CN1341576A - Preparation of high-purity titanium biboride ceramic micropowder by using self-spreading high-temp. reduction synthesis process - Google Patents
Preparation of high-purity titanium biboride ceramic micropowder by using self-spreading high-temp. reduction synthesis process Download PDFInfo
- Publication number
- CN1341576A CN1341576A CN 01128497 CN01128497A CN1341576A CN 1341576 A CN1341576 A CN 1341576A CN 01128497 CN01128497 CN 01128497 CN 01128497 A CN01128497 A CN 01128497A CN 1341576 A CN1341576 A CN 1341576A
- Authority
- CN
- China
- Prior art keywords
- powder
- temperature
- self
- purity
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 20
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 16
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title description 4
- 239000010936 titanium Substances 0.000 title description 4
- 229910052719 titanium Inorganic materials 0.000 title description 3
- 238000002360 preparation method Methods 0.000 title description 2
- 239000000843 powder Substances 0.000 claims abstract description 43
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910033181 TiB2 Inorganic materials 0.000 claims abstract description 20
- 238000001308 synthesis method Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000005554 pickling Methods 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 17
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 239000002994 raw material Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 239000003638 chemical reducing agent Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229960005196 titanium dioxide Drugs 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- OTRAYOBSWCVTIN-UHFFFAOYSA-N OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N Chemical compound OB(O)O.OB(O)O.OB(O)O.OB(O)O.OB(O)O.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N OTRAYOBSWCVTIN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- -1 titanium hydride Chemical compound 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
自蔓延高温还原合成法制备高纯二硼化钛陶瓷微粉的方法,是采用活泼金属还原剂和廉价的氧化物原料,通过强烈的放热化学反应自发地合成高纯TiB2陶瓷微粉。本发明是将TiO2、B2O3和金属Mg粉末均匀混合并模压成型,然后在常温常压下置于氩气保护的自蔓延高温合成装置中,点火燃烧,燃烧产物经破碎、酸洗后得到高纯TiB2陶瓷微粉。本发明的优点在于比传统碳热还原TiB2陶瓷粉末的纯度高、晶粒细小、工艺简单、能耗和时耗小。与SHS单质合成TiB2陶瓷粉末相比,制造成本低。The self-propagating high-temperature reduction synthesis method to prepare high-purity titanium diboride ceramic powder is to use active metal reducing agent and cheap oxide raw materials to spontaneously synthesize high-purity TiB2 ceramic powder through strong exothermic chemical reaction. In the present invention, TiO 2 , B 2 O 3 and metal Mg powder are uniformly mixed and molded, then placed in argon-protected self-propagating high-temperature synthesis device at normal temperature and pressure, ignited and burned, and the combustion products are crushed and pickled. Finally, high-purity TiB2 ceramic micropowder is obtained. The invention has the advantages of higher purity, finer crystal grains, simple process, less energy consumption and less time consumption than traditional carbothermal reduction TiB2 ceramic powder. Compared with SHS elemental synthesis of TiB2 ceramic powder, the manufacturing cost is low.
Description
技术领域Technical field
本发明涉及一种难熔化合物及其固相合成方法。The invention relates to a refractory compound and a solid phase synthesis method thereof.
背景技术 Background technique
二硼化钛陶瓷粉末是一类重要的新型工程陶瓷原料,其重要的物理化学性能包括:高的熔点(>3000℃)、高的硬度(>30GPa)、高的化学稳定性、高热导率(120W/mK),高模量(>570GPa)、优良的导电性。主要应用于:硬质工具材料,复合材料添加剂,新型发热元件(>1800℃)、高温惰性电极(>1200℃)、高温耐磨电极,高温耐腐蚀电极、大规模集成电路用高强度引线框架材料等。但是高纯TiB2原料高昂的价格限制了这类材料的大规模开发和应用。二硼化钛陶瓷粉末的传统合成工艺为:将钛或二氧化钛与氧化硼或碳化硼以及碳的混合物置于真空的石墨管式炉内,然后加热至1800℃左右碳化还原,还原时间一般为1~12小时。该法的主要缺点:生产装置复杂、反应温度高、时间长、能耗巨大,获得的二硼化钛晶粒粗大、含硼量低、产品纯度差。中国专利CN105533A报道了基于活性炭为还原剂、五硼酸铵为硼源及二氧化钛为钛源的二硼化钛陶瓷粉末炭热还原合成方法,该方法须在1450-1700℃下保温0.5小时以上,反应时间长且产品粒度粗大(10μm左右)。Titanium diboride ceramic powder is an important new type of engineering ceramic raw material. Its important physical and chemical properties include: high melting point (>3000°C), high hardness (>30GPa), high chemical stability, and high thermal conductivity. (120W/mK), high modulus (>570GPa), excellent electrical conductivity. Mainly used in: hard tool materials, composite material additives, new heating elements (>1800°C), high-temperature inert electrodes (>1200°C), high-temperature wear-resistant electrodes, high-temperature corrosion-resistant electrodes, high-strength lead frames for large-scale integrated circuits materials etc. However, the high price of high-purity TiB2 raw materials limits the large-scale development and application of such materials. The traditional synthesis process of titanium diboride ceramic powder is: put the mixture of titanium or titanium dioxide, boron oxide or boron carbide and carbon in a vacuum graphite tube furnace, and then heat it to about 1800°C for carbonization and reduction. The reduction time is generally 1 ~12 hours. The main disadvantages of this method are: complex production equipment, high reaction temperature, long time, huge energy consumption, coarse grains of titanium diboride obtained, low boron content, and poor product purity. Chinese patent CN105533A reports a carbon thermal reduction synthesis method of titanium diboride ceramic powder based on activated carbon as a reducing agent, ammonium pentaborate as a boron source and titanium dioxide as a titanium source. The time is long and the particle size of the product is coarse (about 10 μm).
自蔓延高温合成技术(简称SHS技术)是利用化学反应放出的热量使燃烧反应自发地进行下去,以获得具有指定成分和结构燃烧产物的材料加工新技术。SHS技术与许多传统材料制备技术相比具备如下优势:过程简单、工艺周期短;能耗少、明显的节能效果;合成产品纯度高;由于合成过程经历极大的温度梯度,能获得高烧结活性的合成产品。二硼化钛陶瓷粉末是采用SHS技术较早合成的材料之一,Z.A.Munir于1988年报道了二硼化钛粉末的元素合成方法,它是以高纯硼粉与钛粉或氢化钛粉为原料制备的。这种工艺合成的粉末具有高的纯度,但粉末粒度较大且有部分形成硬团聚体;另外由于采用的原料是单质元素,其制造成本高昂,无法工业化生产。Self-propagating high-temperature synthesis technology (SHS technology for short) is a new material processing technology that uses the heat released by chemical reactions to make combustion reactions proceed spontaneously to obtain combustion products with specified components and structures. Compared with many traditional material preparation technologies, SHS technology has the following advantages: simple process, short process cycle; low energy consumption, obvious energy saving effect; high purity of synthetic products; high sintering activity can be obtained due to the large temperature gradient experienced during the synthesis process synthetic products. Titanium diboride ceramic powder is one of the earliest materials synthesized by SHS technology. Z.A.Munir reported the element synthesis method of titanium diboride powder in 1988. It is based on high-purity boron powder and titanium powder or titanium hydride powder. Raw materials are prepared. The powder synthesized by this process has high purity, but the particle size of the powder is large and some of them form hard aggregates; in addition, because the raw materials used are simple elements, the manufacturing cost is high and industrial production cannot be achieved.
发明内容Contents of the invention
本发明所要解决的技术问题是:针对已有技术存在的缺陷,提出一种以氧化物原料为基础的自蔓延高温还原合成法来制备二硼化钛陶瓷微粉的制备方法。The technical problem to be solved by the present invention is to propose a method for preparing titanium diboride ceramic micropowder by a self-propagating high-temperature reduction synthesis method based on oxide raw materials in view of the defects in the prior art.
本发明解决其技术问题所采用的技术方案是:将TiO2、B2O3和Mg粉末均匀混合并模压成型,在常温常压下置于氩气保护的自蔓延高温合成装置(国家实用新型专利:ZL93216816.7)中,点火燃烧;燃烧产物经破碎、酸洗后得到高纯TiB2陶瓷微粉。The technical solution adopted by the present invention to solve the technical problem is: uniformly mix TiO 2 , B 2 O 3 and Mg powders and mold them into a self-propagating high-temperature synthesis device protected by argon under normal temperature and pressure (National Utility Model Patent: ZL93216816.7), ignition and combustion; the combustion product is crushed and pickled to obtain high-purity TiB 2 ceramic powder.
TiO2、B2O3粉末与金属Mg粉末是主要的反应物料,按反应式
本发明的具体实现过程详细叙述如下:Concrete realization process of the present invention is described in detail as follows:
1.将TiO2、B2O3和Mg粉末均匀混合并模压成型,在常温常压下置于氩气保护的自蔓延高温合成装置(国家实用新型专利:ZL93216816.7)中,点火燃烧,得到燃烧产物。1. Uniformly mix TiO 2 , B 2 O 3 and Mg powders and mold them, place them in argon-protected self-propagating high-temperature synthesis device (national utility model patent: ZL93216816.7) at room temperature and pressure, ignite and burn, Combustion products are obtained.
其中TiO2粉末粒径应小于80μm,B2O3粉末粒径应小于120μm,Mg粉末粒径应小于200μm。Among them, the particle size of TiO 2 powder should be less than 80 μm, that of B 2 O 3 powder should be less than 120 μm, and that of Mg powder should be less than 200 μm.
自蔓延高温还原合成用的TiO2、B2O3、Mg粉末原料其配方按重量百分比为:TiO2为27-29wt%,B2O3为26-28wt%、Mg为43-47wt%。The composition of TiO 2 , B 2 O 3 , and Mg powder raw materials for self-propagating high-temperature reduction synthesis is as follows: TiO 2 is 27-29 wt%, B 2 O 3 is 26-28 wt%, and Mg is 43-47 wt%.
2.TiB2陶瓷微粉的提纯、分离可按照如下工艺来实现:燃烧产物经球磨机破碎后过筛得到粒径小于0.5mm的粉末;将粉末置于反应釜内,在浓度为0.5~2.0mol/l的盐酸或硫酸中于20~80℃温度下酸洗1~10小时,所获产物经过滤、烘干,即为高纯二硼化钛陶瓷微粉。2. The purification and separation of TiB 2 ceramic micropowder can be realized according to the following process: the combustion product is crushed by a ball mill and sieved to obtain a powder with a particle size of less than 0.5mm; Pickling in 1 hydrochloric acid or sulfuric acid at a temperature of 20-80°C for 1-10 hours, and the obtained product is filtered and dried to obtain high-purity titanium diboride ceramic powder.
采用自蔓延高温还原合成(SHRS)技术结合化学纯化后合成高纯TiB2陶瓷微粉,其成分为:Ti67-69wt%,B29-32wt%,O≤0.75wt%,N≤0.1wt%,Mg≤0.15wt%,平均粒径为5μm。High-purity TiB2 ceramic micropowder is synthesized by self-propagating high-temperature reduction synthesis (SHRS) technology combined with chemical purification, and its composition is: Ti67-69wt%, B29-32wt%, O≤0.75wt%, N≤0.1wt%, Mg≤ 0.15wt%, the average particle size is 5μm.
本发明的优点在于比传统碳热还原TiB2陶瓷粉末的纯度高、晶粒细小、工艺简单、能耗和时耗小;同时与SHS单质合成TiB2陶瓷粉末相比,制造成本为其20%左右,而且晶粒尺寸为其1/10~1/4。The present invention has the advantages of higher purity, smaller crystal grains, simple process, less energy and time consumption than traditional carbothermally reduced TiB2 ceramic powders; at the same time, the manufacturing cost is 20% compared with SHS elemental synthesis of TiB2 ceramic powders About, and the grain size is 1/10 to 1/4.
具体实施方案Specific implementation plan
实例1:27克TiO2粉(≤80μm),26克B2O3粉(≤120μm),47克Mg粉(≤200μm)充分混合。混合好的试样压制成块状原坯,放入自蔓延高温合成反应器中,在常温常压氩气保护下,用钨丝或电弧点燃试样表面。燃烧波迅速蔓延,此时试样燃烧温度1800~2000℃,燃烧反应在1~2分钟内完成。待试样完全冷却后,将其置于球磨机中球磨2小时。所得粉末放入反应釜内,加入10升浓度为1mol/l的盐酸并不断搅拌,于50℃下酸洗4小时后过滤、烘干。所获微粉的成分是:Ti68.2wt%,B30.1wt%,O0.5wt%,N0.1wt%,Mg0.1wt%,平均粒径为4.7μm。Example 1: 27 grams of TiO 2 powder (≤80 μm), 26 grams of B 2 O 3 powder (≤120 μm), and 47 grams of Mg powder (≤200 μm) were thoroughly mixed. The mixed sample is pressed into a block blank, put into a self-propagating high-temperature synthesis reactor, and under the protection of argon gas at normal temperature and pressure, the surface of the sample is ignited with a tungsten wire or an electric arc. The combustion wave spreads rapidly. At this time, the combustion temperature of the sample is 1800-2000°C, and the combustion reaction is completed within 1-2 minutes. After the sample was completely cooled, it was placed in a ball mill for ball milling for 2 hours. The obtained powder was put into a reaction kettle, 10 liters of hydrochloric acid with a concentration of 1 mol/l was added and stirred continuously, acid washed at 50° C. for 4 hours, filtered and dried. The composition of the obtained micropowder is: Ti68.2wt%, B30.1wt%, O0.5wt%, N0.1wt%, Mg0.1wt%, and the average particle diameter is 4.7 μm.
实例2:29克TiO2粉(≤80μm),26克B2O3粉(≤120μm),45克Mg粉(≤200μm)充分混合。混合好的试样压制成块状原坯,放入自蔓延高温合成反应器中,在常温常压氩气保护下,用钨丝或电弧点燃试样表面。燃烧波迅速蔓延,此时试样燃烧温度2000~2200℃,燃烧反应在1~2分钟内完成。待试样完全冷却后,将其置于球磨机中球磨2小时。所得粉末放入反应釜内,加入20升浓度为0.5mol/l的硫酸并不断搅拌,于50℃下酸洗6小时后过滤、烘干。所获微粉的成分是:Ti68.8wt%,B30.35wt%,O0.7wt%,N0.1wt%,Mg0.05wt%,平均粒径为5.8μm。Example 2: 29 grams of TiO 2 powder (≤80 μm), 26 grams of B 2 O 3 powder (≤120 μm), and 45 grams of Mg powder (≤200 μm) were thoroughly mixed. The mixed sample is pressed into a block blank, put into a self-propagating high-temperature synthesis reactor, and under the protection of argon gas at normal temperature and pressure, the surface of the sample is ignited with a tungsten wire or an electric arc. The combustion wave spreads rapidly. At this time, the combustion temperature of the sample is 2000-2200°C, and the combustion reaction is completed within 1-2 minutes. After the sample was completely cooled, it was placed in a ball mill for ball milling for 2 hours. The obtained powder was put into a reaction kettle, 20 liters of sulfuric acid with a concentration of 0.5 mol/l was added and stirred continuously, acid washed at 50° C. for 6 hours, filtered and dried. The composition of the obtained micropowder is: Ti68.8wt%, B30.35wt%, O0.7wt%, N0.1wt%, Mg0.05wt%, and the average particle diameter is 5.8 μm.
实例3:29克TiO2粉(≤80μm),28克B2O3粉(≤1200μm),43克Mg粉(≤200μm)充分混合。混合好的试样压制成块状原坯,放入自蔓延高温合成反应器中,在常温常压氩气保护下,用钨丝或电弧点燃试样表面。燃烧波迅速蔓延,此时试样燃烧温度1700~1900℃,燃烧反应在1~2分钟内完成。待试样完全冷却后,将其置于球磨机中球磨2小时。所得粉末放入反应釜内,加入10升浓度为1mol/l的盐酸并不断搅拌,于50℃下酸洗4小时后过滤、烘干。所获微粉的成分是:Ti67.87wt%,B31.3wt%,O0.6wt%,N0.1wt%,Mg0.13wt%,平均粒径为4.1μm。Example 3: 29 grams of TiO 2 powder (≤80 μm), 28 grams of B 2 O 3 powder (≤1200 μm), and 43 grams of Mg powder (≤200 μm) were thoroughly mixed. The mixed sample is pressed into a block blank, put into a self-propagating high-temperature synthesis reactor, and under the protection of argon gas at normal temperature and pressure, the surface of the sample is ignited with a tungsten wire or an electric arc. The combustion wave spreads rapidly. At this time, the combustion temperature of the sample is 1700-1900°C, and the combustion reaction is completed within 1-2 minutes. After the sample was completely cooled, it was placed in a ball mill for ball milling for 2 hours. The obtained powder was put into a reaction kettle, 10 liters of hydrochloric acid with a concentration of 1 mol/l was added and stirred continuously, acid washed at 50° C. for 4 hours, filtered and dried. The composition of the obtained micropowder is: Ti67.87wt%, B31.3wt%, O0.6wt%, N0.1wt%, Mg0.13wt%, and the average particle diameter is 4.1 μ m.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 01128497 CN1341576A (en) | 2001-09-27 | 2001-09-27 | Preparation of high-purity titanium biboride ceramic micropowder by using self-spreading high-temp. reduction synthesis process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 01128497 CN1341576A (en) | 2001-09-27 | 2001-09-27 | Preparation of high-purity titanium biboride ceramic micropowder by using self-spreading high-temp. reduction synthesis process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1341576A true CN1341576A (en) | 2002-03-27 |
Family
ID=4668347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 01128497 Pending CN1341576A (en) | 2001-09-27 | 2001-09-27 | Preparation of high-purity titanium biboride ceramic micropowder by using self-spreading high-temp. reduction synthesis process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1341576A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101891215A (en) * | 2010-07-15 | 2010-11-24 | 武汉工程大学 | Preparation method of nano titanium diboride polycrystalline powder |
CN101569931B (en) * | 2009-04-17 | 2012-07-04 | 上海应用技术学院 | Method for preparing superfine tungsten powder |
CN102584242A (en) * | 2012-02-28 | 2012-07-18 | 吉林大学 | High-temperature high-pressure preparation method for titanium diboride |
CN103265048A (en) * | 2013-06-14 | 2013-08-28 | 兰州理工大学 | A kind of preparation method of TiB2 superfine powder material |
WO2014146485A1 (en) * | 2013-03-19 | 2014-09-25 | 武汉理工大学 | Thermoelectric compound preparation based on self-propagating combustion synthesis new criterion |
CN105984875A (en) * | 2015-01-30 | 2016-10-05 | 中国人民解放军军械工程学院 | A kind of preparation method of TiB2 nanowire array |
CN105986323A (en) * | 2015-01-30 | 2016-10-05 | 中国人民解放军军械工程学院 | A kind of method for preparing micronano TiB2 whisker |
CN106116588A (en) * | 2016-06-29 | 2016-11-16 | 北京光科博冶科技有限责任公司 | Self-spreading high-temperature synthesizing device and SHS process method |
CN113772711A (en) * | 2021-08-09 | 2021-12-10 | 北京科技大学 | Method for preparing rare earth metal hexaboride through aluminothermic reduction |
CN114873600A (en) * | 2022-04-29 | 2022-08-09 | 淄博晟钛复合材料科技有限公司 | Preparation method of high-purity titanium diboride ceramic powder |
WO2024187358A1 (en) * | 2023-03-14 | 2024-09-19 | 昆明理工大学 | Rapid preparation method for transition metal boride |
-
2001
- 2001-09-27 CN CN 01128497 patent/CN1341576A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101569931B (en) * | 2009-04-17 | 2012-07-04 | 上海应用技术学院 | Method for preparing superfine tungsten powder |
CN101891215A (en) * | 2010-07-15 | 2010-11-24 | 武汉工程大学 | Preparation method of nano titanium diboride polycrystalline powder |
CN101891215B (en) * | 2010-07-15 | 2011-12-28 | 武汉工程大学 | Method for preparing nano titanium diboride polycrystalline powder |
CN102584242A (en) * | 2012-02-28 | 2012-07-18 | 吉林大学 | High-temperature high-pressure preparation method for titanium diboride |
CN102584242B (en) * | 2012-02-28 | 2013-08-14 | 吉林大学 | High-temperature high-pressure preparation method for titanium diboride |
WO2014146485A1 (en) * | 2013-03-19 | 2014-09-25 | 武汉理工大学 | Thermoelectric compound preparation based on self-propagating combustion synthesis new criterion |
US10913119B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US11433456B2 (en) | 2013-03-19 | 2022-09-06 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913118B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913114B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913116B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913117B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10500642B2 (en) | 2013-03-19 | 2019-12-10 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
US10913115B2 (en) | 2013-03-19 | 2021-02-09 | Wuhan University Of Technology | Thermoelectric materials synthesized by self-propagating high temperature synthesis process and methods thereof |
CN103265048A (en) * | 2013-06-14 | 2013-08-28 | 兰州理工大学 | A kind of preparation method of TiB2 superfine powder material |
CN105984875B (en) * | 2015-01-30 | 2018-10-23 | 中国人民解放军军械工程学院 | A kind of TiB2The preparation method of nano-wire array |
CN105986323B (en) * | 2015-01-30 | 2018-08-10 | 中国人民解放军军械工程学院 | It is a kind of to prepare micro/nano level TiB2The method of whisker |
CN105986323A (en) * | 2015-01-30 | 2016-10-05 | 中国人民解放军军械工程学院 | A kind of method for preparing micronano TiB2 whisker |
CN105984875A (en) * | 2015-01-30 | 2016-10-05 | 中国人民解放军军械工程学院 | A kind of preparation method of TiB2 nanowire array |
CN106116588A (en) * | 2016-06-29 | 2016-11-16 | 北京光科博冶科技有限责任公司 | Self-spreading high-temperature synthesizing device and SHS process method |
CN113772711A (en) * | 2021-08-09 | 2021-12-10 | 北京科技大学 | Method for preparing rare earth metal hexaboride through aluminothermic reduction |
CN114873600A (en) * | 2022-04-29 | 2022-08-09 | 淄博晟钛复合材料科技有限公司 | Preparation method of high-purity titanium diboride ceramic powder |
WO2024187358A1 (en) * | 2023-03-14 | 2024-09-19 | 昆明理工大学 | Rapid preparation method for transition metal boride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107663607A (en) | A kind of high-entropy alloy holds composite of abrasive grain and its preparation method and application | |
CN1341576A (en) | Preparation of high-purity titanium biboride ceramic micropowder by using self-spreading high-temp. reduction synthesis process | |
CN108275969A (en) | It is a kind of to utilize the mullite silicon carbide whisker composite ceramic material and preparation method thereof that natural minerals are raw material | |
CN101121518B (en) | Micro-powder combustion synthetic method for silicon-titanium compound | |
CN108585887A (en) | A kind of TixZr1-xB2Superhigh temperature solid solution ceramic raw powder's production technology | |
CN104193339B (en) | A kind of zirconium boride-carborundum ultrathin composite powder and its preparation method | |
CN114873600A (en) | Preparation method of high-purity titanium diboride ceramic powder | |
CN105036167A (en) | Calcium hexaluminate and preparation method thereof | |
CN100336723C (en) | Combustion synthesis method of zirconium diboride micro-powder | |
CN101704677A (en) | Method for synthesizing and preparing titanium diboride ceramic micropowder by using a high-energy ball-milling alloying method | |
CN111807834A (en) | A kind of aluminum titanate ceramic for casting and preparation method thereof | |
CN1120894C (en) | AL-Ti-C crystal grain fining agent and its producing process | |
CN103449463B (en) | A zirconium boride-silicon carbide composite powder and its preparation method | |
CN1587188A (en) | Process for synthesizing high purity zirconium diboride-aluminium oxide Al2O3 ceramic composite powder in one step | |
CN1772610A (en) | Preparation of LaB6 powder by self-propagating metallurgy | |
CN102491327A (en) | Zirconium carbide powder and preparation method thereof | |
CN101289222A (en) | A kind of preparation method of high-purity ultrafine titanium aluminum nitrogen powder | |
JPS6117403A (en) | Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof | |
CN1232476C (en) | Process for preparing titanium silicon carbon ceramic powder | |
CN1952194A (en) | Method for producing tungalloy bar for use in electrode | |
CN1135457A (en) | Method for preparation of titanium carbide micropowder by using self-spreading high-temp. synthesizing chemical-reacting furnace | |
CN100413804C (en) | Preparation method of flake microcrystalline toughened MgAlON composite corundum material | |
CN103253678B (en) | A kind of low-temperature solid-phase synthesis method of diboride ceramic powder | |
CN115465845B (en) | Magnesium oxide@magnesium silicon nitride powder based on high silicon magnesite and preparation method thereof | |
CN108623315A (en) | A kind of preparation process of titanium alloy smelting oxidation yttrium powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |