CN1278941C - A kind of Bi2Te3 nanocapsule and preparation method thereof - Google Patents
A kind of Bi2Te3 nanocapsule and preparation method thereof Download PDFInfo
- Publication number
- CN1278941C CN1278941C CN 200410073387 CN200410073387A CN1278941C CN 1278941 C CN1278941 C CN 1278941C CN 200410073387 CN200410073387 CN 200410073387 CN 200410073387 A CN200410073387 A CN 200410073387A CN 1278941 C CN1278941 C CN 1278941C
- Authority
- CN
- China
- Prior art keywords
- nanocapsule
- add
- bi2te3
- preparation
- nanometers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002088 nanocapsule Substances 0.000 title claims description 27
- 238000002360 preparation method Methods 0.000 title claims description 9
- 229910002899 Bi2Te3 Inorganic materials 0.000 title abstract 6
- 239000000463 material Substances 0.000 claims abstract description 15
- 239000002775 capsule Substances 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000008139 complexing agent Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 230000002829 reductive effect Effects 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 239000000470 constituent Substances 0.000 abstract 1
- 238000007704 wet chemistry method Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002041 carbon nanotube Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000002071 nanotube Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 206010065042 Immune reconstitution inflammatory syndrome Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- QCAWEPFNJXQPAN-UHFFFAOYSA-N methoxyfenozide Chemical compound COC1=CC=CC(C(=O)NN(C(=O)C=2C=C(C)C=C(C)C=2)C(C)(C)C)=C1C QCAWEPFNJXQPAN-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- BDOYKFSQFYNPKF-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O BDOYKFSQFYNPKF-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000001889 high-resolution electron micrograph Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- -1 superlattice Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体Bi2Te3纳米囊及其制备方法。The invention relates to a semiconductor Bi 2 Te 3 nanocapsule and a preparation method thereof.
背景技术Background technique
自1991年日本碳化学家饭岛(S.Lijima)首次发现碳纳米管(CNTs)以来,人们对碳纳米管的合成、结构、性能和应用等进行了广泛而深入的研究。碳纳米管因其具有独特的一维中空石墨片卷曲成的无缝管状结构,而具有一系列独特性质,如高度的化学稳定性、高的机械强度(理论计算表明,其抗拉强度是钢的100倍,而密度只有钢的1/6)、特异的电学性能(根据管径和螺旋度的不同,可以是比铜还好的导体,也可以是半导体)。碳纳米管是一类具有良好应用前景的材料,如今已被广泛应用于物理、化学、材料、电子技术等多个高科技领域。Since the first discovery of carbon nanotubes (CNTs) by Japanese carbon chemist S. Lijima in 1991, people have conducted extensive and in-depth research on the synthesis, structure, performance and application of carbon nanotubes. Carbon nanotubes have a series of unique properties such as high chemical stability and high mechanical strength because of their unique one-dimensional hollow graphite sheet rolled into a seamless tubular structure (theoretical calculations show that its tensile strength is that of steel 100 times that of steel, but the density is only 1/6 of steel), and special electrical properties (according to the diameter and helicity of the pipe, it can be a better conductor than copper or a semiconductor). Carbon nanotubes are a class of materials with good application prospects, and have been widely used in many high-tech fields such as physics, chemistry, materials, and electronic technology.
自碳纳米管以来,其它各种一维管状纳米材料由于其特殊的结构和广泛的应用前景也备受关注,BN、BC3、BC2N、WS2、MoS2等纳米管相继面世,但仍然满足不了多个研究和应用领域的需求,更多材料和类型的纳米管仍有待于开发和研究。Since carbon nanotubes, other one - dimensional tubular nanomaterials have attracted much attention due to their special structures and wide application prospects. Still can not meet the needs of multiple research and application fields, and more materials and types of nanotubes are still to be developed and studied.
Bi2Te3是目前已知的原子量最大的二元无机化合物之一。Bi2Te3基合金也是目前性能最好的室温型热电材料,被用于制作半导体制冷器件或温差发电器件。已有研究证明,材料的纳米化(如:超晶格、纳米线等)可进一步提高Bi2Te3基材料的热电性能。已有采用溶剂热或水热法合成Bi2Te3纳米管,并用于制备高性能热电材料的研究报道。Bi 2 Te 3 is one of the binary inorganic compounds with the largest atomic weight known so far. Bi 2 Te 3 -based alloys are currently the best room-temperature thermoelectric materials, and are used to make semiconductor refrigeration devices or thermoelectric power generation devices. Studies have shown that the nanometerization of materials (such as: superlattice, nanowires, etc.) can further improve the thermoelectric properties of Bi 2 Te 3 -based materials. There have been reports on the synthesis of Bi 2 Te 3 nanotubes by solvothermal or hydrothermal methods and their use in the preparation of high-performance thermoelectric materials.
发明内容Contents of the invention
本发明的目的是为扩大纳米材料的应用领域,而提供一种Bi2Te3纳米囊及其制备方法。The object of the present invention is to provide a Bi 2 Te 3 nanocapsule and a preparation method thereof in order to expand the application field of nanometer materials.
本发明的Bi2Te3纳米囊是长度与直径比为2~5的无缝中空胶囊,其组分和原子百分含量为:The Bi 2 Te 3 nanocapsule of the present invention is a seamless hollow capsule with a length-to-diameter ratio of 2 to 5, and its components and atomic percentages are:
Bi 39.8~40.3%,Bi 39.8~40.3%,
Te 59.7~60.2%。Te 59.7-60.2%.
Bi2Te3纳米囊的直径为50~200纳米,壁厚5~20纳米,长度200~1000纳米。The diameter of the Bi 2 Te 3 nanocapsule is 50-200 nanometers, the wall thickness is 5-20 nanometers, and the length is 200-1000 nanometers.
本发明的Bi2Te3纳米囊的制备方法是采用湿化学法,其步骤如下:The preparation method of Bi 2 Te 3 nanocapsules of the present invention adopts wet chemical method, and its steps are as follows:
1)将Bi元素的化合物和纯Te粉末按照Bi和Te原子百分含量的比例置于反应容器内,添加80~850倍Te重量的去离子水,并搅拌混合;1) Put the compound of Bi element and pure Te powder in the reaction vessel according to the atomic percentage ratio of Bi and Te, add deionized water 80 to 850 times the weight of Te, and stir and mix;
2)在上述混合液中添加相当于Te重量的0.25~2.5倍的络合剂,添加碱性调节剂使溶液pH值处于12~14,添加相当于Te重量的0.5~3倍的还原剂;2) Add a complexing agent equivalent to 0.25 to 2.5 times the weight of Te to the above mixed solution, add an alkaline regulator to make the pH of the solution 12 to 14, and add a reducing agent equivalent to 0.5 to 3 times the weight of Te;
3)加热到55~85℃范围内的设定反应温度,反应6~100小时后,冷却到室温,停止搅拌;3) Heating to the set reaction temperature within the range of 55-85°C, after reacting for 6-100 hours, cooling to room temperature, and stopping stirring;
4)收集反应容器内的固体反应产物,经清洗干燥后,得到本发明材料。4) Collecting the solid reaction product in the reaction vessel, washing and drying to obtain the material of the present invention.
上述的Bi元素的化合物可以是氯化物、硝酸盐、硫酸盐或碳酸盐;所说的碱性调节剂可以是NaOH或KOH;络合剂可采用乙二胺四乙酸二钠(以下简称EDTA);所说的还原剂可以采用NaBH4或KBH4。The compound of above-mentioned Bi element can be chloride, nitrate, vitriol or carbonate; Said alkaline conditioner can be NaOH or KOH; Complexing agent can adopt disodium ethylenediaminetetraacetic acid (hereinafter referred to as EDTA ); said reducing agent can be NaBH 4 or KBH 4 .
在上述制备过程中,对混合液的搅拌从步骤1)开始,一直持续到反应结束。所用的反应容器可以是玻璃容器或耐酸、耐碱、耐热的塑料容器。In the above preparation process, the stirring of the mixed solution starts from step 1) and continues until the end of the reaction. The reaction container used can be a glass container or an acid-resistant, alkali-resistant, heat-resistant plastic container.
本发明开发出了新型的Bi2Te3纳米囊,长径比明显小于纳米管,其独特的结构有望提高Bi2Te3纳米材料的半导体热电性能,并可广泛应用于物理、化学、材料、微电子等领域。The present invention has developed a new type of Bi 2 Te 3 nanocapsules, whose aspect ratio is significantly smaller than that of nanotubes. Its unique structure is expected to improve the semiconductor thermoelectric properties of Bi 2 Te 3 nanomaterials, and can be widely used in physics, chemistry, materials, Microelectronics and other fields.
附图说明Description of drawings
图1是在85℃下合成的Bi2Te3纳米囊的场发射扫描电镜和透射电镜照片;Figure 1 is the field emission scanning electron microscope and transmission electron microscope photographs of Bi 2 Te 3 nanocapsules synthesized at 85°C;
图2是在55℃下合成的Bi2Te3纳米囊的透射电镜和高分辨电镜照片。Figure 2 is the TEM and high-resolution electron micrographs of Bi 2 Te 3 nanocapsules synthesized at 55°C.
具体实施方式Detailed ways
以下结合实施例对本发明作进一步详细述。Below in conjunction with embodiment the present invention is described in further detail.
实施例1Example 1
1)在一个800ml容量的玻璃烧杯中依次加入200ml去离子水,3.83g Te粉(约30毫摩尔,99.99%纯度,过30μm筛),6.31g BiCl3(约20毫摩尔,分析纯),并用磁性搅拌器以120rpm转速搅拌混合液。1) Add 200ml deionized water, 3.83g Te powder (about 30mmol, 99.99% purity, passed through a 30μm sieve), 6.31g BiCl3 (about 20mmol, analytically pure) in a glass beaker with a capacity of 800ml, The mixture was stirred with a magnetic stirrer at 120 rpm.
2)在烧杯中添加1g EDTA,并添加NaOH使溶液pH值达到12,然后再加入2g NaBH4。2) Add 1 g of EDTA to the beaker, and add NaOH to make the pH value of the solution reach 12, and then add 2 g of NaBH 4 .
3)以5℃/min的速度加热至溶液温度达到85℃并维持在该温度。3) Heating at a speed of 5°C/min until the solution temperature reaches 85°C and maintaining at this temperature.
4)在85℃恒温反应期间维持120rpm搅拌速度,并用塑料薄膜遮盖烧杯防止溶剂过度挥发。4) Maintain a stirring speed of 120 rpm during the constant temperature reaction at 85° C., and cover the beaker with a plastic film to prevent excessive volatilization of the solvent.
5)反应6小时后停止加热,自然冷却到室温。收集烧杯内的粉末状反应产物,依次用去离子水、无水乙醇和丙酮反复清洗数次,室温真空干燥后得Bi2Te3纳米囊。5) Stop heating after reacting for 6 hours, and cool to room temperature naturally. The powdery reaction product in the beaker was collected, washed several times with deionized water, absolute ethanol and acetone in sequence, and dried under vacuum at room temperature to obtain Bi 2 Te 3 nanocapsules.
采用IRIS Intrepid II型XSP等离子体发射光谱分析,结果显示所合成的纳米囊的原子百分含量为:40.2%Bi和59.8%Te。采用SIRION-FEI型场发射扫描电镜和JEM-2010型透射电子显微镜观察纳米囊形态,如图1所示,纳米囊长度在200~800nm之间,直径在50~160nm之间,管壁厚度为8~10nm。采用Rigaku-D/MAX-2550PC型X射线多晶衍射仪分析纳米囊晶体结构,结果为单相Bi2Te3结构。Using IRIS Intrepid II type XSP plasma emission spectrometry analysis, the results show that the atomic percentage of the synthesized nanocapsules is: 40.2% Bi and 59.8% Te. SIRION-FEI field emission scanning electron microscope and JEM-2010 transmission electron microscope were used to observe the shape of nanocapsules. As shown in Figure 1, the length of nanocapsules is between 200-800nm, the diameter is between 50-160nm, and the thickness of the tube wall is 8 ~ 10nm. The crystal structure of nanocapsules was analyzed by Rigaku-D/MAX-2550PC X-ray polycrystal diffractometer, and the result was a single-phase Bi 2 Te 3 structure.
取0.6g采用上述路线合成的Bi2Te3纳米囊,通过250℃,50MPa,30min真空热压,获得直径为10mm,厚度约1.2mm的圆片状试样。切割后在室温下测量电学性能,温差电系数绝对值为2.1×10-4V/K,电阻率为2.5×10-5Ω·m,具有典型的热电材料性能特征。Take 0.6g of the Bi 2 Te 3 nanocapsules synthesized by the above route, and press at 250°C, 50MPa, 30min under vacuum to obtain a disc-shaped sample with a diameter of 10mm and a thickness of about 1.2mm. After cutting, the electrical properties were measured at room temperature. The absolute value of the thermoelectric coefficient is 2.1×10 -4 V/K, and the resistivity is 2.5×10 -5 Ω·m, which has typical performance characteristics of thermoelectric materials.
实施例2Example 2
1)在一个800ml容量的玻璃烧杯中依次加入450ml去离子水,0.765g Te粉(约6毫摩尔,99.99%纯度,过30μm筛),1.58g Bi(NO3)3(约4毫摩尔,分析纯),并用磁性搅拌器以100rpm转速搅拌混合液。1) Add 450ml deionized water, 0.765g Te powder (about 6 mmol, 99.99% purity, passed through a 30 μm sieve), 1.58 g Bi(NO 3 ) 3 (about 4 mmol, Analytical purity), and stir the mixture with a magnetic stirrer at 100 rpm.
2)以5℃/min的速度加热至溶液温度达到55℃并维持在该温度。2) Heating at a rate of 5°C/min until the solution temperature reaches 55°C and maintaining at this temperature.
3)在烧杯中添加1.9g EDTA,并添加KOH使溶液pH值达到14,然后再加入2.3g KBH4。3) Add 1.9g EDTA to the beaker, and add KOH to make the pH value of the solution reach 14, and then add 2.3g KBH 4 .
4)在55℃恒温反应期间维持100rpm搅拌速度,并用塑料薄膜遮盖烧杯防止溶剂过度挥发。4) Maintain a stirring speed of 100 rpm during the constant temperature reaction at 55° C., and cover the beaker with a plastic film to prevent excessive solvent volatilization.
5)反应100小时后停止加热,自然冷却到室温。收集烧杯内的粉末状反应产物,依次用去离子水、无水乙醇和丙酮反复清洗数次,室温真空干燥后得Bi2Te3纳米囊。5) Stop heating after reacting for 100 hours, and cool to room temperature naturally. The powdery reaction product in the beaker was collected, washed several times with deionized water, absolute ethanol and acetone in sequence, and dried under vacuum at room temperature to obtain Bi 2 Te 3 nanocapsules.
采用IRIS Intrepid II型XSP等离子体发射光谱分析,结果显示所合成的纳米囊的原子百分含量为:39.9%Bi和60.1%Te。采用JEM-2010型透射电子显微镜和JEOL-4000EX型高分辨透射电子显微镜观察纳米囊形态,如图2所示,纳米囊长度在300~1000nm之间,直径在80~200nm之间,管壁厚度为5~8nm。采用Rigaku-D/MAX-2550PC型X射线多晶衍射仪分析纳米囊晶体结构,结果为单相Bi2Te3结构。Using IRIS Intrepid II type XSP plasma emission spectrometry analysis, the result shows that the atomic percentage content of the synthesized nanocapsule is: 39.9% Bi and 60.1% Te. JEM-2010 transmission electron microscope and JEOL-4000EX high-resolution transmission electron microscope were used to observe the shape of nanocapsules. As shown in Figure 2, the length of nanocapsules is between 300-1000nm, the diameter is between 80-200nm, and the thickness of the tube wall It is 5~8nm. The crystal structure of nanocapsules was analyzed by Rigaku-D/MAX-2550PC X-ray polycrystal diffractometer, and the result was a single-phase Bi 2 Te 3 structure.
取0.6g采用上述路线合成的Bi2Te3纳米囊,通过250℃,50MPa,30min真空热压,获得直径为10mm,厚度约1.2mm的圆片状试样。切割后在室温下测量电学性能,温差电系数绝对值为1.4×10-4V/K,电阻率为9.2×10-6Ω·m,具有典型的热电材料性能特征。Take 0.6g of the Bi 2 Te 3 nanocapsules synthesized by the above route, and press at 250°C, 50MPa, 30min under vacuum to obtain a disc-shaped sample with a diameter of 10mm and a thickness of about 1.2mm. The electrical properties were measured at room temperature after cutting. The absolute value of the thermoelectric coefficient is 1.4×10 -4 V/K, and the resistivity is 9.2×10 -6 Ω·m, which has typical performance characteristics of thermoelectric materials.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410073387 CN1278941C (en) | 2004-12-08 | 2004-12-08 | A kind of Bi2Te3 nanocapsule and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410073387 CN1278941C (en) | 2004-12-08 | 2004-12-08 | A kind of Bi2Te3 nanocapsule and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1644509A CN1644509A (en) | 2005-07-27 |
CN1278941C true CN1278941C (en) | 2006-10-11 |
Family
ID=34869003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410073387 Expired - Fee Related CN1278941C (en) | 2004-12-08 | 2004-12-08 | A kind of Bi2Te3 nanocapsule and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1278941C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400932B (en) * | 2008-08-29 | 2016-08-10 | Lg化学株式会社 | Novel thermo-electric converting material and preparation method thereof, and use the thermoelectric conversion element of this novel thermo-electric converting material |
CN103738929A (en) * | 2013-09-03 | 2014-04-23 | 吉林化工学院 | Preparation of graded bismuth telluride micrometer structure with simple solvothermal method |
-
2004
- 2004-12-08 CN CN 200410073387 patent/CN1278941C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1644509A (en) | 2005-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Controlled synthesis of CuO nanostructures by a simple solution route | |
Takashiri et al. | Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates | |
EP3163640B1 (en) | Method for producing nanomaterial-dopant composition composite and nanomaterial-dopant composition composite | |
Li et al. | Enhanced through-plane thermal conductivity in Polymer nanocomposites by constructing graphene-supported BN nanotubes | |
Tee et al. | Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature | |
CN108393501B (en) | Preparation method of Cu nanowire with controllable diameter | |
CN102275981A (en) | Preparation method of self-substrate SnO2 nanorod array | |
CN1709791A (en) | A method for preparing silver nanowires | |
CN102760830B (en) | CoSb3/graphene composite material, and preparation method and application thereof | |
CN103787283A (en) | A kind of preparation method of Cu3SbSe4 ternary nanosphere | |
CN110707206A (en) | SnSe/rGO thermoelectric composite material and preparation method thereof | |
Jiang et al. | Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction | |
US7880003B2 (en) | Method for making tris (8-hydroxyquinoline) nano-crystal | |
CN101254903A (en) | Preparation method of bismuth telluride nanotubes | |
CN1526637A (en) | Prepn of Bi2Te3-base compound nanotube | |
Zhao et al. | In-situ investigation and effect of additives on low temperature aqueous chemical synthesis of Bi 2 Te 3 nanocapsules | |
CN106830080A (en) | Cu2MoS4Nano material and preparation method thereof | |
Dong et al. | Room-temperature solution synthesis of Ag 2 Te hollow microspheres and dendritic nanostructures, and morphology dependent thermoelectric properties | |
CN1278941C (en) | A kind of Bi2Te3 nanocapsule and preparation method thereof | |
Wang et al. | Amine-assisted solution approach for the synthesis and growth mechanism of super-long rough-surfaced Cu 7 Te 4 nanobelts | |
Zhou et al. | Synthesis and optical properties of Pb‐doped ZnO nanowires | |
Lv et al. | Preparation of ZnS nanotubes via surfactant micelle-template inducing reaction | |
Zhang et al. | Wet chemical synthesis and thermoelectric properties of V-VI one-and two-dimensional nanostructures | |
Jin et al. | Glucose assisted synthesis and growth mechanism of hierarchical antimony chalcogenides | |
CN106219591B (en) | A kind of Cu2The preparation method of O microballoons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20061011 Termination date: 20100108 |