CN1243240A - Displacement sensor - Google Patents
Displacement sensor Download PDFInfo
- Publication number
- CN1243240A CN1243240A CN 99109841 CN99109841A CN1243240A CN 1243240 A CN1243240 A CN 1243240A CN 99109841 CN99109841 CN 99109841 CN 99109841 A CN99109841 A CN 99109841A CN 1243240 A CN1243240 A CN 1243240A
- Authority
- CN
- China
- Prior art keywords
- full
- magnetic core
- displacement sensor
- wave
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 239000000696 magnetic material Substances 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 3
Images
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
一种位移传感器包括:一个同部件联动的磁性材料制成的磁芯,在外边包围着磁芯的绕线管,绕在绕线管上的第一和第二线圈,以及根据第一和第二线圈上感生电压检测磁芯位置变化的信号处理单元。该传感器可在不采用电阻器的情况下检测部件的位置变化,从而避免不必要的功率损耗,并且在不依赖外部分离的信号处理装置的情况下,可使位置变化检测信号具有线性特征,从而能以很高精确度检测部件的位置变化。
A displacement sensor comprises: a magnetic core made of magnetic material linked with components, a bobbin surrounding the magnetic core, first and second coils wound on the bobbin, and The signal processing unit for detecting the position change of the magnetic core by the induced voltage on the second coil. The sensor can detect the position change of a part without using a resistor, thereby avoiding unnecessary power loss, and can make the position change detection signal have a linear characteristic without relying on an external separate signal processing device, thereby Changes in the position of components can be detected with high accuracy.
Description
本发明涉及一种位移传感器,特别涉及一种适用于检测部件位置的位移传感器。The invention relates to a displacement sensor, in particular to a displacement sensor suitable for detecting the position of a component.
图1为已有技术的位移传感器的原理结构图,其中位移传感器的绕线管1上绕有两个线圈2和3,磁性材料制成的磁芯4与绕线管1中的部件联动。FIG. 1 is a schematic structural diagram of a displacement sensor in the prior art, wherein two coils 2 and 3 are wound on a bobbin 1 of the displacement sensor, and a magnetic core 4 made of magnetic material is linked with components in the bobbin 1 .
图2为已有技术位移传感器的电路图,其中电阻器R1和R2的阻值相同,由外部施加交流电源AC以改变磁芯2和3上线圈的电感Z1和Z2。FIG. 2 is a circuit diagram of a displacement sensor in the prior art, wherein the resistors R1 and R2 have the same resistance, and an AC power supply AC is applied from the outside to change the inductances Z1 and Z2 of the coils on the magnetic cores 2 and 3 .
也就是说,当磁芯4由于部件带动而发生位置变化时,会产生一个与磁芯4位置变化成比例的输出电压(e0);若将磁芯4置于绕线管1的中心位置,由于两个线圈2和3的电感Z1和Z2相同,使输出电压(e0)为零(“0”),则可对部件位移进行检测。That is to say, when the position of the magnetic core 4 changes due to the driving of the components, an output voltage (e 0 ) proportional to the position change of the magnetic core 4 will be generated; if the magnetic core 4 is placed at the center of the bobbin 1 , since the inductances Z1 and Z2 of the two coils 2 and 3 are the same, making the output voltage (e 0 ) zero (“0”), the component displacement can be detected.
然而,已有技术的位移传感器存在以下问题:由于必需采用阻值相等的两个电阻器,当负载端阻抗较低时,就要采用低阻值的电阻器,从而易引起零点漂移。因此,需要采用高阻值的精密电阻器。However, the displacement sensor in the prior art has the following problems: since two resistors with equal resistance must be used, when the impedance of the load terminal is low, a resistor with a low resistance must be used, which easily causes zero point drift. Therefore, high-value precision resistors are required.
此外还有一个问题,为了提高位移传感器的精确度要采用较高电压的交流电源,这样电阻器上的热损耗高,造成不必要的功率消耗。In addition, there is another problem. In order to improve the accuracy of the displacement sensor, a higher voltage AC power supply is used, so that the heat loss on the resistor is high, resulting in unnecessary power consumption.
本发明的目的就是了为解决上述问题。其目的之一是提供一种不依赖于电阻器从而可避免不必要的功率损耗并适于检测部件位移的位移传感器。The object of the present invention is to solve the above-mentioned problems. One of its objects is to provide a displacement sensor that does not rely on resistors so as to avoid unnecessary power loss and is suitable for detecting component displacements.
本发明另外一个目的是提供一种可使被检位移具有线性特征且不依赖外在信号处理装置的位移传感器,从而可以高精度地检测部件位移。Another object of the present invention is to provide a displacement sensor that can make the detected displacement have a linear characteristic and does not depend on an external signal processing device, so that the displacement of a component can be detected with high precision.
按本发明的上述目的,在此提供了一种用于检测部件位置的位移传感器,该传感器包括:According to the above-mentioned purpose of the present invention, a kind of displacement sensor for detecting component position is provided here, and this sensor comprises:
一个由磁性材料制成且与部件联动的磁芯;a magnetic core made of magnetic material and linked to the component;
一个在外边包围着磁芯的绕线管;A bobbin that surrounds the magnetic core on the outside;
绕在绕线管上的第一线圈和第二线圈;以及a first coil and a second coil wound on a bobbin; and
一个根据第一和第二线圈感生电压检测磁芯位置变化的信号处理单元,该信号处理单元包括:A signal processing unit for detecting changes in the position of the magnetic core according to the induced voltages of the first and second coils, the signal processing unit includes:
一个用于对第一线圈感生电压进行全波整流的第一全波整流器;a first full-wave rectifier for full-wave rectifying the induced voltage of the first coil;
一个用于对第二线圈感生电压进行全波整流的第二全波整流器;a second full-wave rectifier for full-wave rectification of the second coil-induced voltage;
一个用于对第一和第二全波整流器全波整流后的电压差进行放大的差动放大器;以及a differential amplifier for amplifying the voltage difference after full-wave rectification by the first and second full-wave rectifiers; and
一个用于过滤差动放大器输出信号中高频分量的滤波单元。A filtering unit for filtering high frequency components in the output signal of the differential amplifier.
为了更全面地了解本发明的目标和特点,应参阅附图阅读以下对本发明的详细描述,其中:In order to more fully understand the objects and features of the present invention, the following detailed description of the present invention should be read with reference to the accompanying drawings, wherein:
图1为已有技术位移传感器的原理结构图;Fig. 1 is the principle structural diagram of prior art displacement sensor;
图2为已有技术位移传感器的电路图;Fig. 2 is the circuit diagram of prior art displacement sensor;
图3为本发明的位移传感器的原理结构图;Fig. 3 is the schematic structural diagram of the displacement sensor of the present invention;
图4为本发明的位移传感器的电路图;Fig. 4 is the circuit diagram of displacement sensor of the present invention;
图5为图4中全波整流器的电路图;Fig. 5 is a circuit diagram of the full-wave rectifier in Fig. 4;
图6为图4中差动放大器的电路图;Fig. 6 is the circuit diagram of differential amplifier in Fig. 4;
图7为图4中滤波单元和峰值检测单元的电路图;Fig. 7 is the circuit diagram of filtering unit and peak detection unit in Fig. 4;
图8为说明按照本发明的位移传感器的位移检测结果的曲线图。Fig. 8 is a graph illustrating displacement detection results of the displacement sensor according to the present invention.
现参照附图详述本发明的最佳实施例。Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
图3为本发明的位移传感器的原理结构图,图4为本发明的位移传感器的电路图,其中位移传感器包括:由磁性材料制成并与部件联动的磁芯10,在外包围着磁芯10的绕线管11,对称绕在绕线管11上端和下端的第一线圈12和第二线圈13,以及根据第一和第二线圈12和13上感生电压检测磁芯10位置变化的信号处理单元20。Fig. 3 is the schematic structural diagram of the displacement sensor of the present invention, and Fig. 4 is the circuit diagram of the displacement sensor of the present invention, wherein the displacement sensor comprises: the
信号处理单元20包括:用于对第一线圈12感生电压进行全波整流的第一全波整流器21,用于对第二线圈13上感生电压进行全波整流的第二全波整流器22,用于对第一和第二全波整流器21和22全波整流后电压差进行放大的差动放大器23,用于过滤差动放大器23输出信号中高频分量的滤波单元24,用于检测由滤波单元24输出并送至微型计算机30的信号最大值和最小值的峰值检测单元25。The
如图5所示,第一和第二全波整流器21和22由多个电阻器R1-R7、二极管D1和D2、电容器C1及运算放大器(OP)U1和U2组成;如图6所示,差动放大器包括多个电阻器R8-R11及Y一个运算放大器U1组成。As shown in Figure 5, the first and second full-
此外,如图7所示,滤波单元24由多个电阻器R12-R14、电容器C2及运算放大器U3组成;峰值检测单元25包括二极管D3和D4及电容器C3和C4。In addition, as shown in FIG. 7 , the
现详述按本发明如此结构的位移传感器的工作情况。The operation of the displacement sensor thus structured according to the present invention will now be described in detail.
当频率为2千赫兹(KHz)的外在交流电源AC向第一和第二线圈12和13供电且磁芯10的位置由于部件位置变化而产生变化时,在第一和第二线圈12和13上将产生与磁芯10位置变化成比例的感生电压,第一和第二全波整流器21和22对感生在第一和第二线圈12和13上的电压分别进行全波整流并将结果输出至差动放大器23。When the frequency is 2 kilohertz (KHz) external alternating current power source AC supplies power to the first and
此外,差动放大器23对经第一和第二全波整流器21和22全波整流的电压差进行放大并将结果输出给滤波单元24。In addition, the
依据磁芯10位置变化的情况,由差动放大器23输出的信号大小相应变化,当磁芯10处于绕线管11中央时的输出为“0”V,当磁芯10位于绕线管11的上部时输出为“+”V,当磁芯10位于绕线管11的下部时输出为“-”V。According to the position change of the
滤波单元24将差动放大器23输出信号中的高频分量滤掉,并将结果输出给峰值检测单元25。The
也就是说,为了使微型计算机30能根据差动放大器23的输出信号检测出部件的位置变化,应除去差动放大器23输出信号中的高频分量。That is, in order for the
结果,由滤波单元24输出的是与部件位置成比例的电压信号,且由滤波单元24输出的电压信号在很宽的范围内具有线性特征,如图8所示。As a result, the output of the
此外,在很多应用场合部件的最高位置和最低位置比中间位置而言更需要进行检测,因而仅需对预期值进行检测。峰值检测单元25对滤波单元24输出信号的最大值和最小值进行检测并将其输入到微型计算机30,从而可满足上述要求。Furthermore, in many applications the highest and lowest positions of components need to be checked more than intermediate positions, so only expected values need to be checked. The
换句话说,峰值检测器25即使在部件实际位置改变的情况下也可维持其最大和最小值,从而微型计算机30可在预期时间读取和利用这个最大和最小值。In other words, the
由上述显然可见本发明位移传感器所具有的优点,即不采用电阻器也可检测部件的位置变化,从而避免了不必要的功率损耗。另外一项优点是,在不依赖于采用外在分离的信号处理装置的情况下使检测出的位置变化信号具有线性特征,从而能以很高精确度检测部件的位置变化。From the above, it is obvious that the displacement sensor of the present invention has the advantage that the position change of the component can be detected without using a resistor, thereby avoiding unnecessary power loss. Another advantage is that the detected position change signal can be given a linear characteristic without relying on the use of externally separate signal processing means, so that the position change of the component can be detected with a high degree of accuracy.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99109841 CN1243240A (en) | 1998-07-22 | 1999-07-16 | Displacement sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR9829503 | 1998-07-22 | ||
CN 99109841 CN1243240A (en) | 1998-07-22 | 1999-07-16 | Displacement sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1243240A true CN1243240A (en) | 2000-02-02 |
Family
ID=5274191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 99109841 Pending CN1243240A (en) | 1998-07-22 | 1999-07-16 | Displacement sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1243240A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108413857A (en) * | 2018-05-08 | 2018-08-17 | 河北布鲁克科技有限公司 | A kind of travel range metering installation and method of steel wire rope |
CN111412826A (en) * | 2020-04-09 | 2020-07-14 | 华中科技大学 | A Double Helix Differential Inductive Sensor Based on Amplitude and Phase Detection Technology |
CN111707175A (en) * | 2019-03-18 | 2020-09-25 | Tdk株式会社 | Signal processing circuit, position detection device, and magnetic sensor system |
-
1999
- 1999-07-16 CN CN 99109841 patent/CN1243240A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108413857A (en) * | 2018-05-08 | 2018-08-17 | 河北布鲁克科技有限公司 | A kind of travel range metering installation and method of steel wire rope |
CN111707175A (en) * | 2019-03-18 | 2020-09-25 | Tdk株式会社 | Signal processing circuit, position detection device, and magnetic sensor system |
CN111412826A (en) * | 2020-04-09 | 2020-07-14 | 华中科技大学 | A Double Helix Differential Inductive Sensor Based on Amplitude and Phase Detection Technology |
CN111412826B (en) * | 2020-04-09 | 2021-07-27 | 华中科技大学 | A Double Helix Differential Inductive Sensor Based on Amplitude and Phase Detection Technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1083981C (en) | DC and AC current sensor having a minor-loop orperated current transformer | |
CN1182328C (en) | Apparatus and method for controlling a linear compressor | |
EP0743508A2 (en) | Induced current position transducer | |
CN1131434C (en) | Power supply circuit for electricity meter | |
US6429639B1 (en) | Combined filter inductor and hall current sensor | |
CN1712973A (en) | Devices for reading DC and/or AC current | |
US20050103126A1 (en) | Integrating fluxgate for magnetostrictive torque sensors | |
US5949293A (en) | Integrated circuit for measuring the distance | |
CN1268904C (en) | Torque detector | |
JPH0329801A (en) | Method of compensating for variations in the output signal of a resonant circuit and distance detector | |
CN1243240A (en) | Displacement sensor | |
JPH06501557A (en) | Proximity sensing device and method | |
CN1211666C (en) | Impedance-to-voltage converter and converting method | |
CN1491470A (en) | Overcurrent protection equipment using magneto-impedance elements | |
US6078172A (en) | Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement | |
KR20000009229A (en) | Displacement sensor | |
JP4810021B2 (en) | Position detection device | |
CN1641365A (en) | Zero-flux current sensor circuit | |
Yoshida et al. | Self-sensing active magnetic bearings using a new PWM amplifier equipped with a bias voltage source | |
CN1044990A (en) | Auto measurement equipment for magnetic material | |
RU2284465C1 (en) | Device for noncontact measurement of displacements | |
JPH0529167A (en) | Current transformer | |
JPH05223910A (en) | Measuring method for magnetism | |
JPS61170627A (en) | Load detector | |
GB2062252A (en) | Quotient evaluation circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |