚焦电极可按设置冷阳极场发射器件的预定方向延伸,使多个冷阴极场发射器件共同享聚焦作用。
按本发明第1至第3方案中任一方案的冷阴极场发射显示器的制造方法,可用粘接层或用硬绝缘材料,如玻璃或陶瓷和粘接层制成的框架,把衬底和支承基底在它们的圆周部分粘接在一起。框架和粘接层组合使用时,只要适当确定框架的高度就能调节衬底与支承基底之间面对的距离,单独使用粘接层粘接的情况除外。通常用玻璃料作粘接层,也可用熔点在120℃至400℃的低熔点金属材料。低熔点金属材料包括铟(In)熔点是157℃);铟-金低熔点合金;含锡的高温焊料如Sn80Ag20(熔点是220℃至370℃),和Sn95Cu5(熔点是220℃至370℃);含铅的高温焊料,如Pb97.5Ag2.5(熔点是304℃);Pb94.5Ag5.5(熔点是304-365℃),和Pb97.5Ag1.5Sn1.0(熔点是309℃);含锌(Zn)的高温焊料,如Zn95Al5(熔点是380℃);含锡一铅的标准焊料,如Sn5Pb95(熔点是300℃-314℃)和Sn2Pb98熔点是316℃-322℃);和钎焊材料,如Au88Ga12(熔点381℃),(以上材料的所有下角注量均用原子%表示)。
当衬底,支承基底和框架这三个零件粘接在一起时,可同时粘接三个零件,也可以把衬底和支承基底中的一个在第1步中与框架粘在一起,然后把其中的另一个在第2步中粘到框架上。粘接三个零件或在第2步粘接时可在高真空气氛中进行,粘接时可对衬底,支承基底和框架围成的空间抽真空。另外,三个零件粘接后,也可对衬底、支承基底阳框架围成的空间抽真空而获得真空空间。粘接后抽真空时,粘接过程中的气氛压力可以是一个大气压,也可以是低压,构成气氛的气体可以是环境气氛,或含氮气的惰性气体或在元素周期表中0族中的气体(如氩(Ar)气)。
粘接后抽真空时,可用预先接到衬底和/或支承基底上的末端管抽真空。通常用玻璃制成末端管,并用玻璃料或上述的低熔点材料粘接到衬底和/或支承基底的无效区中构成的通孔的圆周边上(即除用作电子发射部件的有效区之外的区域。空间达到预定真空度后,用热熔法密封末端管。最好是先加热,然后降温,显示器完全密封之前,由于剩余气体释放到所说空间中,因此对空间抽真空排出剩余气体。
按本发明的冷阴极场发射器件等等,或按本发明的制造方法中,支承基底可以是任何初底,只要用绝缘材料构成它的表面即可。支承基底包括玻璃基底,有绝缘层构成的表面的玻璃基底,石英基底,有绝缘层构成的表面的石英基底,有绝缘层构成的表面的半导体基底。衬底可以与支承基底有相同构成。按本发明的电子发射器件中,要求在支承基底上形成导电层,可用绝缘材料构成支承基底。
构成导电层,阴极、栅极或聚焦极的材料的实例包括金属,如钨(W)、铌(Nb)、钽(Ta)、钼(Mo)、铬(Cr)、铝(Al)、铜(Cu)、镍(Ni)、铁(Fe)、钛(Ti)和锆(Zr);它们的合金或含这些金属的化合物(例如,氮化物,如TiN,和硅化物,如WSi2,MoSi2,TiSi2和TaSi2);半导体,如硅(Si);和ITO(铟-锡氧化物)。上述电极用的材料可以相同,也可以不同,上述电极可用常用的薄膜形成法构成,例如,淀积法,溅射法,CVD法离子镀膜法,丝网印刷法或镀膜法。
构成绝缘层或第2绝缘层的材料包括:SiO2、SiN、SiON、和玻璃浆料固化物。这些材料可单独用也可组合使用。可用已知的方法如CVD法,涂敷法,溅射法或丝网印刷法形成绝缘层或第2绝缘层。
可根据冷阴极场发射显示器的结构来选择制造阳极的材料。冷阴极场发射显示器是透射型(衬底相当于显示部件)时,并且阳极和荧光层按顺序叠置在衬底上时,不仅是上面要形成阳极的衬底就是阳极本身都要求是透明的,因此,用透明导电材料,如ITO(铟锡氧化物)。冷阳极场发射显示器是反射型(支承基底相当于显示部件)时,或者,冷阴极场发射显示器是透射型但是按荧光层和阳极的顺序叠放到衬底上(阳极最好作为金属黑膜)时,不仅能用ITO,也能选用阴极,栅极和聚焦极用的材料来构成阳极。
可从快电子激励材料或慢电子激励材料中选择构成荧光层的荧光材料。当冷阴极场发射显示器是黑白显示器时,不要求对荧光层构图。冷阴极场发射显示器是彩色显示器时,荧光层最好与按交替设置的条或点的形式构图的三原色红(R)、绿(G)和兰(B)对应。为了提高显示屏的对比度,可在一层构图的荧光层与另一层构图的荧光层之间填充黑底。
阳极和阴极的结构实例包括:(1)阳极形成在衬底上,荧光层形成在阳极上的结构,(2)荧光层形成在衬底上,阳极形成在荧光层上的结构。上述的结构(1)中,可在荧光层上形成所称的金属黑膜。上述的结构(2)中,金属黑膜可形成在阳极上。
本发明中,在碳膜选择生长区上形成碳膜构成的电子发射部件。这种情况下,在碳膜选择生长区表面上显示催化反应特征,在碳膜形成的初始阶段顺利形成仔晶或晶核,仔晶或晶核的形成有助于以后的碳膜生长。可在导电层或阴极的需要部分中形成用碳膜构成的电子发射部件。不再需要对碳膜构图按要求的形式形成碳膜。当由碳膜构成的电子发射部件形成于位于开口部分底部中的阴极部分,且由有催化功能的材料构成时,不要求对碳膜构图。按要求形式形成碳膜。而且,由于用碳膜构成电子发射部件,因此能制成有高电子发射效率的冷阴极场发射器件,因而能制成有低功耗和高图像质量的冷阴极场发射显示器。
以下将参见附图说明本发明的实例;
图1是按例1的冷阴极场发射显示器的局部剖视图;
图2是按例1的冷阴极场发射显示器中一个电子发射部件的透视示意图;
图3A至3D是说明按例1的电子发射器件的制造方法用的支承基底等等的局部剖视示意图;
图4A至4D是用于说明按例1的冷阴极场发射显示器的制造方法的衬底等等的局部剖视示意图;
图5A和5B是说明按例2的电子发射器件的制造方法的支承基底的局部剖视示意图;
图6是按例3的冷阴极场发射显示器的局部端视示意图;
图7A至7B是说明按例3的冷阴极场发射器件的制造方法的支承基底的局部端视示意图;
图8是按例6的冷阴极场发射显示器的局部端视示意图;
图9A、9B和9C是说明按例6的冷阴极场发射器件的制造方法的局部端视示意图;
图10A和10B是说明按例6的冷阴极场发射器件的制造方法的图9C之后的支承基底的局部端视示意图;
图11A和11B是说明按例6的冷阴极场发射器件的制造方法的,图10B之后的支承基底的局部端视示意图;
图12A和12B是说明按例10的冷阴极场发射器件的制造方法,支承基底等等的局部端视示意图;
图13是说明按例18的冷阴极场发射器件的制造方法的支承基底等等的局部端视示意图;
图14A和14B是说明按例19的冷阴极场发射器件的制造方法的支承基底等等的局部端视示意图;
图15是说明按例19的冷阴极场发射器件的制造方法的支承基底等等的局部端视示意图;
图16是按本发明的有聚焦电极的冷阴极场发射器件的局部端视示意图;
图17是Spindt型场发射器件的常规冷阴极场发射显示器的结构例的示意图。
例1
例1是按本发明第1方案的电子发射器件和冷阴极场发射显示器,(以下简称为“显示器”)。
图1是按例1的显示器的局部剖视图。图2是一个电子发射部件的透视示意图。图3D是电子发射器件的基本结构。按例1的电子发射器件有导电层(具体说是阴极11),它的表面上形成有碳膜选择生长区20,和碳膜选择生长区20上形成的碳膜23构成的电子发射部件15。碳膜选择生长区20上形成的是部分导电层(具体说是阴极11的一部分),其表面上附着有金属颗粒21。
例1的显示器有阴极板CP和阳极板AP,阴极板CP有有效区,在有效区中有按两维矩阵形成构成的大量上述的电子发射器件,显示器有许多象素,阴极板CP和阳极板AP在它们的圆周部分经框架34粘接在一起。而且在阴极板CP的无效区中设有抽真空的通孔(没画),末端管(没画)接到通孔,以抽真空后将它密封。用陶瓷或玻璃制成框架34,其高度为1.0mm,某些情况下,也可只用粘接层代替框架34。
阳极板AP包括衬底30,在衬底30上按预定图形构成的荧光层31,和由覆盖整个表面的铝薄膜构成的阳极33。在衬底30上在一层荧光层31与另一层荧光层31之间形成的黑底32。也可以省去黑底32。要制造黑白显示器时,不要求荧光层31有预定图形。而且,也可以在衬底30与荧光层31之间用ITO等透明导电膜构成阳极33。或者,可用在衬底30上用透明导电膜构成的阳极33,在阳极33上形成的荧光层31和黑底32,在荧光层31和黑底32上用铝构成的并与阳极33电连接的反光导电膜构成阳极板AP。
用阴极板一边上的矩形阴极11,在它上面形成的电子发射部件15,和在阳极板AP的有效区中面对电子发射器件而设置的荧光层31构成每个象素。有效区中设置几百几千至几百万个这样的象素。
而且在阴极板CP与阳极板AP之间放置了作为辅助装置的隔板35、使这两个极板之间的距离保持不变。隔板35按固定的间隔放在有效区中。隔板35的形状不限于柱形,隔板35可以是球形也可以是胁条形。阳极与阴极的每个重叠区的四个角中不要求放隔板35。隔板35的放置间隔可以更大,也可以不规则地放置。
上述显示器中,按一个象素为单位来控制加到阴极11上的电压。从图2所示的平面示意图看,阴极11是近似的矩形。每个阴极11经布线11A和例如晶体管构成的转换元件(没画)接到控制电路41A。而且,阳极33接到加速功率源42。加到每个阴极11的电压大于阈值电压时,根据量子燧道效应,在阳极33产生的电场作用下,从电子发射部件15发射电子,电子吸向阳极33并与荧光层31碰撞。由加给阴极11的电压控制亮度。
现在参见图3A至3D和图4A至4D说明例1的电子发射器件和显示器的制造方法。例1中,用镍(Ni)作制造碳膜选择生长区20的材料。[步骤一100]
首先,在玻璃构成的支撑基底10上形成用于构成阴极的导电材料层。之后,用已知的刻板法和反应离子腐蚀法(RIE法)对导电层构图,构成支承基底10上的矩形阴极11(见图3A)。同时,支承基底10上形成接到阴极11的布线11A(见图2)。用溅射法淀积约0.2μm厚的铬层,构成导电层。表3列出了用溅射法形成铬层的形成条件,表2列出了铬层的腐蚀条件。表1                   铬层的形成条件
    靶     Cr
    Ar气流速     100SCCM
    压力     5Pa
    DC功率     2kw
    溅射温度     200℃
表2                   铬层的腐蚀条件
    腐蚀设备     平行板反应离子腐蚀系统
    Cr2气流速     100SCCM
    压力     0.7Pa
    RF功率     0.8kw(13.56MHz)
    腐蚀温度     60℃
[步骤-110]
之后,阴极11的表面上形成碳膜选择生长区20。具体说,用旋涂法首先在整个表面上形成抗(腐)蚀材料层,之后,对抗蚀材料刻图形成掩模层16,露出要在其中形成碳膜选择生长区20的阴极部分的表面,即,阴极部分的表面,(见图3B)。之后,允许金属颗粒附着到掩模层16和露出的阴极11的表面上。具体说,用镍(Ni)细颗粒分散在聚硅氧烷溶液(用异丙醇作溶剂)中制成的悬浮液旋涂到整个表面上,在阴极部分表面上形成由溶剂和金属果颗粒构成的膜层。之后,除去掩模层,并将上述膜层加热到约400℃以除去溶剂。使金属颗粒21留在阴极11的露出表面上,制成碳膜选择生长区20(见图3C)。上述的聚硅氧烷把金属颗粒21固定到阴极11的露出表面(叫做粘接功能)。[步骤-120]
之后,碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件15。图3D示出所制成的状态。表3列出了用微波等离子CVD法形成碳膜23的形成条件。按常规碳膜形成条件,要求膜形成温度为约900℃。然而,例1中,在500℃的膜形成温度下能稳定的形成碳膜。表3                   碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     1.3×103Pa
    微波功率     500w(13.56MHz)
    膜形成温度     500℃
[步骤-130]
之后,组装显示器。具体说,按荧光层31与电子发射器件(或场发射器件)彼此相对的方式安装阳极板AP和阴极板CP,阳极板AP和阴极板CP(更具体的说是衬底30和支承基底10)经框架34在它们的圆周部分相互粘在一起。上述粘接中,把玻璃料加到框架34和阳极板AP的粘接部分及框架34和阴极板CP的粘接部分。之后,阳极板AP,阴极板CP和框架34搭接。预焙烧或预烧结玻璃料使其干燥,之后,在约450℃经10至30分钟充分焙烧或烧结玻璃料。之后,经通孔(没画)和末端管(没画)对电阳极板AP,阴极板CP和框架34围成的空间抽真空,该空间的压力达到约10-4Pa时用热熔法密封末端管。按上述方式,使被阳极板AP、阴极板CP和框架34围成的空间形成真空。之后用布线连到外部电路,制成显示器。
现在参见图4A至4D说明图1所示显示器中的阳极板AP的制备方法。首先,制备发光晶体颗粒组合物。为此,例如,把分散剂分散在纯水中,制成的混合物用均匀混合机按3000rpm的转速搅拌1分钟。之后,把发光晶体颗粒倒入分散剂和纯水制成的悬浮液中,用均匀混合机按5000rpm的转速搅拌混合物5分钟。之后,例如,添加聚乙烯醇和重铬酸胺,制成的混合物充分搅拌并过滤。
阳极板AP的制备中,在玻璃衬底30的整个表面上形成(加)光敏涂层50。之后,衬底30上形成的光敏涂层50在紫外线下曝光,紫外线由光源(没画)发射并穿过掩模53中形成的通孔54,形成曝光区51(见图4A)。之后,经显影,选择地去掉光敏涂层50,在衬底30上留下剩余的光敏涂层部分52(曝光和显影后的光敏涂层)(见图4B)。之后,整个表面上加碳剂(碳浆),经干燥,焙烧或烧结,用剥离法去除去留在上面的光敏涂层部分52和碳剂。由此,在露出的衬底30上形成碳剂构成的黑底32,同时,除去剩余的光敏涂层部分52(见图4C)。之后,在露出的衬底30上形成红、绿和兰色荧光层31(见图4D)。具体说,使用发光晶体颗粒(荧光颗粒)制备的发光晶体颗粒组合物。例如,红色光敏发光晶体颗粒组合物(荧光浆料)加到整个表面上,之后,用紫外线曝光和显影。之后绿色光敏发光晶体颗粒组合物(荧光浆料)加到整个表面上,之后,用紫外线曝光和显影。而且,把兰色光敏发光晶体颗粒组合物(荧光浆料)加到整个表面上,之后,用紫外线曝光和显影。之后,在荧光层31和黑底32上用溅射法形成0.07μm厚的铝薄膜构成的阳极33。或者,也可以用丝网印刷法等形成每层荧光层31。
有上述结构的显示器中,用有低功函数的平碳膜23构成每个电子发射器件的电子发射部件。它的制造不需要这么复杂,可以用常规Spindt型场发射器件的预先制造技术。而且,不再需要对碳膜23腐蚀。显示器的有效区面积增大和电子发射部件的数量增大到相当程度时,在整个有效区中均呈现出一致的电子发射部件的电子发射效率。能制成亮度没有明显的不一致和有高图像质量的显示器。
例2
例2是例1所述电子发射器件和显示器的一个变体。例1所述的制造方法中,允许金属颗粒21附着到阴极部分的表面上。例2中,形成碳膜选择生长区的步骤包括用溅射法形成钛(Ti)构成的金属薄层的步骤。以下将参见图5A和5B说明例2的电子发射器件和显示器的制造方法。[步骤-200]
用例1中[步骤-100]的方法在玻璃衬底10上形成阴极11。之后,整个表面上旋涂形成抗蚀材料层,之后,对抗蚀材料层刻图,制成掩模层,使阴极部分的表面露出。[步骤-210]
按表4所列条件用溅射法在掩模层和阴极11的露出表面上形成金属薄层22,之后,去除掩模层(见图5A)。按上述方式,能制成用阴极部分表面上形成的金属薄层22构成的碳膜选择生长区20。表4                        金属薄层的形成条件
    靶     Ti
    工艺用气体     Ar=100SCCM
    DC功率     4kw
    压力     0.4Pa
    衬底加热温度     150℃
    膜层厚度     30μm
之后,用例1中[步骤-120]同样的方式在碳膜选择生长区20上形成0.2μm厚的碳膜23,制成电子发射部件(见图5B)。之后,按例1中[步骤-130]同样的方式组装显示器。
例3
例3是按本发明第1方案的冷阴极场发射器件(以下简称“场发射器件”)和按本发明第2方案的显示器。
图6是例3的显示器的局部端视示意图,图7B是场发射器件的基本结构。例3的场发射器件有在支承基底10上形成的阴极11,和在阴极11上形成的有开口部分(第1开口部分14A)的栅极13。场发射器件还有在位于开口部分14A底部中的阴极11的一部分的表面上形成的碳膜23构成的电子发射部件15。支承基底10和阴极11上形成绝缘层12,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的开口部分14B。例3中,阴极11用铜(Cu)构成。
例3的显示器也用阴极板CP和阳极板AP构成,阴极板CP有在有效区中按两维矩阵形式构成的多个上述场发射器件,显示器有许多象素。阴极板CP和阳极板AP经框架34在它们的圆周部分中相互粘接。而且,在阴极板CP的无效区中形成抽真空用的通孔36,末端管37接到通孔36,抽真空后将它密封。框架34用陶瓷制成,其高度为1.0mm。某些情况下,可只用粘接层代替框架34。
阳极板AP有与例1所述结构相同的结构。因此不再详细说明。
每个象素由阴极板一边上的条形阴极11,它上面形成的电子发射部件15和设置在阳极板AP的有效区中与场发射器件相对的荧光层31构成。有效区中,设置几百几千至几百万个这样的象素。
由扫描电路40给阴级板11加相对负电压,由控制电路41给栅极13加相对正电压,由加速功率源42给阳极33加比栅极13加的电压高的相对正电压。用该显示器显示时,例如,由扫描电路40给阴极11输入扫描信号时,从控制电路41给栅极13输入视频信号。由于电压加到阴极11和栅极13之间时产生的电场的作用,根据量子燧道效应,从电子发射部件15发射电子。电子吸向阳极33并与荧光层31碰撞。结果,荧光层31被激励而发光,得到所需的图像。
以下将参见图7A和7B说明例3的场发射器件和显示器的制造方法。[步骤-300]
首先,玻璃衬底构成的支承基底10上形成用于构成阴极的导电层。之后,用已知的刻板法和已知的RIE法对导电层刻图,在支承基底10上构成条形阴极11。条形阴极11在附图纸面上朝左右延伸。用溅射法形成的如约0.2μm厚的铜层(Cu)构成导电层。[步骤-310]
之后,支承基底10和阴极11上形成绝缘层12。具体说,用TEDS(四乙氧原基硅烷作源气,用CVD法在整个表面上形成约1μm厚的绝缘层12。表5列出了绝缘层12的形成条件。表5                        绝缘层形成条件
    TEOS流速     800SCCM
    O2流速     600SCCM
    压力     1.1Pa
    RF功率    0.7kw(13.56MHz)
    膜形成温度     400℃
[步骤-320]
之后,绝缘层12上形成有第1开口部分14A的栅极13。具体说,用溅射法在绝缘层12上形成用于构成栅极的铬(Cr)导电层,之后,在导电材料层上形成已构成图的第1掩模材料层(没画)。用第1掩模材料层作腐蚀掩腐蚀导电材料层,构成条形的导电层图形,之后,除去第1掩模材料层。之后,在导电材料层和绝缘层12上形成第2掩模材料层(没画),用第2掩模材料层作腐蚀掩模腐蚀导电材料层。按此方式,在绝缘层12上形成有第1开口部分14A的栅极13。条形栅极13按与阴极11的方向不同的方向(例如按垂直于附图纸面的方向)延伸。此后,在绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。具体说,用第2掩模材料层作腐蚀掩模用RIE法腐蚀绝缘层12,之后,除去第2掩模材料层。用此方式,能制成图7A所示结构。表6列出绝缘层12的腐蚀条件。例3中,第1开口部分与第2开口部分成一一对应的关系。即每个第1开口部分14A要形成一个第2开口部分14B。从平面图上看,第1和第2开口部分14A和14B都是直径为1至30μm的圆环形。每个象素中形成约1至3000个开口部分14A和14B就足够了。表6                   绝缘层腐蚀条件
    腐蚀设备     平行板反应离子腐蚀系统
    C4F8流速     30sccm
    Co流速     70sccm
    Ar流速     300sccm
    压力     7.3Pa
    RF功率     1.3kw(13.56MHz)
    腐蚀温度     室温
[步骤-330]
之后,在位于开口部分14A和14B的底部中的阴极部分的表面上形成碳膜23构成的电子发射部件150用有催化特性的铜(Cu)构成阴极11。具体说,电极11的一部分表面上形成约0.2μm厚的碳膜23,制成发射部件15。图7B示出这样制成的状态。表7列出了用微波等离子CVD法形成碳膜23的形成条件。按常规碳膜形成条件,要约900℃的膜形成温度。但是,例3中,能在300℃的膜形成温度下稳定地形成碳膜。由于栅极13用铬(Cr)构成,所以栅极13上不形成碳膜。表7                  碳膜形成条件
    用的气体     CH4/H2=100/10 SCCM
    压力     1.3×103pa
    微波功率     500W(13.56MHz)
    膜形成温度     300℃
[步骤-340]
按例1中[步骤-130]的方式组装显示器。
例3中在位于开口部分14A和14B底部中的阴极11的一部分的表面上形成碳膜23,阴极11是用有催化特性的材料制成的,因此不再需要把碳膜23构图成所需的形状。
例4
例4是例3的一种变体。例3所说的场发射器件和显示器的制造方法中,阴极11的表面被自然氧化,所以有时不能形成碳膜23。例4中,从阴极部分的表面上除去了金属氧化物(所说的自然氧化膜)。用等离子还原处理或清洗法去掉阴极部分表面上的金属氧化物。
下面将说明与例3的场发射器件和显示器有相同结构的要制造的例4或例5的场发射器件和显示器。下面将说明例4的场发射器件和显示器的制造方法。[步骤-400]首先,按与例3中[步骤-300]至[步骤-320]相同的方法在玻璃衬底制成的支承基底10上形成阴极11;之后,在支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,在绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-410]
之后,按表8所列条件用等离子还原处理(微波等离子处理)去掉开口部分14A和14B底部中露出的阴极11的一部分的表面上的金属氧化物(自然氧化膜)。另外,用50%氢氟酸水溶液与纯水按1∶49体积比配制成的50%氢氟酸水溶液/纯水的混合物也能除去阴极部分露出表面上的金属氧化物(自然氧化膜)。
表8
    用的气体     H2=100 SCCM
    压力     1.3×103Pa
    微波功率     600W(13.56MHz)
    处理温度     400℃
[步骤-420]
之后,开口部分14A和14B底部中露出的阴极部分的表面上形成约0.2μm厚的碳膜23,从而得到电子发射部件15。表9列出了按微波等离子CVD法的碳膜23的形成条件。例4中能在200℃的膜形成温度下稳定地形成碳膜。表9                        碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     1.3×103Pa
    微波功率     500W(13.56MHz)
    膜形成温度     200℃
[步骤-430]
之后,按与例1中[步骤-130]相同方式组装显示器。
例4中,除去开口部分14A和14B底部中露出的阴极部分的表面上的金属氧化物(自然氧化膜),之后,在阴极部分表面上形成碳膜,因此,可在很低的温度下形成碳膜。
例5
例5也是例3的-个变体。例5中,在开口部分14A和14B底部中露出的阴极部分的表面上形成凸凹形。所形成的碳膜上形成凸形。结果,能制成有高电子发射效率的场发射器件。以下将说明例5中的场发射器件和显示器的制造方法。[步骤-500]
首先,按与例3中[步骤-300]至[步骤-320]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11,之后,支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中构成的第1开口部分14A连通的第2开口部分14B。表10
    腐蚀溶液     1%氢氟酸水溶液
    处理时间周期     5分钟
[步骤-520]
之后,进行与例3中[步骤-330]同样的步骤,在开口部分14A和14B底部中的阴极11的一部分的表面上形成碳膜23构成的电子发射部件15。具体地说,阴极11的一部分的表面上形成约0.2μm厚的碳膜23,制成电子发射部件15表11列出了按微波等离子CVD法的碳膜23的形成条件。按常规的碳膜形成条件,要求膜形成温度为约900℃。但在例5中,在200℃的膜形成温度下就能稳定形成碳膜。表11                       碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     7×102Pa
    微波功率     700W(13.56MHz)
    膜形成温度     200℃
[步骤-530]
按与例1中[步骤-130]同样的方式组装显示器。
例5中所述的在开口部分14A和14B的底部中露出的阴极11的一部分的表面上形成凸凹形的步骤可以用于例4。而且,例4中所述的除去金属氧化物(自然氧化膜)的步骤也能用于例5。
例6
例6是指按本发明的电子发射器件,按本发明第2方案的场发射器件,按本发明第3方案的显示器,和按本发明第1方案的制造方法。
图11B是例6的场发射器件的局部端视示意图。图8是例6的显示器的局部端视示意图。场发射器件有支承基底10上形成的阴极11和阴极11上形成的有第1开口部分14A的栅极13。场发射器件还有在开口部分14A和14B底部中的阴极11的一部分的表面上形成的碳膜选择生长区20,和在碳膜选择生长区20上形成的碳膜23构成的电子发射部件。例6中,碳膜选择生长区20是其表面上附着有镍(Ni)构成的金属颗粒的阴极11的一部分。
例6的场发射器件中,支承基底10和阴极11上形成绝缘层12,在绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。碳膜23位于第2开口部分14B的底部中。
图8是例6的显示器的结构例。显示器用阴极板CP和阳极板AP构成,阴极板CP有在有效区中形成的大量上述场发射器件,显示器有大量象素。每个象素用场发射器件和衬底30上形成的与场发射器件相对的阳极33和荧光层31构成。阴极板CP和阳极板AP经框架34在它们的圆周部分中粘接。图8的端视图中,为了简化附图,在阴极板CP上的每个阴极11画出两个开口部分(14A和14B)和是电子发射部件的两个碳膜23。但是,对这些零件中每种零件的数量没有限制。图11B示出了场发射器件的基本结构。而且,在阴极板CP的无效区中还有抽真空用的通孔36,和接到通孔36的末端管37,抽真空后将末端管密封。图8是显示器制成后的状态,末端管37也已密封。
阳极板AP与例1中的阳极板结构相同。不再细说。
显示器的显示工作也与例3的显示器的显示工作相同,因此不再细说。
以下将参见图8、9A、9B、9C、10A、10B、11A和11B说明例6的场发射器件和显示器的制造方法。[步骤-600]
首先,在玻璃制成的支承基底10上形成用于阴极的导电材料层,用已知的刻板法和已知的RIE法对导电材料层构图,在支承基底10上形成条形阴极11(见图9A)。条形阴极11在附图的纸面上朝左右延伸。用溅射法形成约0.2μm厚的Cr(铬)层构成的导电材料层。用溅射法形成铬层的条件和对它的腐蚀条件分别列于表1和表2中。[步骤-610]
之后,在支承基底10和阴极11上形成绝缘层12。具体说,用TEOS(四乙氧原基硅烷)作源气用CVD法在整个表面上形成约1μm厚的绝缘层12。按表5所列条件形成绝缘层12。[步骤-620]
之后,在绝缘层12上形成有第1开口部分14A的栅极。具体说,按表1所列条件用溅射法在绝缘层12上形成构成栅极的铬导电材料层,之后,导电层上形成已构图的第1掩模材料层(没画)。用上述的第1掩模材料层作腐蚀掩模按表2所列条件腐蚀导电材料层,构成条形图形,之后,去掉第1掩模材料层。之后,导电材料层和绝缘层12上形成已构图的第2掩模材料层(没画),用上述第2掩模材料层作腐蚀掩模按表2所列条件腐蚀导电层。按该方式能在绝缘层12上构成有第1开口部分14A的栅极13。条形栅极13按与阴极11的延伸方向不同的方向(按垂直于附图纸面的方向)延伸。[步骤-630]
之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分。具体说,用第2掩膜材料层作腐蚀掩模,用RIE法腐蚀绝缘层12,之后,去掉第2掩模材料层。按此方式,制成图9B所示结构。按表6所列条件腐蚀绝缘层12。例6中,第1和第2开口部分14A和14B成一一对应关系,即,每个第1开口部分14A形成一个第2开口部分14B。平面图中第1和第2开口部分14A和14B是直径为1至30μm的圆环形。每个象素中形成约1至3000个开口部分14A和14B就够了。
[步骤-640]
之后,第2开口部分14B底部中的阴极11的一部分的表面上形成碳膜选择生长区20。为此,首先形成掩模层116,使第2开口部分14B底部的中心部分中的阴极11的表面露出(见图9C)。具体说,在包括开口部分14A和14B的内表面的整个表面上用旋涂法形成抗蚀材料层,之后,用刻板法在第2开口部分14B底部的中心部分中的抗蚀材料层中形成通孔,制成掩膜层116。例6中,掩模层116覆盖第2开口部分14B底部中的阴极11的一部分,第2开口部分14B的侧壁,第1开口部分14A的侧壁,栅极13和绝缘层12,之后,进入在第2开口部分14B底部的中心部分中的阴极11的一部分的表面上要形成碳膜选择生长区的步骤,上述掩模层可以可靠地防止阴极11和栅极13之间由金属颗粒造成的短路。
之后,允许金属颗粒附着到掩模层116和露出的阴极11的表面上。具体说,把镍(Ni)细颗粒分散在聚硅氧烷溶液(用异丙醇作溶剂)中制成的悬浮液旋涂到整个表面上,在阴极部分的表面上形成溶剂和金属颗粒构成的膜层。之后,去掉掩模层116,把上述膜层加热到约400℃除去溶剂,让金属颗粒21留在阴极11的露出表面上,由此制成碳膜选择生长区20(见图10A)。上述聚硅氧烷有把金属颗粒21固定到阴极11的露出表面上的功能(叫做附着功能)。[步骤-650]
之后,在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。图10B和11A示出这样制成的状态。图10B是从栅级13的延伸方向看器件时的局部端视示意图。图11A是从阴极11的延伸方向看器件时的局部端视示意图。表12列出按微波等离子CVD法形成碳膜23的形成条件。按常规碳膜形成条件,膜形成温度要求是约900℃。但在例6中,在500℃的膜形成温度下能稳定形成碳膜。表12                       碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     1.3×103Pa
    微波功率     500W(13.56MHz)
    膜形成温度     500℃
[步骤-660]
为了要露出栅极13的开口端部分,最好允许绝缘层12中形成的第2开口部分14B的侧壁表面因向异性腐蚀而向后倾斜。按此方式,能制成图11B所示场发射器件。另外,能制成包括碳膜选择生长区20上形成的导电层(相当于例6中的阴极11)和碳膜选择生长区20上形成的碳膜23构成的电子发射部件的电子发射器件。可用原子基团作腐蚀物质的干腐蚀法如化学干腐蚀法,或用腐蚀溶液的湿腐蚀法进行上述的各向异性腐蚀。腐蚀溶液例如这里可用有49%的氢氟酸水溶液与纯水按1∶100的体积比配制的49%氢氟酸水溶液/纯水混合物。[步骤-670]之后,按与例1中[步骤-130]相同的方式组装显示器。
有上述结构的显示器中,场发射器件的电子发射部件用第2开口部分14B底部中露出的有低功函数的平碳膜23构成,它的制造不需要那么复杂,可用有关常规的Spindt型场发射器件的在先制造技术。而且,不再需要腐蚀碳膜23。显示器的有效区面积增大时和要形成的电子发射部件的数量相应地增大到很大程度时,在整个有效区范围显示出一致的电子发射器件的发射效率。可使显示器的亮度无明显的不一致并有高的图像质量。
例7
例7是例6中所述场发射器件和显示器的制造方法的改变。例6中所述的场发射器件和显示器的制造方法中,如果允许金属颗粒21附着到阴极部分表面上之后不立即形成碳膜23,某些情况下,金属颗粒21自然氧化使它不能形成碳膜23。例7中,允许金属颗粒已附着到阴极11的一部分的表面上后,除去每个金属颗粒21表面上的金属氧化物(所说的自然氧化膜)。用等离子还原处理或清洗法去掉每个金属颗粒表面上的金属氧化物。以后要说明的在例7中或在例8至例17中任一例中要制造的场发射器件和显示器与例6中制造的场发射器件和显示器有相同的结构。因此不再细说。以下将说明例7中的场发射器件和显示器的制造方法。[步骤-700]
用与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃制成的支承基底10上形成阴极11;之后,支承衬底10和阴极11上形成1绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-710]
之后,用与例6中[步骤-640]相同的方式形成掩模层116使第2开口部分14B底部中心部分中的阴极11的一部分的表面露出。之后,允许金属颗粒附着到掩模层116和阴极11的露出表面上。具体说,把钼(Mo)细颗粒分散到聚硅氧烷溶液(以异丙醇作溶剂)中制成的悬浮液旋涂到整个表面上,在阴极部分的表面上形成由溶剂和金属颗粒构成的膜层。之后,去除掩模层116,把上述膜层加热到400℃使溶剂完全除去,金属颗粒21留在阴极11的露出表面上,由此制成碳膜选择生长区20。[步骤-720]
之后,用等离子还原处理(微波等离子处理)按表8所列条件除去每个金属颗粒表面上的金属氧化物(自然氧化膜)。另外,例如,用50%氢氟酸水溶液与纯水按1∶49的体积比配制的50%氢氟酸水溶液/纯水混合物,也能除去每个金属颗粒表面上的金属氧化物(自然氧化物膜)。[步骤-730]
之后,碳膜选择生长区20的表面上形成约0.2μm厚的碳膜,制成电子发射部件。表13列出了按微波等离子CVD法的碳膜的形成条件。例7中,在400℃的膜形成温度稳定形成碳膜。表13                         碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     1.3×103Pa
    微波功率     500W(13.56MHz)
    膜形成温度     400℃
[步骤-740]
之后,按与例6中[步骤-660]相同的方式能制成图11B所示场发射器件。另外,能制成包括碳膜选择生长区20的表面上形成的导电层(相当于例7中的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件的电子发射器件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例8
例8也是例6中所述场发射器件和显示器的制造方法的一个变体。例6所述场发射器件和显示器的制造方法中,允许金属颗粒21附着到阴极部分表面上。例8中,允许钴(Co)金属颗粒21附着到阴极部分表面上后再允许硫(S)附着。以下说明例8中的场发射器件和显示器的制造方法。[步骤-800]
按与例6中[步骤-630]相同的方式,在玻璃衬底构成的支承基底10上形成阴极11;之后,支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-810]
之后,按与例6中[步骤-640]相同的方式形成掩模层116,使第2开口部分14B底部的中心部分中的阴极11的表面露出。之后,允许金属颗粒附着到掩模材料层116和露出的阴极11的表面上。具体说,按与例6中相同的方式把钴细颗粒分散到聚硅氧烷中制的悬浮液旋涂到整个表面上,在阳极部分表面上形成的由金属颗粒和溶剂构成的膜层。之后给整个表面上旋涂硫茚溶液。之后,除去掩模层116,在300℃经30分钟热处理完全除去溶剂,使金属颗粒21留在阴极11的露出表面上,还允许硫(S)附着到碳膜选择生长区20表面上。结果,能再次改善碳膜的选择生长特性。也可以用这种构成,其中,按顺序施加和干燥(加热)聚硅氧烷溶液中加钴细颗粒构成的悬浮液,及施加和干燥(加热)硫茚溶液,使金属颗粒留在阴极11表面上,制成其表面上附着有硫的碳膜选择生长区20。之后,按与例7中[步骤-720]相同的方式除去每个金属颗粒21的表面上的金属氧化物(自然氧化膜)。[步骤-820]
之后,按与例7中[步骤-730]相同的方式,在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。之后,按与例6中[步骤-660]相同的方式能制成图11B所示的场发射器件。另外,这里也能制成包括在碳膜选择生长区20的表面上形成的导电层(相当于例8中的阴极11),和碳膜选择生长区20上形成的23构成电子发射部件的电子发射器件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例9
例9也是例6所述场发射器件和显示器的制造方法的一个变体。例6所述场发射器件和显示器的制造方法中,允许金属颗粒21附着到阴极部分的表面上。例9中,允许金属颗粒附着到阴极部分的表面上的步骤包括允许含构成金属颗粒的金属原子的金属化合物颗粒附着到阴极部分的表面上,之后,加热金属化合物颗粒使它们分解,制成由其表面上附着有金属颗粒的阴极部分的表面构成的碳膜选择生长区。具体说,阴极部分表面上形成溶剂和金属化合物颗粒(例9中是碘化铜)构成的膜层,之后,除去溶剂,留下金属化合物颗粒,加热金属化合物颗粒(碘化铜颗粒)使它们的分解,制成用其表面上附有金属颗粒(铜颗粒)的阴极部分表面构成的碳膜选择生长区。以下将说明例9中的场发射器件和显示器的制造方法。[步骤-900]
按与例6中[步骤-600]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;支承基底10和阴极11上形成绝缘层12;之后,绝缘层12中形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-910]
之后,按与例6中[步骤-640]相同的方式,形成掩膜层116,使第2开口部分14B底部的中心部分中的阴极11的表面露出。之后,允许金属颗粒附着到阴极11的露出表面上。具体说,按与例6中相同的方式把碘化铜细粒分散到聚硅氧烷溶液中制成的悬浮液旋涂到整个表面上,在阴极部分表面上形成金属颗粒(碘化铜颗粒)和溶剂构成的膜层。之后,去掉掩模层116,在400℃进行热处理,完全除去溶剂,热分解碘化铜,使金属颗粒(铜颗粒)沉淀在阴极11的露出表面上,由此制成碳膜选择生长区20。[步骤-920]
之后,按与例7中[步骤-730]相同的方式在碳膜选择生长区20上形成约0.2μm厚的碳膜23。制成电子发射部件。之后,按与例6中[步骤-660]相同的方式能制成图11B所示的场发射器件。另外,能制成包括在碳膜选择生长区20的表面上形成的导电层(相当于例9中的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件的电子发射器件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例9也能用这种构成,其中,把碘化铜细颗粒分散在聚硅氧烷溶液中制成的悬浮液旋涂到整个表面上之后,再把硫茚溶液旋到整个表面上,进行热处理,完全除去溶剂,热分解碘化铜,用该构成,允许硫附着到碳膜选择生长区20的表面上。而且,按与例7中[步骤-720]的相同方式除去每个金属颗粒表面上的金属氧化物(天然氧化膜)。
例10
例10也是例6所述场发射器件和显示器的制造方法的一个变体。例6所述场发射器件和显示器的制造方法中,允许金属颗粒附着到阴极部分的表面上。例如10中,形成碳膜生长区的步骤包括形成掩模层的步骤,以使第2开口部分底部中的阴极表面露出,并在掩模层和阴极的露出表面上形成钛金属薄膜层。下面将说明例10中的场发射器件和显示器的制造方法。[步骤-1000]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承衬底10和阴极11上形成绝缘层12;之后,绝缘层12中形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-1010]
之后,按与例6中[步骤-640]相同的方式,形成掩模层116,使第2开口部分14B底部的中心部分中露出阴极11的表面。之后,按表4所列条件用溅射法在掩模层116和阴极11的露出表面上形成金属薄层22,之后,去掉掩模层116(见图12A)。按此方式,可制成其表面上附有金属薄层22的阴极部分构成的碳膜选择生长区20。[步骤-1020]
之后,按与例7中[步骤-730]相同的方式在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射器件(见图12B)。之后,按与例6中[步骤-660]相同的方式制成场发射器件。另外,能制成电子发射器件,它包括在其表面上形成碳膜选择生长区20的导电层(相当于例10中的阴极11),和碳膜选择生长区20上的碳膜23构成的电子发射部件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例10中,金属薄层22形成后,按与例7中[步骤-720]相同的方式除去金属薄层22的表面上的金属氧化物(天然氧化膜)。而且,可用这种组成,其中,例如把硫茚溶液旋涂到整个表面上。进行热处理,完全除去溶剂,由此可允许硫(S)附着到碳膜选择生长区20的表面上,如例8中[步骤-810]所述的。而且,也可用这种构成,其中,按与例9中相同的方式,用溅射法在第2开口部分14B底部中的阴极11的一部分的表面上形成金属化合物薄层,热分解金属化合物薄层,形成阴极表面上形成的金属薄层构成的碳膜选择生长区20。而且,也能用MOCVD法形成金属薄层。
例11
例11也是例6所述场发射器件和显示器的制造方法的一个变体。例11中,碳膜选择生长区用金属有机化合物薄层构成。更具体地说,用乙酰丙酮镍的配位化合物构成。例11中,而且,阴极部分表面上形成金属有机化合物薄层的步骤还包括把金属有机化合物溶液加到阴极上的步骤。以下将说明例11中的场发射器件和显示器的制造方法。[步骤-1100]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承基底10和阴极11上形成绝缘层12;绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-1110]
之后,按与例6中[步骤-640]相同的方式,形成掩膜层116,使第2开口部分14B底部的中心部分的阴极11的表面露出。之后,用旋涂法在掩模层116的阴极11的露出表面上形成含乙酰丙酮镍的金属有机化合物溶液构成的膜层,干燥所加的金属有机化合物溶液,之后,去掉掩模层116,由此制成开口部分14A和14B底部中露出的阴极部分表面上形成的由乙酰丙酮镍构成的金属有机化合物薄层构成的碳膜选择生长区20。[步骤-1120]
之后,按与例7中[步骤-730]相同的方式,在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。之后,按与例6中[步骤-660]相同的方式能制成场发射器件。另外,这里还能制成电子发射器件,它包括在其表面上形成碳膜选择生长区20的导电层(相当于例11中的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件。而且,按与例1中[步骤-1301相同的方式组装显示器。
例11中,形成金属有机化合物薄层之后,按与例7中[步骤-720]相同的方式去掉金属有机化合物薄层表面上的金属氧化物(天然氧化膜)。而且,这里可用这种构成,其中,例如,按与例如8中[步骤-810]相同的方式,在整个表面上旋涂硫茚溶液,之后,进行热处理,完全去掉溶剂,由此,允许硫(S)附着到碳膜选择生长区20的表面上。
例12
例12是例6也是例11所述场发射器件和显示器的制造方法的一个变体。例12中,碳膜选择生长区是用金属有机化合物薄层构成的,更具体地说,它是用乙酰丙酮镍的配位化合物构成的。例12中,阴极部分表面上形成金属有机化合物薄层的步骤包括升华金属有机化合物,和在阴极上淀积这种金属有机化合物的步骤。以下说明例12中的场发射器件和显示器的制造方法。[步骤-1200]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-1210]
之后,按与例6中[步骤-640]相同的方式,形成掩模层116,使第2开口部分14B底部的中心部分的阴极11的表面露出。之后,掩模层116和阴极11的露出表面上形成乙酰丙酮镍构成的金属有机化合物薄层。具体说,提供一种膜形成设备,它有反应室和经过可加热的管连接到反应室的升华室。支承基底送入反应室中,之后,调节反应室使其有惰性气体气氛。之后,乙酰丙酮镍在升华室内升华,升华后的乙酰丙铜镍与载体气体一起送入反应室中。在反应室里,在掩模层116和阴极11的露出表面上淀积含乙酰丙酮镍的金属有机化合物薄层。支承基底10可以是室温。之后,去掉掩模层116,在开口部分14A和14B底部中露出的阴极11部分表面上形成乙酰丙酮镍构成的金属有机化合物薄层构成的碳膜选择生长区20。[步骤-1220]
之后,按与例7中[步骤-730]相同的方式,在碳膜选择生长区20上形成约0.2μm厚的碳膜,制成电子发射部件(见图12B)。之后,按与例6中[步骤-660]相同的方式制成场发射器件。另外,能制成电子发射器件,它包括,在其表面上形成碳膜选择生长区20的导电层(相当于例12中的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例12中,金属有机化合物薄膜形成之后,按与例7中[步骤-720]相同的方式去掉金属有机化合物薄层表面上的金属氧化物(天然氧化膜)。而且,这里可使用这种构成。其中,例如用旋涂法把硫茚溶液加到整个表面上,之后,进行热处理把溶剂完全去除,按与例8中[步骤-810]相同的方式,允许硫(S)附着到碳膜选择生长区20的表面上。
例13
例13也是例6所述场发射器件和显示器的制造方法的一个变体。例13中,附着在阴极表面上的金属颗粒是针形。具体说,金属颗粒用铜(Cu)构成。例13中,金属颗粒附着到阴极部分表面上的步骤包括升华金属化合物并把构成金属化合物的金属构成的针形金属颗粒淀积到阴极部分表面上的步骤。以下说明例13中的场发射器件和显示器的制造方法。[步骤-1300]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的开口部分14A连通的第2开口部分14B;构成阴极的材料和构成金属颗粒的材料最好有相同的晶格常数或相同的晶体结构。即,最好用同一种材料构成阴极和金属颗粒。例13中,用铜(Cu)构成阴极11。[步骤-1310]
之后,形成掩模层,使开口部分14B底部的中心部分中的阴极11的表面露出。之后,金属化合物升华,在阴极部分表面上淀积构成金属化合物的金属(具体是铜)构成的针状金属颗粒。具体地说,这里提供膜形成设备,它有反应室和经能加热的管子连到反应室的升华室。支撑基底送入反应室,之后,调节反应室,使它有还原气体气氛(例如,氢气气氛)。在升华室里,在425℃升华氯化铜(CuCl2),升华后的氯化铜与载体气体(如氢气),一起送入反应室。反应室内,支承基底加热到450℃,由此,在阴极11的露出表面上淀积铜构成的针形金属颗粒。之后,去掉掩模层,在开口部分14A和14B底部中露出的阴极部分表面上形成用铜构成的针形金属颗粒构成的碳膜选择生长区。针形金属颗粒的直径为100nm以下,并有几乎一致的高度。[步骤-1320]
用二极管平行板等离子增强型CVD系统的CVD法按表14所列条件在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。按常规碳膜形成条件;要求膜形成温度约为900℃。例13中,碳膜选择生长区20是用针形金属颗粒构成的,所以在碳膜23中形成了凸凹形(突起),因此,即使按表14所列条件,即,规定碳膜形成温度为300℃,也能制成有高电子发射效率的电子发射器件。表14                  碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     1.3×103Pa
    微波功率     500W(13.56MHz)
    膜形成温度     300℃
[步骤-1330]
之后,按与例6中[步骤-660]相同的方式制成场发射器件。另外,能制成电子发射器件,它包括在其表面上形成碳膜选择生长区20的导电层(相当于例13中的阴极),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件。而且,按与例1中[步骤-130]相同的方式组装显示器
例13中,金属颗粒形成后,用与例7中[步骤-720]相同的方式去掉每个金属颗粒表面上的金属氧化物(天然氧化膜)。而且,可用这样的构成,其中,例如用旋涂法把硫茚溶液加到整个表面上,之后,进行热处理,把溶剂完全除去,按与例8中[步骤-810]相同的方式,允许硫(S)附着到碳膜选择生长区20的表面上。
例14
例14是例13的一个变体。例14中,具体说金属颗粒是用铁(Fe)构成。以下说明例14中的场发射器件和显示器的制造方法。[步骤-1400]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。例14中,阴极11用铁(Fe)构成。[步骤-1410]
之后,形成掩模层,使第2开口部分14B底部的中心部分中的阴极11的表面露出。之后,金属化合物升华,以在阴极部分表面上淀积构成金属化合物的金属(具体说是铁)构成的针形金属颗粒。具体说,这里提供膜形成设备,它有反应室和经可加热的管子连接到反应室的升华室。支承基底送入反应室,之后,调节反应室使它有还原气体气氛(例如氢气气氛)。在升华室中,三氯化铁在400℃升华,升华后的三氯化铁和载体气体(如氢气),一起送入反应室。反应室中,支承基底10加热至400℃,使铁构成的针形金属颗粒淀积在阴极11的露出表面上。之后,去掉掩模层,在开口部分14A和14B底部中露出的阴极部分表面上形成用铁构成的针形金属颗粒构成的碳膜选择生长区20。针形金属颗粒的直径为100nm以下,有几乎一致的高度。[步骤-1420]
用二极管平行板等离子增强型系统的CVD法按表15所列条件在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。按常规的碳膜形成条件,要求膜形成温度约为900℃。然而,例14中,由于碳选择生长区20用针形金属颗粒构成,所以碳膜中形成凸凹形(凸起),因此,即使在表15所列条件下,即在300℃的膜形成温度,也能制成有高电子发射效率的场发射器件。表15                     碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     1.3×103Pa
    微波功率     500W(13.56MHz)
    膜形成温度     300℃
[步骤-1430]
之后,按与例6中[步骤-660]相同的方式制成场发射器件。或者,能制成电子发射器件,它包括其表面上形成碳膜选择生长区20的导电层(相当于例14的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件。而且,按例1中[步骤-130]相同的方式组装显示器。
例14中,金属颗粒形成后,按与例7中[步骤-720]相同的方式去掉每个金属颗粒上的金属氧化物(天然氧化膜)。而且,可用这样的组成,其中,例如用旋涂法把硫茚溶液加到整个表面上,之后,进行热处理,把溶剂完全去掉,按与例8中[步骤-810]相同的方式,允许硫(S)附着到碳膜选择生长区20的表面上。
例15
例15也是例6所述场发射器件和显示器的制造方法的一个变体。例15中,用镀膜法在阴极表面上形成金属薄膜构成的碳膜选择生长区。以下将说明该场发射器件和显示器的制造方法。[步骤-1500]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承基底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。[步骤-1510]
之后,按与例6中[步骤-640]相同的方式,形成掩模层116,使第2开口部分14B的底部的中心部分中的阴极11的表面露出。然后,利用镀膜法,在阴极的暴露表面上形成由金属薄层构成的碳膜选择生长区20。具体说,把支承基底浸入镀锌电解溶液中,使阴极11连接到阴极侧,作为对阴极的锌接到阳极侧,用镀锌法在阴极11的露出表面上形成锌(Zn)构成的金属薄层构成的碳膜选择生长区20。为可靠地防止在栅极上淀积锌(Zn)层,栅极13最好接到阳极侧。用有机溶剂如丙酮去掉掩模层116,在开口部分14A和14B底部中露出的阴极11的一部分的表面上形成锌(Zn)构成的金属薄层构成的碳膜选择生长区20。如果锌电镀(电解)溶液换成锡电镀溶液,就能得到锡(Sn)构成的金属薄层构成的碳膜选择生长区20。[步骤-1520]
之后,用极级管平行板增强型CVD系统的CVD法按表14所列条件。在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。[步骤-1530]
之后,按与例6中[步骤-660]相同的方式能制成场发射器件。另外,这里能制成电子发射器件,它包括在其表面上形成碳膜选择生长区20的导电层(相当于例15的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件。而且,按例1中[步骤-130]同样的方式组装显示器。
例15中,金属薄层形成后,按与例7中[步骤-720]相同的方式去掉金属薄层表面上的金属氧化物(天然氧化膜)。进行上述处理时,可按表11所列条件形成碳膜。而且,可用这样的构成,用旋涂法把硫茚溶液加到整个表面上,之后,进行热处理,完全除去溶剂,按与例8中[步骤-810]相同的方式允许硫(S)附着到碳膜选择生长区20的表面上。
例16
例16是例15的一个变体。例16中,开口部分14A和14B底部中露出的阴极11的部分表面上形成的碳膜选择生长区的一部分表面上形成凸凹形。结果,其上形成的碳膜有凸起,所以能制成有高电子发射效率的场发射器件。以下说明例16中的场发射器件和显示器的制造方法。[步骤-1600]
按与例15中[步骤-1500]至[步骤-1510]相同的方式,在玻璃衬底制成的支承基底10上形成阴极11;之后,支承衬底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。按与例6中[步骤-640]相同的方式,形成掩膜层116,使第2开口部分14B底部中心部分中的阴极11的表面露出。之后,用镀膜法在阴极11的露出表面上形成锌(Zn)构成的金属薄层构成的碳膜选择生长区20。[步骤-1610]
之后,支承衬底10浸入5%氢氧化钠(NaOH)水溶液中,腐蚀锌(Zn)构成的金属薄膜构成的碳膜选择生长区20的表面,因此,在碳膜选择生长区20表面中形成凸凹形。[步骤-1620]
之后,用二级管平行板等离子增强型CVD系统的CVD法,按表16所列条件,在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。表16                     碳膜形成条件
    用的气体     CH4/H2=100/10SCCM
    压力     7×102Pa
    微波功率     700W(13.56MHz)
    膜形成温度     200℃
[步骤-1630]
之后,按与例6中[步骤-660]相同的方式,制成场发射器件。另外,能制成电子发射器件,它包括在其表面上形成碳膜选择生长区20上的导电层(相当于例16中的阴极11),和碳膜选择生长层上形成的碳膜23构成的电子发射部件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例16中,金属薄层形成后,用与例7中[步骤-720]相同的方式除去金属薄层表面上的金属氧化物(天然氧化膜)。而且,可用这样的构成,其中,例如,用旋涂法给整个表面上加硫茚溶液,之后,进行热处理,完全除去溶剂,按与例8中[步骤-810]相同的方式,允许硫(S)附着到碳膜选择生长区20上的表面上。而且,为了在碳膜选择生长区20表面中形成凹凸形,不仅用氢氧化钠水溶液,根据构成碳膜选择生长区20的材料,还可用稀盐酸,释硫酸或释硝酸。
例17
例17也是例6所述场发射器件和显示器的制造方法的变体。图17中,用热分解金属有机化合物的方法,在阴极表面形成金属薄层构成的碳膜选择生长区。以下说明例17中的场发射器件和显示器的制造方法。
[步骤-1700]
按与例6中[步骤-600]至[步骤-630]相同的方式,在玻璃衬底制成的支承衬底10上形成阴极11;之后,支承衬底10和阴极11上形成绝缘层12;之后,绝缘层12上形成有第1开口部分14A的栅极13;之后,绝缘层12中形成与栅极13中形成的开口部分14A连通的第2开口部分14B。[步骤-1710]
之后,按与例6中[步骤-640]相同的方式,形成掩模层116,使第2开口部分14B底部的中心部分中的阴极11的表面露出。之后,用热分解乙酰丙铜镍的方式,在掩模层116和阴极11的露出表面上形成金属薄层构成的碳膜选择生长区20。具体说,提供-种膜形成设备,它有反应室和经能加热的管子接到反应室的升华室。支承基底送入反应室中,之后,调节反应室使它有惰性气体气氛。之后,在升化室中使乙酰丙酮镍升华,并把升华区的乙酰丙酮镍和载体气体一起送入反应室。支承基底预先保持在适当的温度。支承基底应该加热到50至300℃,在100℃至200℃更好,在反应室中,在掩模层116和阴极11的露出表面上淀积热分解乙酰丙酮镍得到的镍(Ni)层。之后,除去掩模层116,在开口部分14A和14B底部中露出的电极部分的表面上形成Ni构成的金属薄层构成的碳膜选择生长区20。
或者,例如,用旋涂法加含锌(Zn)的金属有机化合物溶液到掩模层116和第2开口部分14B底部中心部分中露出的阴极11的表面上,制成的涂层在还原气体气氛中进行热处理,使含锌(Zn)的金属有机化合物热分解,在掩模层和阴极11的露出表面上形成锌层。由此制成锌构成的金属薄膜构成的碳膜选择生长区20。[步骤-1720]
之后,按与例7中[步骤-730]相同的方式在碳膜选择生长区20上形成约0.2μm厚的碳膜,制成电子发射部件。之后,按与例6中[步骤-660]相同的方式制成场发射器件。另外,能制成电子发射器件,它包括在其表面上形成碳膜选择生长区的导电层(相当于例17中的阴极11),和碳膜选择生长区20上形成的碳膜23构成的电子发射部件。而且,按与例1中[步骤-130]相同的方式组装显示器。
例17中,金属薄层形成后,按与例7中[步骤-720]相同的方式去掉金属薄层表面上的金属氧化物(天然氧化膜)。而且,可用这样的构成,其中,例如,用旋涂法把硫茚溶液加到整个表面上,之后,进行热处理,完全除去溶剂,按与例8中[步骤-810]相同的方式,允许硫(S)附着到碳膜选择生长区20的表面上。
例18
例18是按本发明的电子发射器件,按本发明第2方案的场发射器件,按本发明第3方案的显示器,和按本发明第2方案的制造方法。
图13是例18的场发射器件的局部端视示意图。场发射器件也包括支承基底10上形成的阴极11和阴极11上形成的有第1开口部分14A的栅极13。场发射器件还有位于开口部分14A和14B底部中的阴极11的一部分的表面上形成的碳膜选择生长区20,碳膜选择生长区20上形成的碳膜23构成的电子发射部件。例18中,碳膜选择生长区20是表面上附着有镍(Ni)构成的金属颗粒21的阴极11的一部分。与例6至例17所述场发射器件的差别是,碳膜选择生长区20和其上形成的碳膜23延伸达到绝缘层12的内部。但是,碳膜选择生长区20的某些形成状态下,与例6至17所述场发射器件的状态类似,只在位于开口部分14A和14B底部中的阴极11的一部分的表面上形成碳膜选择生长区20和其上形成的碳膜23。
例18的场发射器件中,支承衬底10和阴极11上形成绝缘层12,绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。碳膜23位于第2开口部分14B的底部中。
例18中的显示器与例8中的显示器基本相同,所以不再细说。
以下将参见图3A、3D和图13说明例18的场发射器件和显示器的制造方法。[步骤-1800]
按与例1中[步骤-100]相同的方式,在玻璃制成的支承基底10上形成用于构成阴极的导电材料层,用已制的刻板和已知的RIE法对导电层构图,在支承基底10上形成条形阴极11,见图3A。条形阴极11在附图纸面上朝左右延伸。用溅射法形成约0.2μm厚的铬(Cr)层构成的导电层。[步骤-1810]
按与例1中[步骤-110]相同的方式在阴极11的表面上形成碳膜选择生长区20。[步骤-1820]
之后,碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射部件。图3D是这样制成的状态。按表12所列条件用微波等离子CVD法形成碳膜。[步骤-1830]之后,碳膜23上形成有开口部分14A的栅极13。具体说,按与例6中[步骤-610]相同的方式在整个表面上形成绝缘层12。按与例6中[步骤-620]相同的方式在绝缘层12上形成有第1开口部分14A的栅极13。之后,按与例6中[步骤-630]相同的方式在绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分143。露出第2开口部分14B底部中的碳膜23。例8中,第1和第2开口部分14A和14B最好成一一对应关系。即,在每个第1开口部分14A形成一个第2开口部分14B。从平面图看,第1和第2开口部分14A和14B是直径为1至30μm的圆环形。每个象素中形成约1至3000个开口部分14A和14B就足够了。按该方式,能制成图13所示的场发射器件。[步骤-1840]
为了露出栅极13的开口端部分,最好按与例6中[步骤-660]相同的方式用各向异性腐蚀使绝缘层12中形成的第2开口部分14B的侧壁表面向后倾斜。之后按与例1中[步骤-130]相同的方式组装显示器。
例19
例19是指按本发明的电子发射器件,按本发明第2方案的场发射器件,按本发明第3方案的显示器和按本发明第2方案的制造方法。
图15是例19的场发射器件的局部端视示意图。场发射器件的结构与例18中的场发射器件的结构基本相同,所以不再细说。例19的显示器与例18中的显示器基本相同,因此不再细说。
以下参见图14A、14B和15说明例19中的场发射器件和显示器的制造方法。[步骤-1900]
首先,按与例18中[步骤-1800]相同的方式在玻璃制成的支承基底10上形成条形阴极11。之后,按与例18中[步骤-1810]相同的方式在阴极11表面上形成碳膜选择生长区(见图14A)。[步骤-1910]
之后,按与例18中[步骤-1830]相同的方式,在碳膜选择生长区20上形成有第1开口部分14A的栅极13。具体说,按与例6中[步骤-610]相同的方式,在整个表面上形成绝缘层12,按与例6中[步骤-620]相同的方式,在绝缘层12中形成有开口部分14A的栅极13。之后,按与例6中[步骤-630]相同的方式,在绝缘层12中形成与栅极13中形成的第1开口部分14A连通的第2开口部分14B。使第2开口部分14B底部中的碳膜选择生长区20露出。例19中,第1和第2开口部分14A和14B成一一对应的关系。即,每个第2开口部分14A形成一个第2开口部分14B。从平面图看,第1和第2开口部分14A和14B是直径为1至30μm的圆环。每个象素中形成约1至3000个第1和第2开口部分14A和14B就足够了。按此方式能制成图14B所示结构。[步骤-1920]
按与例6中[步骤-650]相同的方式,在碳膜选择生长区20上形成约0.2μm厚的碳膜23,制成电子发射器件,见图19。[步骤-1930]
为了露出栅极13的开口端部分,最好按与例6中[步骤-660]相同的方式允许用各向异性腐蚀法使绝缘层12中形成的第2开口部分14B的侧壁表面向后倾斜。之后,按与例1中[步骤-130]相同的方式组装显示器。
例18或19中,开口部分14A和14B形成后,按与例7中[步骤-720]相同的方式去掉露出的碳膜选择生长区20中的金属薄层表面上或每个金属颗粒表面上的金属氧化物(天然氧化膜)。如例8中[步骤-810]所述,可用这样的构成,其中,例如用旋涂法在整个表面上加硫茚容液之后,进行热处理,使硫(S)附着到碳膜选择生长区20的表面上。而且,如例9所述,可用这样的构成,其中,允许粘附金属化合物颗粒,或形成金属化合物薄层,之后,热解金属化合物颗粒或金属化合物薄层,制成附着在阴极表面上的金属颗粒或金属薄层构成的碳膜选择生长区。
而且,例18或19中,如例10所述,形成碳膜选择生长区的步骤包括形成掩模层使第2开口部分底部的中心部分中的阴极表面露出、和用溅射法在掩模层和阴极的露出表面上形成金属薄层的步骤。例18或19中,如例11或12所述,形成碳膜选择生长层的步骤包括在阴极上形成金属有机化合物溶液构成的膜层的步骤,或升华金属有机化合物并在阴极上淀积这种金属有机化合物的步骤。例18或19中,如例13或14所述允许金属颗粒附着到阴极部分表面的步骤可以是升华金属有机化合物并在阴极部分表面上淀积构成金属化合物的金属构成的针形金属颗粒的步骤。而且,例18或19中,如例15或16所述,可用镀膜法有阴极表面上形成金属薄层构成的碳膜选择生长区,和如例17所述,可用热分解金属有机化合物的方法在阴极表面上形成金属薄层构成的碳膜选择生长区。
参见以上的实例已说明了本发明,但本发明并不限于这些实例。是为了进行说明而给出了关于这些实例中的场发射器件和显示器的各种条件,材料和结构。这些均可按需要而变化。
可用其它方法形成栅极,其中,金属层是带形,而且可预先在其中设置许多开口部分,如带形绝缘材料构成的栅极支承件可预先在支承基底10上形成,设置在碳膜或碳膜选择生长区上的金属层与栅极支承件的顶表面接触。这种情况下,可在设置栅极之前形成碳膜选择生长区和碳膜,或者,在设置栅极之后形成碳膜选择生长区和碳膜。另外,在栅极设置之前形成碳膜选择生长区并在设置栅极之后形成碳膜。这些情况下,碳膜选择生长区20可以不形成在第1开口部分14A的正下面。这些情况下,可用多个第1开口部分14A形成一个第2开口部分14B和在第2开口部分底部中形成一个碳膜选择生长区20的结构。
按本发明的冷阴极场发射器件可以有这样的结构,其中,在栅极13和绝缘层12中再形成第2绝缘层17,聚焦电极18形成在第2绝缘层17上。图16是这样构成的场发射器件的局部端视示意图。第2绝缘层17有与第1开口部分14A连通的第3开口部分19。可按以下方式形成聚焦电极18。例如,按例6中[步骤-610],在绝缘层12中形成条形栅极13,之后,形成第2绝缘层17之后,第2绝缘层17上形成已构图的聚焦电极18,聚焦电极18和第2绝缘层17中形成第3开口部分19。而且,栅极13中形成第1开口部分14A。
本发明的电子发射器件可用于叫做表面传导型电子发射器件的器件中。上述表面传导型电子发射器件包括玻璃构成的支承基底和支承基底上形成的电极对。电极用导电材料例如,氧化锡(SnO2)、金(Cu)、氧化铟(In2O3)/氧化锡(SnO2)碳、氧化钯(PdO)等构成。电极对的面积很小并按预定间隔(间隙)放置。按矩阵形形成电极对。表面传导型电子发射器件的结构是,行方向的布线与电极对中的一个电极连接,列方向的布线与电极对中的另一个电极连接。上述表面传导型电子发射器件中,每对电极对表上形成碳膜选择生长区(相当于导电层),碳膜选择生长区上形成碳膜构成的电子发射部件。电压加到电极对上时,通过间隙而彼此相对的碳膜上存在电场,从碳膜发射电子。这些电子吸向阳极板与阳极板上的荧光层碰撞,荧光层被激励而发光,给出所需的图像。
按本发明,在导电层或阴极的所需部分中形成碳膜构成的电子发射部件,不再需要对碳膜按所需形状构图。而且,碳膜构成的电子发射部件有低阈值电压,能使冷阴极场发射器件有高的电子发射效率。而且,能制成有低功耗和高图像质量的冷阴极场发射显示器。有效区面积增大和冷阴极场发射器件的数量相应地增大到很大量时,能为每个冷阴极场发射器件形成高精度的电子发射部件,使整个有效区中的冷阴极场发射器件有一致的电子发射效率。能制成具有亮度不一致性的相当大的自由度和高图像质量等特性的冷阳极场发射显示器。而且能在较低的温度形成碳膜,所以能用玻璃衬底作支承基底,能降低显示器的制造成本。

Claims (79)

1.电子发射器件,包括:
(a)其表面上形成有碳膜选择生长区的导电层,和
(b)碳膜选择生长区上形成的碳膜构成的电子发射部件。
2.冷阴极场发射器件,包括:
(a)支承基底上形成的阴极,和
(b)阴极上形成的有开口部分的栅极;还包括,
(c)开口部分底部中的阴极的一部分的表面上形成的碳膜构成的电子发射部件。
3.按权利要求2的冷阴极场发射器件,其中,阴极用铜、银或金构成。
4.按权利要求2的冷阴极场发射器件,其中,支承基底和阴极上形成绝缘层,绝缘层中形成与栅极中形成的开口部分连通的第2开口部分。
5.冷阴极场发射器件,包括:
(a)支承基底上形成的阴极;和
(b)阴极上形成的有开口部分的栅极,还包括,
(c)至少在位于开口部分底部中的部分阴极的表面上形成的碳膜选择生长区;和
(d)碳膜选择生长区上形成的碳膜构成的电子发射部件。
6.按权利要求5的冷阴极场发射器件,其中,碳膜选择生长区是其表面上附着金属颗粒的阴极部分,或表面上形成有金属薄层或金属有机化合物薄层的阴极部分。
7按权利要求6的冷阴极场发射器件,其中,金属颗粒或金属薄层是由选自钼、镍、钛、铬、钴、钨、锆、钽、铁、铜、铂、锌、镉、汞、锗、锡、铅、铋、银、金、铟和铊组成金属中的至少一种金属构成的。
8.按权利要求6的冷阴极场发射器件,其中,碳膜选择生长区的表面附着有硫、硼或磷。
9.按权利要求6的冷阴极场发射器件,其中,金属有机化合物薄层是用含选自锌、锡、铝、铅、镍和钴中至少一种元素的金属有机化合物构成的。
10.按权利要求9的冷阴极场发射器件,其中,金属有机化合物薄层是用配位化合物构成的。
11.按权利要求5的冷阴极场发射器件,其中,绝缘层形成在支承基底和阴极上,绝缘层中形成与栅极中形成的开口部分连通的第2开口部分,碳膜位于第2开口部分的底部中。
12.按权利要求6的冷阴极场发射器件,其中,附着在阴极表面上的金属颗粒是针形。
13.按权利要求12的冷阴极场发射器件,其中,针形金属颗粒用选自铜、铁、钨、钽、钛和锆中至少一种金属构成。
14.冷阴极场发射器件的制造方法,包括步骤:
(A)支承基底上构成阴极;
(B)支承基底和阴极上形成绝缘层;
(C)绝缘层上形成有开口部分的栅极;
(D)绝缘层中形成与栅极中形成的开口部分连通的第2开口部分;
(E)位于第2开口部分底部中的阴极的一部分的表面上形成碳膜选择生长区,和
(F)碳膜选择生长区上形成碳膜。
15.按权利要求14的冷阴极场发射器件的制造方法,其中,碳膜选择生长区形成步骤包括形成掩模层,使阴极表面在第2开口部分底部的中心露出,并随后允许颗粒附着其上的步骤,或,在掩模层和阴极的露出表面上形成金属薄层或金属有机化合物薄层的步骤。
16.按权利要求14的冷阴极场发射器件的形成方法,其中,碳膜选择生长区形成步骤包括允许在要形成碳膜选择生长区的阴极部分的表面上附着金属颗粒,或形成金属薄层或形成金属有机化合物薄层的步骤,由此形成用其上附有金属颗粒,或金属薄层或金属有机化合物薄层的阴极部分构成的碳膜选择生长区。
17.按权利要求16的冷阴极场发射器件的制造方法,还包括使硫、硼或磷附着到碳膜选择生长区的表面上的步骤。
18.按权利要求16的冷阴极场发射器件的制造方法,其中,阴极表面上允许金属颗粒附着,或形成金属薄层,或形成金属有机化合物薄层之后,除去每个金属颗粒表面上,或金属薄层表面上,或金属有机化合物薄层表面上的金属氧化物。
19.按权利要求18的冷阴极场发射器件的制造方法,其中,用等离子还原的处理或清洗法去除每个金属颗粒表面上或金属薄层表面上或金属有机化合物薄层表面上的金属氧化物。
20.按权利要求16的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括在要形成碳膜选择生长区的阴极部分表面上形成溶剂和金属颗粒构成的膜层的步骤,和之后除去溶剂而留下金属颗粒的步骤。
21.按权利要求16的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分表面上的步骤包括把含有构成金属颗粒的金属原子的金属化合物颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤,和之后加热金属化合物颗粒使它们热分解,由此形成用其表面上附着了金属颗粒的阴极部分构成的碳膜选择生长区的步骤
22.按权利要求21的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,在要形成碳膜选择生长区的阴极部分的表面上形成由溶剂和金属化合物颗粒构成的膜层,之后,去掉溶剂而留下金属化合物颗粒的步骤。
23.按权利要求21的冷阴极场发射器件的制造方法,其中,金属化合物颗粒用选自构成金属颗粒的金属的卤化物,金属氧化物和金属氢氧化物中的至少一种材料构成。
24.按权利要求16的冷阴极场发射器件的制造方法,其中,金属颗粒或金属薄层是用选自钼、镍、钛、铬、钴、钨、锆、钽、铁、铜、铂、锌、镉、汞、锗、锡、铅、铋、银、金、铟和铊中的至少一种金属构成的。
25.按权利要求16的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括升华金属化合物,在要形成碳膜选择生长区的阴极部分表面上淀积构成金属化合物的金属构成的针形金属颗粒的步骤。
26.按权利要求25的冷阴极场发射器件的制造方法,其中,针形金属颗粒是用选自铜、铁、钨、钽、钛、和锆中的至少一种金属构成的。
27.按权利要求16的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分表面上形成金属有机化合薄层的步骤包括在阴极上形成金属有机化合物溶液构成的膜层的步骤。
28.按权利要求27的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用含选自锌、锡、铝、铅、镍和钴中至少一种元素的金属有机化合物制成的。
29.按权利要求28的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层用配位化合物构成。
30.按权利要求16的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分的表面上形成金属有机化合物薄层的步骤包括,升华金属有机化合物以在阴极上淀积它的步骤。
31.按权利要求30的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层用含选自锌、锡、铝、铅、镍和钴中至少一种元素的金属有机化合物构成。
32.按权利要求31的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层用配位化合物构成。
33.按权利要求16的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分的表面上形成金属薄层的步骤包括热分解金属有机化合物的方法,镀膜法,化学汽相淀积(CVD)法,或物理气相淀积法。
34.冷阴极场发射器件的制造方法,包括步骤:
(A)支承衬底上形成阴极;
(B)阴极表面形成碳膜选择生长区;
(C)碳膜选择生长区上形成碳膜;和
(D)碳膜上形成有开口部分的栅极。
35.按权利要求34的冷阴极场发射器件的制造方法,其中,步骤(C)之后,在整个表面上形成绝缘层;步骤(D)之后,绝缘层中形成与栅极中形成的开口部分连通的第2开口部分,并露出第2开口部分底部中的碳膜。
36.按权利要求34的冷阴极场发射器件的制造方法,其中,碳膜选择生长区的形成步骤包括,允许在要形成碳膜选择生长区的阴极部分的表面上附着金属颗粒,或形成金属薄层或金属有机化合物薄层,由此,形成用其表面上附着有金属颗粒,或形成有金属薄层或金属有机化合物薄层的阴极部分构成的碳膜选择生长区。
37.按权利要求36的冷阴极场发射器件的制造方法,还包括把硫,硼或磷附着到碳膜选择生长区上的步骤。
38.按权利要求36的冷阴极场发射器件的制造方法,其中,允许阴极表面上附着金属颗粒后,或形成金属薄层或形成金属有机化合物薄层后,要除去金属颗粒表面上或金属薄层表面上或金属有机化合物薄层表面上的金属氧化物。
39.按权利要求38的冷阴极场发射器件的制造方法,其中,用等离子还原处理或清洗法去除掉每个金属颗粒表面上或金属薄层表面上或金属有机化合物薄层表面上的金属氧化物。
40.按权利要求36的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分表面上的步骤包括,在要形成碳膜选择生长区的阴极部分的表面上形成用溶剂和金属颗粒构成的膜层,之后,除去溶剂而留下金属颗粒的步骤。
41.按权利要求36的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,把含构成金属粒的金属原子的金属化合物颗粒附着到要形成碳膜选择生长区的阴极部分的表面上,之后,加热金属化合物颗粒,使它们分解,由此用其表面上附着有金属颗粒的阴极部分构成碳膜选择生长区的步骤。
42.按权利要求41的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,在要形成碳膜选择生长区的阴极部分的表面上形成由溶剂和金属化合物颗粒构成的膜层的步骤,和之后,除去溶剂而留下金属化合物颗粒的步骤。
43.按权利要求41的冷阴极场发射器件的制造方法,其中,金属化合物颗粒是用选自构成金属颗粒的金属的卤化物、氧化物和氢氧化物中的至少一种材料构成。
44.按权利要求36的冷阴极场发射器件的制造方法,其中,金属颗粒或金属薄层是用选自钼、镍、钛、铬、钴、钨、锆、钽、铁、铜、铂、锌、镉、汞、锗、锡、铅、铋、银、金、铟和铊中的至少一种金属构成的。
45.按权利要求36的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要构成碳膜选择生长区的阴极部分表面上的步骤包括,升华金属化合物以在要形成碳膜选择生长区的阴极部分表面上淀积构成金属化合物的金属构成的针形金属颗粒。
46.按权利要求45的冷阴极场发射器件的制造方法,其中,针形金属颗粒是用选自铜、铁、钨、钽、钛和锆中的至少一种金属构成的。
47.按权利要求36的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分的表面上形成金属有机化合物薄层的步骤包括,在阴极上形成金属有机化合物构成的膜层的步骤。
48.按权利要求47的冷阴极场发射器件的制造方法,其中,金属有机化合薄层用含选自锌、锡、铝、铅、镍和钴中的至少一种元素的金属有机化合物构成。
49.按权利要求48的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层用配位化合物构成。
50.按权利要求36的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分的表面上形成金属有机化合物的步骤包括,升华金属有机化合物以把它淀积在阴极上的步骤。
51.按权利要求50的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用含选自锌、锡、铝、铅、镍和钴中的至少一种元素的金属有机化合物构成。
52.按权利要求51的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用配位化合物构成的。
53.按权利要求36的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分的表面上形成金属薄膜的步骤包括热分解金属有机化合物的方法、镀膜法、化学汽相淀积法或物理气相淀积法。
54.冷阴极场发射器件的制造方法,包括步骤:
(A)支承基底上形成阴极;
(B)阴极表面上形成碳膜选择生长区;
(C)碳膜选择生长区上形成有开口的栅极;
(D)碳膜选择生长区上形成碳膜。
55.按权利要求54的冷阴极场发射器件的制造方法,其中,步骤(B)之后在整个表面上形成绝缘层,步骤(C)之后,绝缘层中形成与栅极中形成的开口部分连通的第2开口部分,并露出第2开口部分底部中的碳膜。
56.按权利要求54的冷阴极场发射器件的制造方法,其中,碳膜选择生长区形成步骤包括,允许在要形成碳膜选择生长区的阴极部分的表面上附着金属颗粒,或形成金属薄层或金属有机化合物薄层的步骤,由此,用其表面上附着有金属颗粒或形成有金属薄层或金属有机化合物薄层的阴极部分构成碳膜选择生长区。
57.按权利要求56的冷阴极场发射器件的制造方法,还包括把硫、硼或磷附着到碳膜选择生长区的表面上的步骤。
58.按权利要求56的冷阴极场发射器件的制造方法,其中,允许阴极表面上附着金属颗粒后,或形成金属薄层后,或形成金属有机化合物薄层后,除去每个金属颗粒表面上,或金属薄层表面上,或金属有机化合物薄层表面上的金属氧化物。
59.按权利要求58的冷阴极场发射器件的制造方法,其中,用等离子还原处理或清洗法去除每个金属颗粒表面上,金属薄层表面上或金属有机化合物表面上的金属氧化物。
60.按权利要求56的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,在要形成碳膜选择生长区的阴极部分的表面上形成用溶剂和金属颗粒构成的膜层的步骤和之后除去溶剂留下金属颗粒的步骤。
61.按权利要求56的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,在要形成碳膜选择生长区的阴极部分的表面上附着含有构成金属颗粒的金属原子的金属化合物颗粒的步骤,和之后,加热金属化合物颗粒使它们分解,由此,形成用其表面上附着有金属颗粒的阴极部分构成的碳膜选择生长区的步骤。
62.按权利要求61的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,在要形成碳膜选择生长区的阴极部分的表面上形成用溶剂和金属化合物颗粒构成的膜层的步骤,和之后,除去溶剂而留下金属粒的步骤。
63.按权利要求61的冷阴极场发射器件的制造方法,其中,金属化合物颗粒是用选自构成金属颗粒的金属的卤化物,氧化物和氢氧化物中的至少一种材料构成的。
64.按权利要求56的冷阴极场发射器件的制造方法,其中,金属颗粒或金属薄膜是用选自钼、镍、钛、铬、钴、钨、锆、钽、铁、铜、铂、锌、镉、汞、锗、锡、铅、铋、银、金、铟和铊中的至少一种金属构成的。
65.按权利要求56的冷阴极场发射器件的制造方法,其中,允许金属颗粒附着到要形成碳膜选择生长区的阴极部分的表面上的步骤包括,升华金属化合物以在要形成碳膜选择生区的阴极部分表面上用构成金属化合物的金属构成的针形金属颗粒。
66.按权利要求65的冷阴极场发射器件的制造方法,其中,针形金属颗粒是选自铜、铁、钨、钽、钛、和锆中的至少一种金属构成的。
67.按权利要求56的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分的表面上形成金属有机化合物薄层的步骤包括,在阴极上形成金属有机化合物溶液构成的膜层的步骤。
68.按权利要求67的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用含选自锌、锡、铝、铅、镍和钴中至少一种元素的金属有机化合物构成的。
69.按权利要求68的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用配位化合物构成的。
70.按权利要求56的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分表面上形成金属有机化合物薄层的步骤包括,升华金属有机化合物并将它淀积在阴极上的步骤。
71.按权利要求70的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用含选自锌、锡、铝、铅、镍和钴中至少一种元素的金属有机化合物构成。
72.按权利要求71的冷阴极场发射器件的制造方法,其中,金属有机化合物薄层是用配位化合物制成的。
73.按权利要求56的冷阴极场发射器件的制造方法,其中,在要形成碳膜选择生长区的阴极部分表面上形成金属薄层的步骤包括热分解金属有机化合物的方法,镀膜法,化学汽相淀积法或物理气相淀积法。
74.冷阴极场发射显示器,包含许多象素,
每个象素包含冷阴极场发射器件,阳极和荧光层,阳极和荧光层形成在衬底上以便与冷阴极场发射器件相对,和
冷阴极场发射器件包括:
(a)其表面上形成有碳膜选择生长区的导电层;和
(b)碳膜选择生长区上形成的碳膜构成的电子发射部件。
75.冷阴极场发射显示器,包含许多象素,
每个象素包含冷阴极场发射器件,阳极和荧光层,阳极和荧光层要形成在衬底上与冷阴极场发射器件相对,和
冷阴极场发射器件,包括:
(a)支承基底上形成的阴极;
(b)阴极上形成的有开口部分的栅极;还包括:
(c)在开口部分底部中的阴极部分的表面上形成的碳膜构成的电子发射部件。
76.冷阴极场发射显示器,包含许多象素,
每个象素包含冷阴极场发射器件,阳极和荧光层,阳极和荧光层形成在衬底上要与冷阴极场发射器件相对,和
冷阴极场发射器件,包括:
(a)支承基底上形成的阴极;
(b)阴极上形成的有开口部分的栅极;
(c)至少在位于开口部分底部中的阴极的一部分的表面上形成的碳膜选择生长区;和
(D)碳膜选择生长区上形成的碳膜构成的电子发射部件。
77.冷阴极场发射显示器的制造方法,包括:设置其上已形成有阳极和荧光层的衬底和其上形成有冷阴极场发射器件的支承基底,使荧光层与冷阴极场发射器件彼此相对,在其圆周部分占接衬底和支承基底。
其中,冷阴极场发射器件用包括以下步骤的方法制造,制造步骤包括:
(A)支承基底上构成阴极;
(B)支承基底和阴极上形成绝缘层;
(C)绝缘层上形成有开口部分的栅极;
(D)绝缘层中形成与栅极中形成的开口部分连通的第2开口部分;
(E)第2开口部分底部中的阴极部分的表面上形成碳膜选择生长区,和
(F)碳膜选择生长区上形成碳膜。
78.冷阴极场发射显示器的制造方法,包括:设置其上已形成有阳极和荧光层的衬底和其上已形成有冷阴极场发射器件的支承基底,使荧光层与冷阴极场发射器件彼此相对,在其圆周部分粘接衬底和支承基底,
其中,用包括以下步骤的方法制造冷阴极场发射器件,制造步骤包括:
(A)支承基底上形成阴极;
(B)阴极表面上形成碳膜选择生长区;
(C)碳膜选择生长区上形成碳膜,和
(D)碳膜上形成有开口部分的栅极。
79.冷阴极场发射显示器的制造方法,包括:设置其上已形成有阳极和荧光层的衬底和其上已形成有冷阴极场发射器件的支承基底,使荧光层与冷阴极场发射器件彼此相对,在其圆周部分粘接衬底和支承基底,
其中,冷阴极场发射器件用包括以下步骤的方法制造,制造步骤包括:
(A)支承基底上构成阴极;
(B)阴极表面上形成碳膜选择生长区;
(C)碳膜选择生长区上形成有开口部分的栅极;
(D)碳膜选择生长区上形成碳膜。
CN00120667A 1999-12-21 2000-12-21 电子发射器件、冷阴极场发射器件和显示器及其制造方法 Pending CN1309407A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP363135/1999 1999-12-21
JP36313599 1999-12-21
JP2000315452 2000-10-16
JP315452/2000 2000-10-16

Publications (1)

Publication Number Publication Date
CN1309407A true CN1309407A (zh) 2001-08-22

Family

ID=26581461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00120667A Pending CN1309407A (zh) 1999-12-21 2000-12-21 电子发射器件、冷阴极场发射器件和显示器及其制造方法

Country Status (4)

Country Link
US (1) US20020036452A1 (zh)
EP (1) EP1111647A3 (zh)
KR (1) KR20010082591A (zh)
CN (1) CN1309407A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305092C (zh) * 2003-03-07 2007-03-14 佳能株式会社 电子发射元件、电子源、图像显示装置
CN100345239C (zh) * 2003-03-26 2007-10-24 清华大学 碳纳米管场发射显示装置的制备方法
CN100405519C (zh) * 2003-03-27 2008-07-23 清华大学 一种场发射元件的制备方法
CN102683136A (zh) * 2011-03-07 2012-09-19 西南科技大学 石墨复合阴极材料及其制备方法
CN105070619A (zh) * 2015-07-17 2015-11-18 兰州空间技术物理研究所 一种铁基金属合金衬底上碳纳米管阵列阴极的制备方法
CN105755449A (zh) * 2016-05-18 2016-07-13 苏州大学 采用螺旋波等离子体技术制备纳米晶金刚石薄膜的方法
CN105810532A (zh) * 2016-05-16 2016-07-27 中国科学院兰州化学物理研究所 一种利用铅笔书写柔性场发射冷阴极的制备方法
CN108085657A (zh) * 2017-12-29 2018-05-29 苏州大学 基于螺旋波等离子体技术制备氮掺杂类金刚石薄膜的方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781146B2 (en) * 2001-04-30 2004-08-24 Hewlett-Packard Development Company, L.P. Annealed tunneling emitter
KR100436774B1 (ko) * 2001-11-23 2004-06-23 한국전자통신연구원 전계 방출 표시 소자의 제조 방법
KR100413815B1 (ko) * 2002-01-22 2004-01-03 삼성에스디아이 주식회사 삼극구조를 가지는 탄소나노튜브 전계방출소자 및 그제조방법
JP3857156B2 (ja) * 2002-02-22 2006-12-13 株式会社日立製作所 電子源用ペースト、電子源およびこの電子源を用いた自発光パネル型表示装置
CN1258204C (zh) * 2002-05-16 2006-05-31 中山大学 一种冷阴极电子枪
US20050082975A1 (en) * 2002-06-11 2005-04-21 Akiyoshi Yamada Image display device and method of manufacturing the same
JP3625467B2 (ja) * 2002-09-26 2005-03-02 キヤノン株式会社 カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法
JP4219724B2 (ja) * 2003-04-08 2009-02-04 三菱電機株式会社 冷陰極発光素子の製造方法
TWI278887B (en) * 2003-09-02 2007-04-11 Ind Tech Res Inst Substrate for field emission display
US8541054B2 (en) * 2003-09-08 2013-09-24 Honda Motor Co., Ltd Methods for preparation of one-dimensional carbon nanostructures
JP2007504086A (ja) * 2003-09-03 2007-03-01 本田技研工業株式会社 一次元炭素ナノ構造体の製造方法
TWI231521B (en) * 2003-09-25 2005-04-21 Ind Tech Res Inst A carbon nanotubes field emission display and the fabricating method of which
KR100635051B1 (ko) * 2003-11-29 2006-10-17 삼성에스디아이 주식회사 레이저를 이용한 열전사법에 따른 풀칼라유기전계발광소자 및 이의 제조방법
DE10360681A1 (de) * 2003-12-19 2005-07-14 Basf Ag Verwendung von Hauptgruppenmetall-Diketonatokomplexen als lumineszierende Materialien in organischen Leuchtdioden (OLEDs)
TWI244106B (en) * 2004-05-11 2005-11-21 Ind Tech Res Inst Triode CNT-FED structure gate runner and cathode manufactured method
KR20050113505A (ko) * 2004-05-29 2005-12-02 삼성에스디아이 주식회사 전계방출 표시장치 및 그 제조방법
KR100624422B1 (ko) * 2004-06-05 2006-09-19 삼성전자주식회사 나노크기의 침을 이용한 발광소자
JP5410648B2 (ja) * 2004-08-26 2014-02-05 株式会社ピュアロンジャパン 表示パネルおよび該表示パネルに用いる発光ユニット
US20060043862A1 (en) * 2004-09-01 2006-03-02 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing field emitter electrode using carbon nanotube nucleation sites and field emitter electrode manufactured thereby
KR20060024565A (ko) * 2004-09-14 2006-03-17 삼성에스디아이 주식회사 전계 방출 소자 및 그 제조방법
KR20060032402A (ko) * 2004-10-12 2006-04-17 삼성에스디아이 주식회사 카본나노튜브 에미터 및 그 제조방법과 이를 응용한전계방출소자 및 그 제조방법
US7790334B2 (en) * 2005-01-27 2010-09-07 Applied Materials, Inc. Method for photomask plasma etching using a protected mask
KR20070011807A (ko) * 2005-07-21 2007-01-25 삼성에스디아이 주식회사 전계 방출형 백라이트 유니트 및 이를 구비한 평판디스플레이 장치
US7375038B2 (en) * 2005-09-28 2008-05-20 Applied Materials, Inc. Method for plasma etching a chromium layer through a carbon hard mask suitable for photomask fabrication
US7582557B2 (en) * 2005-10-06 2009-09-01 Taiwan Semiconductor Manufacturing Co., Ltd. Process for low resistance metal cap
US7808169B2 (en) * 2006-01-12 2010-10-05 Panasonic Corporation Electron emitting device and electromagnetic wave generating device using the same
US7393699B2 (en) 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
TWI309843B (en) * 2006-06-19 2009-05-11 Tatung Co Electron emission source and field emission display device
US7777344B2 (en) 2007-04-11 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Transitional interface between metal and dielectric in interconnect structures
JP2009140655A (ja) * 2007-12-04 2009-06-25 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
TWI425553B (zh) * 2011-01-07 2014-02-01 Hon Hai Prec Ind Co Ltd 奈米碳管線尖端之製備方法及場發射結構之製備方法
US8575842B2 (en) 2011-12-29 2013-11-05 Elwha Llc Field emission device
US9018861B2 (en) 2011-12-29 2015-04-28 Elwha Llc Performance optimization of a field emission device
US8946992B2 (en) 2011-12-29 2015-02-03 Elwha Llc Anode with suppressor grid
US8928228B2 (en) 2011-12-29 2015-01-06 Elwha Llc Embodiments of a field emission device
CN104024147A (zh) * 2011-12-29 2014-09-03 埃尔瓦有限公司 电子器件的石墨烯栅极
US8810131B2 (en) 2011-12-29 2014-08-19 Elwha Llc Field emission device with AC output
US8692226B2 (en) 2011-12-29 2014-04-08 Elwha Llc Materials and configurations of a field emission device
US9349562B2 (en) 2011-12-29 2016-05-24 Elwha Llc Field emission device with AC output
US9171690B2 (en) 2011-12-29 2015-10-27 Elwha Llc Variable field emission device
US8810161B2 (en) 2011-12-29 2014-08-19 Elwha Llc Addressable array of field emission devices
US8970113B2 (en) 2011-12-29 2015-03-03 Elwha Llc Time-varying field emission device
US9646798B2 (en) 2011-12-29 2017-05-09 Elwha Llc Electronic device graphene grid
CN103382037B (zh) * 2012-05-04 2015-05-20 清华大学 碳纳米管结构的制备方法
US9659734B2 (en) 2012-09-12 2017-05-23 Elwha Llc Electronic device multi-layer graphene grid
US9659735B2 (en) 2012-09-12 2017-05-23 Elwha Llc Applications of graphene grids in vacuum electronics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US5828163A (en) * 1997-01-13 1998-10-27 Fed Corporation Field emitter device with a current limiter structure
JPH10308162A (ja) * 1997-05-07 1998-11-17 Futaba Corp 電界放出素子
US7070651B1 (en) * 1997-05-21 2006-07-04 Si Diamond Technology, Inc. Process for growing a carbon film
JP3740295B2 (ja) * 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
EP1061041A1 (en) * 1999-06-18 2000-12-20 Iljin Nanotech Co., Ltd. Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
EP1102299A1 (en) * 1999-11-05 2001-05-23 Iljin Nanotech Co., Ltd. Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
EP1102298A1 (en) * 1999-11-05 2001-05-23 Iljin Nanotech Co., Ltd. Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305092C (zh) * 2003-03-07 2007-03-14 佳能株式会社 电子发射元件、电子源、图像显示装置
CN100345239C (zh) * 2003-03-26 2007-10-24 清华大学 碳纳米管场发射显示装置的制备方法
CN100405519C (zh) * 2003-03-27 2008-07-23 清华大学 一种场发射元件的制备方法
CN102683136A (zh) * 2011-03-07 2012-09-19 西南科技大学 石墨复合阴极材料及其制备方法
CN102683136B (zh) * 2011-03-07 2015-07-15 西南科技大学 石墨复合阴极材料及其制备方法
CN105070619A (zh) * 2015-07-17 2015-11-18 兰州空间技术物理研究所 一种铁基金属合金衬底上碳纳米管阵列阴极的制备方法
CN105070619B (zh) * 2015-07-17 2017-05-03 兰州空间技术物理研究所 一种铁基金属合金衬底上碳纳米管阵列阴极的制备方法
CN105810532A (zh) * 2016-05-16 2016-07-27 中国科学院兰州化学物理研究所 一种利用铅笔书写柔性场发射冷阴极的制备方法
CN105755449A (zh) * 2016-05-18 2016-07-13 苏州大学 采用螺旋波等离子体技术制备纳米晶金刚石薄膜的方法
CN105755449B (zh) * 2016-05-18 2018-09-25 苏州大学 采用螺旋波等离子体技术制备纳米晶金刚石薄膜的方法
CN108085657A (zh) * 2017-12-29 2018-05-29 苏州大学 基于螺旋波等离子体技术制备氮掺杂类金刚石薄膜的方法
CN108085657B (zh) * 2017-12-29 2020-03-17 苏州大学 基于螺旋波等离子体技术制备氮掺杂类金刚石薄膜的方法

Also Published As

Publication number Publication date
KR20010082591A (ko) 2001-08-30
US20020036452A1 (en) 2002-03-28
EP1111647A3 (en) 2002-12-18
EP1111647A2 (en) 2001-06-27

Similar Documents

Publication Publication Date Title
CN1309407A (zh) 电子发射器件、冷阴极场发射器件和显示器及其制造方法
CN1348197A (zh) 电子发射器件、冷阴极场致发射器件和显示器及其制造法
CN1324629C (zh) 冷阴极场发射器件和冷阴极场发射显示器及二者制造方法
CN1606791A (zh) 电子发射体、冷阴极场电子发射元件和冷阴极场电子发射显示装置的制造方法
CN1115705C (zh) 阴极组件、电子枪组件、电子管、灯丝、及阴极组件和电子枪组件的制造方法
CN1259447C (zh) 透明导电性薄膜及其制造方法和制造用烧结体靶及透明导电性基体材料或有机电发光元件
CN1533579A (zh) 电子发射体及其制造方法、冷阴极场致电子发射部件及其制造方法和冷阴极场致电子发射显示装置及其制造方法
CN1165942C (zh) 适用于显示器的等离子显示板及其制造方法
CN1086503C (zh) 电子发射器件、电子源和图像形成装置及其制造方法
CN1313623A (zh) 平面型显示器
CN1312572A (zh) 发光晶粒、发光晶粒组合物显示板和平面显示器
CN1917219A (zh) 源极/漏极电极、薄膜晶体管衬底及其制备方法和显示器件
CN1127750C (zh) 减少电荷的薄膜,图象形成装置及其制造方法
CN1462305A (zh) 荧光体粉末及其制造方法、显示板及平面型显示装置
CN1913076A (zh) 电子发射器件、使用它的电子源和显示设备及其制造方法
CN1363944A (zh) 驱动电子发射装置、电子源和成像装置的方法和电路
CN1364396A (zh) 有源驱动型有机el显示装置及其制造方法
CN1395270A (zh) 用于形成碳纤维的催化剂,其制造方法和电子发射装置
CN1516211A (zh) 场致发射器件及其制造方法
CN1659671A (zh) 电子发射设备及其制造方法
CN1132406A (zh) 电子发射设备,电子源和图象形成装置
CN1114224C (zh) 电子束装置、图象形成装置及电子束装置的制造方法
CN1574155A (zh) 具有偶极子层的电子发射器件、电子源和图像显示器
CN1123037C (zh) 电子源、采用它的成象器及其制造方法
CN1462464A (zh) 平面型显示装置的平整处理方法及平面型显示装置用基板的平整处理方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication