CN113961010B - Tracking control method for quadrotor plant protection UAV - Google Patents
Tracking control method for quadrotor plant protection UAV Download PDFInfo
- Publication number
- CN113961010B CN113961010B CN202110987581.2A CN202110987581A CN113961010B CN 113961010 B CN113961010 B CN 113961010B CN 202110987581 A CN202110987581 A CN 202110987581A CN 113961010 B CN113961010 B CN 113961010B
- Authority
- CN
- China
- Prior art keywords
- neural network
- plant protection
- parameter
- aerial vehicle
- unmanned aerial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000013528 artificial neural network Methods 0.000 claims abstract description 166
- 238000013461 design Methods 0.000 claims abstract description 139
- 230000003044 adaptive effect Effects 0.000 claims abstract description 131
- 238000013178 mathematical model Methods 0.000 claims abstract description 82
- 239000002131 composite material Substances 0.000 claims abstract description 35
- 238000013500 data storage Methods 0.000 claims abstract description 25
- 230000014509 gene expression Effects 0.000 claims description 63
- 230000001965 increasing effect Effects 0.000 claims description 51
- 230000008859 change Effects 0.000 claims description 37
- 230000006870 function Effects 0.000 claims description 37
- 239000013598 vector Substances 0.000 claims description 36
- 230000001133 acceleration Effects 0.000 claims description 34
- 230000015654 memory Effects 0.000 claims description 27
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000005484 gravity Effects 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 8
- 238000004804 winding Methods 0.000 claims 3
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 9
- 230000007547 defect Effects 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 229920006395 saturated elastomer Polymers 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及四旋翼植保无人机控制技术领域,具体来说是基于抗饱和有限时间自适应神经网络容错技术的四旋翼植保无人机跟踪控制方法。The present invention relates to the technical field of control of quad-rotor plant protection UAVs, and in particular to a tracking control method of quad-rotor plant protection UAVs based on anti-saturation finite-time adaptive neural network fault-tolerant technology.
背景技术Background Art
近年来,由于具有移动灵活、操作方便、结构简单、地形适应性强等优势,无人机已经广泛应用于现代农业领域。相较于传统的人工施肥,四旋翼植保无人机通过远程操控的方式避免了因人工操作不当而影响身体健康。同时,四旋翼植保无人机适合大面积的农作物喷药过程,提高了工作效率,降低了劳动强度,有利于实现病虫害的精确防控,促进农业经济的快速增长。In recent years, drones have been widely used in modern agriculture due to their advantages of flexible mobility, convenient operation, simple structure, and strong terrain adaptability. Compared with traditional manual fertilization, quad-rotor plant protection drones avoid the impact of improper manual operation on health through remote control. At the same time, quad-rotor plant protection drones are suitable for large-scale crop spraying, which improves work efficiency, reduces labor intensity, and is conducive to the precise prevention and control of pests and diseases, and promotes the rapid growth of the agricultural economy.
为了保证四旋翼植保无人机的高效精准作业,需要面临的主要困难之一是如何实现无人机的高精度轨迹跟踪。然而,设计一种高性能的轨迹跟踪控制器还存在着许多实际困难:首先,无人机平台具有欠驱动、强耦合和高非线性等特点,要求设计的控制器具有良好的解耦性和较强的鲁棒性;其次,由于无人机应用场景多为室外环境,极容易受到外界时变风扰的影响,要求设计的控制器具有较强的抗干扰性;另外,无人机在长时间的飞行,执行器容易出现故障和输入饱和的问题,要求设计的控制器具有良好的容错性能和抗饱和能力。然而,同时考虑上述问题会增加控制器的设计难度和复杂性。In order to ensure the efficient and accurate operation of the quad-rotor agricultural drone, one of the main difficulties is how to achieve high-precision trajectory tracking of the drone. However, there are still many practical difficulties in designing a high-performance trajectory tracking controller: First, the drone platform has the characteristics of under-actuation, strong coupling and high nonlinearity, which requires the designed controller to have good decoupling and strong robustness; secondly, since the application scenarios of drones are mostly outdoor environments, they are easily affected by external time-varying wind disturbances, which requires the designed controller to have strong anti-interference ability; in addition, when the drone is flying for a long time, the actuator is prone to failure and input saturation problems, which requires the designed controller to have good fault tolerance and anti-saturation capabilities. However, considering the above problems at the same time will increase the difficulty and complexity of the controller design.
目前,许多科研人员对四旋翼植保无人机的轨迹跟踪控制问题开展了大量的研究工作,主要包括线性控制方法和非线性控制方法。其中,最常见的线性控制方法有Proportional integral derivative(PID)、linear quadratic regulator(LQR)和H无穷控制,其基本思路是首先对无人机模型在平衡点处线性化,然后基于线性模型设计线性控制器。因此,线性控制方法对模型依赖程度低、设计简单以及实用性强。然而,当无人机在执行大操作飞行任务时,线性控制方法的控制参数容易突变,导致控制精度降低。At present, many researchers have carried out a lot of research on the trajectory tracking control problem of quadrotor agricultural drones, mainly including linear control methods and nonlinear control methods. Among them, the most common linear control methods are Proportional integral derivative (PID), linear quadratic regulator (LQR) and H infinite control. The basic idea is to first linearize the drone model at the equilibrium point, and then design a linear controller based on the linear model. Therefore, the linear control method has low dependence on the model, simple design and strong practicality. However, when the drone is performing large-scale flight missions, the control parameters of the linear control method are prone to sudden changes, resulting in reduced control accuracy.
近年来,随着计算机技术和控制理论的发展,一些先进的非线性控制方法被提出来提高无人机的跟踪控制性能,主要包括反步法、滑膜控制、神经网络控制以及自适应控制等。反步法能很好地抑制非线性系统中的扰动或不确定性,具有较强的鲁棒性。然而,在反推过程中需要对虚拟控制输入不断地微分,容易引起“指数爆炸”的问题,增加计算负担。滑膜控制是一种具有强鲁棒性、响应速度快以及设计简单的非线性控制方法,然而实际输出信号容易出现抖动现象,降低了轨迹跟踪品质。In recent years, with the development of computer technology and control theory, some advanced nonlinear control methods have been proposed to improve the tracking control performance of UAVs, mainly including backstepping, sliding film control, neural network control and adaptive control. The backstepping method can effectively suppress disturbances or uncertainties in nonlinear systems and has strong robustness. However, in the backstepping process, the virtual control input needs to be continuously differentiated, which is easy to cause the problem of "exponential explosion" and increase the computational burden. Sliding film control is a nonlinear control method with strong robustness, fast response speed and simple design. However, the actual output signal is prone to jitter, which reduces the trajectory tracking quality.
为了解决该问题,一些研究人员提出了利用有界层技术来代替控制器中的不连续项。然而,这些方法降低了系统的跟踪控制精度。神经网络控制凭借其强大的在线逼近能力,特别适用于需要同时考虑多种不确定性因素或者复杂非线性系统。其通常需结合自适应算法对神经网络权重进行在线调节,极大地增加了控制算法的在线计算时间和计算压力,这难以满足四旋翼植保无人机快速机动的飞行任务要求。除此之外,在实际应用中实现跟踪误差在有限时间范围内收敛是非常重要的,其收敛时间仅仅由控制参数决定而与跟踪初始状态无关,因此设计一种有限时间跟踪控制器就显得尤为关键。In order to solve this problem, some researchers have proposed using bounded layer technology to replace discontinuous terms in the controller. However, these methods reduce the tracking control accuracy of the system. With its powerful online approximation capability, neural network control is particularly suitable for systems that need to consider multiple uncertainties or complex nonlinear systems at the same time. It usually requires an adaptive algorithm to adjust the neural network weights online, which greatly increases the online calculation time and calculation pressure of the control algorithm, which makes it difficult to meet the fast maneuvering flight mission requirements of quad-rotor agricultural drones. In addition, in practical applications, it is very important to achieve convergence of the tracking error within a finite time range. The convergence time is only determined by the control parameters and has nothing to do with the initial state of the tracking. Therefore, it is particularly important to design a finite time tracking controller.
发明内容Summary of the invention
本发明的目的是为了解决现有技术中四旋翼植保无人机难以实现跟踪控制的缺陷,提供一种基于抗饱和有限时间自适应神经网络容错技术的四旋翼植保无人机跟踪控制方法来解决上述问题。The purpose of the present invention is to solve the defect that the tracking control of the quad-rotor plant protection UAV in the prior art is difficult to achieve, and to provide a quad-rotor plant protection UAV tracking control method based on anti-saturation finite time adaptive neural network fault tolerance technology to solve the above problem.
为了实现上述目的,本发明的技术方案如下:In order to achieve the above object, the technical solution of the present invention is as follows:
一种基于抗饱和有限时间自适应神经网络容错技术的四旋翼植保无人机跟踪控制方法,包括以下步骤:A tracking control method for a quadrotor plant protection UAV based on an anti-saturation finite-time adaptive neural network fault-tolerant technology comprises the following steps:
期望轨迹数据的设定和存储:根据四旋翼植保无人机所执行的飞行任务要求,通过地面终端输入期望轨迹数据;通过机载网络模块接收地面终端所输入的期望轨迹数据,并保存到飞行数据存储器I中;Setting and storing the expected trajectory data: according to the flight mission requirements performed by the quad-rotor plant protection UAV, the expected trajectory data is input through the ground terminal; the expected trajectory data input by the ground terminal is received through the airborne network module and saved in the flight data storage device I;
实时轨迹数据的采集和存储:通过四旋翼植保无人机所搭载的位置传感器、姿态传感器采集实时轨迹数据,并将所采集的实时轨迹数据保存在飞行数据存储器II中;Collection and storage of real-time trajectory data: The real-time trajectory data is collected through the position sensor and attitude sensor carried by the quad-rotor agricultural drone, and the collected real-time trajectory data is stored in the flight data storage device II;
四旋翼植保无人机复合数学模型的建立:根据四旋翼植保无人机的固有机械特性以及在飞行时受到执行器故障、输入饱和以及时变风扰的干扰因素,建立四旋翼植保无人机的完整复合数学模型;Establishment of a composite mathematical model of a quadrotor agricultural drone: Based on the inherent mechanical characteristics of the quadrotor agricultural drone and the interference factors of actuator failure, input saturation and time-varying wind disturbance during flight, a complete composite mathematical model of the quadrotor agricultural drone is established;
四旋翼植保无人机飞行误差数学模型的建立:基于四旋翼植保无人机复合数学模型,建立四旋翼植保无人机的飞行误差数学模型;Establishment of the flight error mathematical model of quadrotor plant protection UAV: Based on the composite mathematical model of quadrotor plant protection UAV, the flight error mathematical model of quadrotor plant protection UAV is established;
饱和补偿系统的设计和数据存储:基于四旋翼植保无人机的飞行误差数学模型设计饱和补偿系统,并将饱和补偿系统信号数据更新并保存到飞行数据存储器III中;Design and data storage of saturation compensation system: Design a saturation compensation system based on the flight error mathematical model of the quad-rotor agricultural drone, and update and save the saturation compensation system signal data into the flight data storage device III;
自适应神经网络参数的设计和数据存储:基于四旋翼植保无人机的飞行误差数学模型设计自适应神经网络参数,并将自适应神经网络参数的数据更新并保存到飞行数据存储器IV中;Design and data storage of adaptive neural network parameters: Design the adaptive neural network parameters based on the flight error mathematical model of the quadrotor plant protection UAV, and update and save the data of the adaptive neural network parameters into the flight data storage IV;
基于抗饱和有限时间自适应神经网络容错跟踪控制器的设计和控制信号的存储:基于四旋翼植保无人机的飞行误差数学模型和饱和补偿系统,设计基于抗饱和有限时间自适应神经网络容错跟踪控制器,并将基于抗饱和有限时间自适应神经网络容错跟踪控制信号数据更新并保存到飞行数据存储器V中;Design of fault-tolerant tracking controller based on anti-saturation finite-time adaptive neural network and storage of control signals: Based on the flight error mathematical model and saturation compensation system of the quadrotor plant protection UAV, a fault-tolerant tracking controller based on anti-saturation finite-time adaptive neural network is designed, and the fault-tolerant tracking control signal data based on anti-saturation finite-time adaptive neural network is updated and saved in the flight data storage V;
实时轨迹数据的更新:将基于抗饱和有限时间自适应神经网络容错跟踪控制信号输入到四旋翼植保无人机的完整复合数学模型中,输出实时轨迹数据并保存到飞行数据存储器II中;Update of real-time trajectory data: input the fault-tolerant tracking control signal based on the anti-saturation finite-time adaptive neural network into the complete composite mathematical model of the quadrotor plant protection UAV, output the real-time trajectory data and save it in the flight data memory II;
位置系统参数数值的调整:通过监测饱和补偿信号的数据变化、自适应神经网络参数的数据变化以及期望轨迹数据与实际轨迹数据的差值变化,对位置系统中的设计参数、控制参数进行调整,实现四旋翼植保无人机的跟踪控制。Adjustment of the numerical values of the position system parameters: By monitoring the data changes of the saturation compensation signal, the data changes of the adaptive neural network parameters, and the difference changes between the expected trajectory data and the actual trajectory data, the design parameters and control parameters in the position system are adjusted to achieve tracking control of the quadrotor plant protection UAV.
所述四旋翼植保无人机复合数学模型的建立包括以下步骤:The establishment of the composite mathematical model of the quadrotor plant protection UAV includes the following steps:
基于坐标系转换方法,建立四旋翼植保无人机的位置运动学数学模型和姿态运动学数学模型,具体表达式分别如下所示:Based on the coordinate system transformation method, the position kinematics mathematical model and attitude kinematics mathematical model of the quadrotor plant protection UAV are established. The specific expressions are as follows:
其中,P=[x,y,z]T和分别表示四旋翼植保无人机在地球坐标系中的欧几里得位置向量和欧拉角向量,其中x、y和z分别表示在xa轴、ya轴和za轴上的位置坐标,φ、θ和分别表示绕xa轴的横摇角度数、绕ya轴的俯仰角度数和绕za轴的偏航角度数,V=[u,v,w]T和Ω=[p,q,r]T分别表示四旋翼植保无人机在机体坐标系中的线速度向量和角速度向量,其中,u、v和w分别表示在xb轴、yb轴和zb轴上的线速度,p、q和r分别表示绕xb轴的横摇角速度、绕yb轴的俯仰角速度和绕zb轴的偏航角速度,和分别表示四旋翼植保无人机在地球坐标系中的线速度向量和角速度向量,其中和分别表示在xa轴、ya轴和za轴上的线速度,和分别表示绕xa轴的横摇角速度、绕ya轴的俯仰角速度和绕za轴的偏航角速度,Rt和Rs分别表示正交矩阵和欧拉矩阵,具体表达式分别如下所示:Where P = [x, y, z] T and represents the Euclidean position vector and Euler angle vector of the quadrotor agricultural drone in the earth coordinate system, respectively, where x, y, and z represent the position coordinates on the x a- axis, y a- axis, and z a- axis, respectively, and φ, θ, and Respectively represent the roll angle around the x a axis, the pitch angle around the y a axis, and the yaw angle around the z a axis, V = [u, v, w] T and Ω = [p, q, r] T respectively represent the linear velocity vector and angular velocity vector of the quadrotor agricultural drone in the body coordinate system, where u, v, and w represent the linear velocities on the x b axis, y b axis, and z b axis, respectively, and p, q, and r represent the roll angular velocity around the x b axis, the pitch angular velocity around the y b axis, and the yaw angular velocity around the z b axis, respectively. and They represent the linear velocity vector and angular velocity vector of the quadrotor agricultural drone in the earth coordinate system, respectively. and They represent the linear velocities on the x a axis, y a axis and z a axis respectively, and They represent the roll angular velocity around the x a axis, the pitch angular velocity around the y a axis, and the yaw angular velocity around the z a axis, respectively. R t and R s represent the orthogonal matrix and the Euler matrix, respectively. The specific expressions are as follows:
利用欧拉拉格朗日建模方法,考虑四旋翼植保无人机的自身机械结构特点以及在飞行时所受到的外界时变风扰影响,建立四旋翼植保无人机的位置动力学数学模型和姿态动力学数学模型,具体表达式分别如下所示:Using the Euler Lagrangian modeling method, considering the mechanical structure characteristics of the quadrotor agricultural drone and the influence of external time-varying wind disturbance during flight, the position dynamics mathematical model and attitude dynamics mathematical model of the quadrotor agricultural drone are established. The specific expressions are as follows:
其中,Ir=diag(Ix,Iy,Iz)表示正定转动惯量矩阵,其中Ix、Iy和Iz分别表示绕x轴、y轴和z轴的转动惯量系数,m表示四旋翼植保无人机的自身质量,和分别表示四旋翼植保无人机在机体坐标系中的线加速度向量和角加速度向量,其中,和分别表示在xb轴、yb轴和zb轴上的线加速度,和分别表示绕xb轴的横摇角加速度、绕yb轴的俯仰角加速度和绕zb轴的偏航角加速度;Wherein, I r = diag(I x ,I y ,I z ) represents the positive definite moment of inertia matrix, where I x , I y and I z represent the moment of inertia coefficients around the x-axis, y-axis and z-axis respectively, m represents the mass of the quadrotor plant protection drone, and They represent the linear acceleration vector and angular acceleration vector of the quadrotor agricultural drone in the body coordinate system, respectively. and denote the linear acceleration on the x b axis, y b axis and z b axis respectively, and They represent the roll angular acceleration around the x b axis, the pitch angular acceleration around the y b axis, and the yaw angular acceleration around the z b axis respectively;
Fs=[0,0,uo,1]T和Ts=[uo,2,uo,3,uo,4]T分别表示升力和控制力矩, Fs = [0,0,u o,1 ] T and Ts = [u o,2 ,u o,3 ,u o,4 ] T represent lift and control torque respectively.
其中,uo,i,(i=1,2,3,4)的具体计算表达式如下:Among them, the specific calculation expression of u o,i ,(i=1,2,3,4) is as follows:
其中,wi,(i=1,2,3,4)表示第i个电机转子的转速,d表示电机与四旋翼植保无人机质心的距离,c1和c2分别表示螺旋桨推力系数和转矩系数,Fa和Ta分别表示在姿态动力系统和位置动力系统中的空气阻力,具体表达式分别如下:Among them, w i ,(i=1,2,3,4) represents the rotation speed of the i-th motor rotor, d represents the distance between the motor and the mass center of the quadrotor agricultural drone, c 1 and c 2 represent the propeller thrust coefficient and torque coefficient respectively, F a and T a represent the air resistance in the attitude power system and position power system respectively. The specific expressions are as follows:
其中,Kf=diag(Kf,1,Kf,2,Kf,3)和Kt=diag(Kt,1,Kt,2,Kt,3)分别表示姿态系统的阻力系数矩阵和位置系统的阻力系数矩阵;Wherein, Kf = diag(Kf ,1 , Kf,2 , Kf ,3 ) and Kt = diag(Kt ,1 , Kt,2 , Kt,3 ) represent the drag coefficient matrix of the attitude system and the drag coefficient matrix of the position system respectively;
Fg表示系统重力,其具体表达式如下所示:F g represents the system gravity, and its specific expression is as follows:
其中,E=[0,0,1]T,m表示四旋翼植保无人机的自身质量,g表示重力加速度,为正交矩阵Rt的逆矩阵,Tg表示陀螺力矩,其具体表达式如下所示:Where, E = [0,0,1] T , m represents the mass of the quadrotor agricultural drone, g represents the acceleration of gravity, is the inverse matrix of the orthogonal matrix R t , T g represents the gyro torque, and its specific expression is as follows:
其中,J表示每个转子的惯性系数,Where J represents the inertia coefficient of each rotor,
符号(Ω)×表示Ω向量的斜对称矩阵,其满足如下形式:The symbol (Ω) × represents a skew-symmetric matrix of the Ω vector, which satisfies the following form:
基于四旋翼植保无人机的运动学数学模型、动力学数学模型、位置动力学数学模型和姿态动力学数学模型,建立不考虑执行器错误和输入饱和的非完整复合数学模型,具体表达式分别如下所示:Based on the kinematic mathematical model, dynamic mathematical model, position dynamic mathematical model and attitude dynamic mathematical model of the quadrotor plant protection UAV, a non-complete composite mathematical model that does not consider actuator errors and input saturation is established. The specific expressions are as follows:
其中,表示四旋翼植保无人机的虚拟输入向量;in, Represents the virtual input vector of the quadrotor agricultural drone;
以及和 as well as and
分别表示位置系统和姿态系统中的非线性,da=[dx,dy,dz]T和分别表示位置系统和姿态系统中的集总扰动;denote the nonlinearity in the position system and attitude system respectively, da = [ dx , dy , dz ] T and denote the lumped disturbances in the position system and attitude system respectively;
考虑执行器错误的影响,具体的数学表达式如下所示:Considering the impact of actuator errors, the specific mathematical expression is as follows:
uo,i=ρiui+ri,i=1,2,3,4,u o,i =ρ i u i +r i ,i=1,2,3,4,
其中,uo,i和ui分别表示实际的控制信号和期望的控制信号,ρi和ri分别表示有效系数和附加故障;Where, u o,i and u i represent the actual control signal and the expected control signal respectively, ρ i and ri represent the effective coefficient and the additional fault respectively;
考虑执行器输入饱和的影响,具体的数学表达式如下所示:Considering the influence of actuator input saturation, the specific mathematical expression is as follows:
sat(ui)=sign(ui)min{|ui|,umax,i},i=1,2,3,4,sat(u i )=sign(u i )min{|u i |,u max,i },i=1,2,3,4,
其中,umax,i表示控制信号ui的上界值,符号函数sign(ui)定义为Where u max,i represents the upper limit of the control signal u i , and the sign function sign(u i ) is defined as
基于非完整复合数学模型、执行器错误的数学表达式以及输入饱和的数学表达式,建立考虑执行器错误和输入饱和的完整复合数学模型和具体表达式如下所示:Based on the incomplete composite mathematical model, the mathematical expression of actuator error and the mathematical expression of input saturation, a complete composite mathematical model considering actuator error and input saturation is established. and The specific expression is as follows:
其中,ρb=[ρ1,ρ2,ρ3]T,rb=[r1,r2,r3]T Among them, ρ b = [ρ 1 , ρ 2 , ρ 3 ] T , r b = [r 1 , r 2 , r 3 ] T
和 and
所述四旋翼植保无人机飞行误差数学模型的建立包括以下步骤:The establishment of the flight error mathematical model of the quadrotor plant protection UAV includes the following steps:
定义位置误差e1、姿态误差e2、线速度误差以及角速度误差具体的数学表达式分别如下所示:Define position error e 1 , attitude error e 2 , linear velocity error And the angular velocity error The specific mathematical expressions are as follows:
e1=P-Pd,e2=Θ-Θd, e 1 =PP d , e 2 =Θ-Θ d ,
其中,Pd=[xd,yd,zd]T和分别表示在地球坐标系中的期望位置信号和期望姿态信号;Among them, P d =[x d ,y d ,z d ] T and Respectively represent the expected position signal and the expected attitude signal in the earth coordinate system;
基于所定义的位置误差e1、姿态误差e2、线速度误差以及角速度误差设计位置系统的滤波跟踪误差ξ1和姿态系统的滤波跟踪误差ξ2,具体的数学表达式如下:Based on the defined position error e 1 , attitude error e 2 , and linear velocity error And the angular velocity error Design the filter tracking error ξ 1 of the position system and the filter tracking error ξ 2 of the attitude system. The specific mathematical expressions are as follows:
其中,γ1>0和γ2>0表示滤波系数,通过增大γ1和γ2能够提高跟踪误差的收敛速度;Wherein, γ 1 >0 and γ 2 >0 represent filter coefficients. By increasing γ 1 and γ 2 , the convergence speed of the tracking error can be improved.
基于位置的滤波跟踪误差ξ1、姿态的滤波跟踪误差ξ2以及完整复合数学模型和建立四旋翼植保无人机的飞行误差数学模型和具体的数学表达式如下:Based on the position-based filtered tracking error ξ 1 , the attitude-based filtered tracking error ξ 2 , and the complete composite mathematical model and Establishing a mathematical model of flight error for a quadrotor agricultural drone and The specific mathematical expression is as follows:
其中,和分别表示在位置系统和姿态系统中的复杂非线性变量。in, and Represent the complex nonlinear variables in the position system and attitude system respectively.
所述饱和补偿系统的设计和数据存储包括以下步骤:The design and data storage of the saturation compensation system include the following steps:
基于位置系统的滤波跟踪误差ξ1和姿态系统的滤波跟踪误差ξ2,建立饱和补偿系统和其具体的数学表达式如下所示:Based on the filtered tracking error ξ 1 of the position system and the filtered tracking error ξ 2 of the attitude system, a saturation compensation system is established and Its specific mathematical expression is as follows:
其中,ΔU2=Tt-sat(Tt),K1>0和K2>0表示输入补偿辅助系统的控制参数,υ1和υ2分别表示位置系统和姿态系统中输入的补偿辅助变量,ρ1和ρ2表示正奇数,且满足条件ρ1<ρ2;in, ΔU 2 =T t -sat(T t ), K 1 >0 and K 2 >0 represent control parameters of the input compensation auxiliary system, υ 1 and υ 2 represent compensation auxiliary variables input in the position system and attitude system, respectively, ρ 1 and ρ 2 represent positive odd numbers, and satisfy the condition ρ 1 <ρ 2 ;
补偿辅助变量数据υ1和υ2更新并保存到飞行数据存储器III中。The compensated auxiliary variable data υ 1 and υ 2 are updated and saved in the flight data memory III.
所述自适应神经网络参数的设计和数据存储包括以下步骤:The design and data storage of the adaptive neural network parameters include the following steps:
根据s1和s2的定义,得如下不等式:According to the definitions of s 1 and s 2 , we get the following inequality:
然后,基于径向基函数神经网络对非线性函数的强逼近能力,引入径向基函数神经网络,其具体的数学表达式如下所示:Then, based on the strong approximation ability of radial basis function neural network to nonlinear functions, radial basis function neural network is introduced, and its specific mathematical expression is as follows:
h(Z)=W*TΞ(Z)+δ(Z),h(Z)=W * TΞ(Z)+δ(Z),
其中,和W*TΞ(Z)分别表示径向基函数神经网络的输入和输出,n表示输入的数量,h(Z)表示非线性函数,δ(Z)表示逼近误差,W*表示最优权重向量,其根据如下公式计算:in, and W *T Ξ(Z) respectively represent the input and output of the radial basis function neural network, n represents the number of inputs, h(Z) represents the nonlinear function, δ(Z) represents the approximation error, and W * represents the optimal weight vector, which is calculated according to the following formula:
其中,表示径向基函数神经网络的权重向量,表示高斯基函数,其具体的数学表达式如下:in, represents the weight vector of the radial basis function neural network, represents the Gaussian basis function, and its specific mathematical expression is as follows:
其中,m=1,2,...,ksum,ksum表示隐藏层中总的神经元;和μ分别表示径向基函数神经网络的中心和半径;Where, m = 1, 2, ..., k sum , k sum represents the total number of neurons in the hidden layer; and μ represent the center and radius of the radial basis function neural network, respectively;
利用径向基函数神经网络逼近非线性函数η1(Z1)和η2(Z2),其具体的数学表达式如下所示:The radial basis function neural network is used to approximate the nonlinear functions η 1 (Z 1 ) and η 2 (Z 2 ), and its specific mathematical expression is as follows:
进一步得:Further:
其中,和Ψi(Zi)=1+Ξi(Zi),(i=1,2)分别表示未知虚参数和已知的可计算正标量参数;in, and Ψ i (Z i )=1+Ξ i (Z i ), (i=1,2) represent unknown imaginary parameters and known computable positive scalar parameters respectively;
设计的自适应神经网络参数和如下所示:Designed adaptive neural network parameters and As shown below:
其中,bi和ci,(i=1,2)均表示正的设计参数;表示βi的上界估计值;Wherein, bi and c i (i=1,2) both represent positive design parameters; represents the upper bound estimate of β i ;
将自适应神经网络参数数据和更新并保存到飞行数据存储器IV中。The adaptive neural network parameter data and Update and save to flight data memory IV.
所述基于抗饱和有限时间自适应神经网络容错跟踪控制器的设计和控制信号的存储包括以下步骤:The design of the anti-saturation finite-time adaptive neural network fault-tolerant tracking controller and the storage of control signals include the following steps:
基于滤波跟踪误差ξ1和ξ2、饱和补偿系统和自适应神经网络参数和以及完整复合数学模型和设计基于抗饱和有限时间自适应神经网络容错跟踪控制器,其具体的数学表达式如下所示:Based on filtering tracking errors ξ 1 and ξ 2 , saturation compensation system and Adaptive neural network parameters and And a complete composite mathematical model and The design is based on an anti-saturation finite-time adaptive neural network fault-tolerant tracking controller, and its specific mathematical expression is as follows:
其中,ki和ai,(i=1,2)表示正设计参数,Where, ki and ai , (i = 1, 2) represent positive design parameters,
由于四旋翼植保无人机是具有四个输入(uo,1,uo,2,uo,3,uo,4)6个输出的欠驱动系统,利用三个虚拟控制输入信号(q1,q2,q3)计算实际控制输入信号uo,1,即:Since the quadrotor agricultural drone has four inputs (u o,1 ,u o,2 ,u o,3 ,u o,4 ) and six outputs For an under-actuated system, the actual control input signal u o,1 is calculated using three virtual control input signals (q 1 ,q 2 ,q 3 ), namely:
另外,期望俯仰角φd和期望偏航角θd的计算公式分别如下所示:In addition, the calculation formulas for the desired pitch angle φ d and the desired yaw angle θ d are respectively as follows:
将基于抗饱和有限时间自适应神经网络容错跟踪控制信号数据和Tt更新并保存到飞行数据存储器V中。The anti-saturation finite time adaptive neural network fault-tolerant tracking control signal data and T t are updated and saved in the flight data memory V.
所述实时轨迹数据的更新包括以下步骤:The updating of the real-time trajectory data comprises the following steps:
将基于抗饱和有限时间自适应神经网络容错跟踪控制信号输入到四旋翼植保无人机的完整复合数学模型,输出实时轨迹数据的二阶导数,即:三个线加速度和三个角加速度并保存到飞行数据存储器II中;The fault-tolerant tracking control signal based on the anti-saturation finite-time adaptive neural network is input into the complete composite mathematical model of the quadrotor plant protection UAV, and the second-order derivative of the real-time trajectory data is output, namely: three linear accelerations and three angular accelerations And save it to the flight data memory II;
对三个线加速度和三个角加速度进行二次积分,获得实时轨迹数据。For three linear accelerations and three angular accelerations Perform secondary integration to obtain real-time trajectory data.
所述位置系统和姿态系统中参数数值的调整包括以下步骤:The adjustment of the parameter values in the position system and the attitude system comprises the following steps:
将保存在飞行数据存储器I、II和III中的期望轨迹数据、实时轨迹数据和实时自适应神经网络参数,以及复杂非线性变量,输入到饱和补偿系统和径向基函数神经网络中,输出新的饱和补偿信号和新的自适应神经网络参数;Inputting the expected trajectory data, real-time trajectory data, real-time adaptive neural network parameters, and complex nonlinear variables stored in flight data memories I, II, and III into the saturation compensation system and the radial basis function neural network, and outputting new saturation compensation signals and new adaptive neural network parameters;
将保存在飞行数据存储器I和II中的实时轨迹数据和期望轨迹数据、新的饱和补偿信号以及新的自适应神经网络参数,输入到基于抗饱和有限时间自适应神经网络容错跟踪控制器中,输出用于调整四旋翼植保无人机轨迹的控制信号;The real-time trajectory data and expected trajectory data stored in flight data memory I and II, the new saturation compensation signal and the new adaptive neural network parameters are input into the anti-saturation finite-time adaptive neural network fault-tolerant tracking controller, and the control signal for adjusting the trajectory of the quadrotor plant protection UAV is output;
将用于调整四旋翼植保无人机轨迹的控制信号,输入到四旋翼植保无人机的完整复合数学模型中,输出实时轨迹数据的二阶导数,即:三个线加速度和三个角加速度再对实时轨迹数据的二阶导数进行二次积分,得到新的实时轨迹数据,即:在xa轴、ya轴和za轴上的位置坐标x、y和z,以及绕xa轴的横摇角度数φ、绕ya轴的俯仰角度数θ和绕za轴的偏航角度数 The control signal used to adjust the trajectory of the quadrotor plant protection drone is input into the complete composite mathematical model of the quadrotor plant protection drone, and the second-order derivative of the real-time trajectory data is output, namely: three linear accelerations and three angular accelerations Then perform a second integration on the second-order derivative of the real- time trajectory data to obtain the new real-time trajectory data, namely: the position coordinates x, y and z on the xa axis, ya axis and za axis, as well as the roll angle φ around the xa axis, the pitch angle θ around the ya axis and the yaw angle around the za axis.
将新的实时轨迹数据、新的饱和补偿信号数据、新的自适应神经网络参数数据以及用于调整四旋翼植保无人机轨迹的输入控制信号更新,并分别存储于飞行数据存储器II、III、IV和V中;The new real-time trajectory data, the new saturation compensation signal data, the new adaptive neural network parameter data and the input control signal for adjusting the trajectory of the quad-rotor plant protection UAV are updated and stored in the flight data memories II, III, IV and V respectively;
观测飞行数据库III中饱和补偿信号数据的变化:Changes in saturation compensation signal data in Observation Flight Database III:
位置系统中设计参数k1和a1的变化调整:如果在位置系统中的饱和补偿信号的绝对值在大于等于0.2的范围变化,则设计参数k1按0.5大小增加,并且设计参数a1的值按0.2大小增加,直至位置系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化;如果位置系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化,则设计参数k1按0.3大小增加,并且设计参数a1的值按0.1大小增加,直至位置系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化;如果位置系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化,则设计参数k1和a1的值均不变化,这满足四旋翼植保无人机在位置系统中输入信号补偿的性能要求;Change adjustment of design parameters k1 and a1 in the position system: if the absolute value of the saturation compensation signal in the position system changes in a range greater than or equal to 0.2, the design parameter k1 is increased by 0.5, and the value of the design parameter a1 is increased by 0.2, until the absolute value of the saturation compensation signal in the position system changes in a range less than or equal to 0.2; if the absolute value of the saturation compensation signal in the position system changes in a range less than or equal to 0.2, the design parameter k1 is increased by 0.3, and the value of the design parameter a1 is increased by 0.1, until the absolute value of the saturation compensation signal in the position system changes in a range less than or equal to 0.02; if the absolute value of the saturation compensation signal in the position system changes in a range less than or equal to 0.02, the values of the design parameters k1 and a1 do not change, which meets the performance requirements of input signal compensation in the position system of the quadrotor plant protection UAV;
姿态系统中设计参数k2和a2的变化调整:如果在姿态系统中的饱和补偿信号的绝对值在大于等于0.2的范围变化,则设计参数k2按0.5大小增加,并且设计参数a2的值按0.2大小增加,直至姿态系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化;如果姿态系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化,则设计参数k2按0.3大小增加,并且设计参数a2的值按0.1大小增加,直至姿态系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化;如果姿态系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化,则设计参数k2和a2的值均不变化,这满足四旋翼植保无人机在姿态系统中输入信号补偿的性能要求。Change adjustment of design parameters k2 and a2 in the attitude system: if the absolute value of the saturated compensation signal in the attitude system changes in the range of greater than or equal to 0.2, the design parameter k2 is increased by 0.5, and the value of the design parameter a2 is increased by 0.2, until the absolute value of the saturated compensation signal in the attitude system changes in the range of less than or equal to 0.2; if the absolute value of the saturated compensation signal in the attitude system changes in the range of less than or equal to 0.2, the design parameter k2 is increased by 0.3, and the value of the design parameter a2 is increased by 0.1, until the absolute value of the saturated compensation signal in the attitude system changes in the range of less than or equal to 0.02; if the absolute value of the saturated compensation signal in the attitude system changes in the range of less than or equal to 0.02, the values of design parameters k2 and a2 do not change, which meets the performance requirements of input signal compensation in the attitude system of the quadrotor plant protection UAV.
观测飞行数据库IV中自适应神经网络参数数据的变化:Changes in adaptive neural network parameter data in observed flight database IV:
位置系统中设计参数b1和c1的变化调整:如果在位置系统中的自适应神经网络参数值随时间递增变化,则设计参数b1的值按0.2大小递减,同时设计参数c1的值按0.25大小增加,直至位置系统中的自适应神经网络参数值随时间单调递减;如果位置系统中的自适应神经网络参数值需要大于25秒才能收敛至零,则设计参数b1的值按0.08大小递减,同时设计参数c1的值按0.12大小增加,直至位置系统中的自适应神经网络参数值需要小于25秒收敛至零附近;如果位置系统中的自适应神经网络参数值需要小于25秒收敛至零附近,则设计参数b1的值按0.04大小递减,同时设计参数c1的值按0.06大小增加,直至位置系统中的自适应神经网络参数值需要10秒到25秒范围内才能收敛至零附近;如果位置系统中的自适应神经网络参数值需要10秒到25秒范围内收敛至零附近,则设计参数b1的值不变化,同时设计参数c1的值按0.04大小增加,直至位置系统中的自适应神经网络参数值在10秒内能收敛至零附近;如果位置系统中的自适应神经网络参数值在10秒以内收敛至零,则设计参数b1和c1的值均不变化,这满足四旋翼植保无人机在位置系统中自适应神经网络参数收敛的性能要求;Change adjustment of design parameters b1 and c1 in the position system: if the adaptive neural network parameter value in the position system increases with time, the value of the design parameter b1 decreases by 0.2, and the value of the design parameter c1 increases by 0.25, until the adaptive neural network parameter value in the position system decreases monotonically with time; if the adaptive neural network parameter value in the position system needs more than 25 seconds to converge to zero, the value of the design parameter b1 decreases by 0.08, and the value of the design parameter c1 increases by 0.12, until the adaptive neural network parameter value in the position system needs less than 25 seconds to converge to zero; if the adaptive neural network parameter value in the position system needs less than 25 seconds to converge to zero, the value of the design parameter b1 decreases by 0.04, and the value of the design parameter c1 increases by 0.06, until the adaptive neural network parameter value in the position system needs to converge to zero within 10 seconds to 25 seconds; if the adaptive neural network parameter value in the position system needs to converge to zero within 10 seconds to 25 seconds, the design parameter b The value of 1 does not change, and the value of the design parameter c 1 increases by 0.04 until the adaptive neural network parameter value in the position system can converge to near zero within 10 seconds; if the adaptive neural network parameter value in the position system converges to zero within 10 seconds, the values of the design parameters b 1 and c 1 do not change, which meets the performance requirements of the convergence of the adaptive neural network parameters in the position system of the quadrotor plant protection drone;
姿态系统中设计参数b2和c2的变化调整:如果在姿态系统中的自适应神经网络参数值随时间递增变化,则设计参数b2的值按0.2大小递减,同时设计参数c2的值按0.25大小增加,直至姿态系统中的自适应神经网络参数值随时间单调递减;如果姿态系统中的自适应神经网络参数值需要大于25秒才能收敛至零,则设计参数b2的值按0.08大小递减,同时设计参数c2的值按0.12大小增加,直至姿态系统中的自适应神经网络参数值需要小于25秒收敛至零附近;如果姿态系统中的自适应神经网络参数值需要小于25秒收敛至零附近,则设计参数b2的值按0.04大小递减,同时设计参数c2的值按0.06大小增加,直至姿态系统中的自适应神经网络参数值需要10秒到25秒范围内才能收敛至零附近;如果姿态系统中的自适应神经网络参数值需要10秒到25秒范围内收敛至零附近,则设计参数b2的值不变化,同时设计参数c2的值按0.04大小增加,直至姿态系统中的自适应神经网络参数值在10秒范围内收敛至零;如果姿态系统中的自适应神经网络参数值在10秒范围内收敛至零,则设计参数b2和c2的值均不变化,这满足四旋翼植保无人机在姿态系统中自适应神经网络参数收敛的性能要求。Change adjustment of design parameters b2 and c2 in the attitude system: if the adaptive neural network parameter value in the attitude system increases with time, the value of the design parameter b2 decreases by 0.2, and the value of the design parameter c2 increases by 0.25, until the adaptive neural network parameter value in the attitude system decreases monotonically with time; if the adaptive neural network parameter value in the attitude system needs more than 25 seconds to converge to zero, the value of the design parameter b2 decreases by 0.08, and the value of the design parameter c2 increases by 0.12, until the adaptive neural network parameter value in the attitude system needs less than 25 seconds to converge to zero; if the adaptive neural network parameter value in the attitude system needs less than 25 seconds to converge to zero, the value of the design parameter b2 decreases by 0.04, and the value of the design parameter c2 increases by 0.06, until the adaptive neural network parameter value in the attitude system needs 10 seconds to 25 seconds to converge to zero; if the adaptive neural network parameter value in the attitude system needs 10 seconds to 25 seconds to converge to zero, the design parameter b The value of 2 does not change, and the value of design parameter c 2 increases by 0.04 until the adaptive neural network parameter value in the attitude system converges to zero within 10 seconds; if the adaptive neural network parameter value in the attitude system converges to zero within 10 seconds, the values of design parameters b 2 and c 2 do not change, which meets the performance requirements of the convergence of the adaptive neural network parameters in the attitude system of the quadrotor plant protection UAV.
通过飞行数据库I和II中的期望轨迹数据与实际轨迹数据进行差值比较:Compare the difference between the expected trajectory data and the actual trajectory data in flight databases I and II:
位置系统中控制参数γ1的变化调整:如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和大于1.5,则控制参数γ1的值按0.18大小增加,直至差值的绝对值之和小于等于1.5;如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和小于等于1.5,则控制参数γ1的值按0.1大小增加,直至差值的绝对值之和小于等于0.1;如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和小于等于0.1,则控制参数γ1的值按0.06大小增加,直至差值的绝对值之和小于等于0.01;如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和小于等于0.01,控制参数γ1的值不改变,这满足四旋翼植保无人机在位置系统中轨迹跟踪精度的性能要求;Change adjustment of control parameter γ 1 in the position system: if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is greater than 1.5, the value of control parameter γ 1 is increased by 0.18 until the sum of the absolute values of the differences is less than or equal to 1.5; if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is less than or equal to 1.5, the value of control parameter γ 1 is increased by 0.1 until the sum of the absolute values of the differences is less than or equal to 0.1; if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is less than or equal to 0.1, the value of control parameter γ 1 is increased by 0.06 until the sum of the absolute values of the differences is less than or equal to 0.01; if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time position (x, y, z) is less than or equal to 0.01, and the value of the control parameter γ 1 does not change, which meets the performance requirements of the trajectory tracking accuracy of the quadrotor plant protection UAV in the position system;
如果三种期望姿态角度与相应的实时姿态角度数差值的绝对值之和大于1,则控制参数γ2的值按0.15大小增加,直至差值的绝对值之和小于等于1;如果三种期望姿态角度数与相应的实时姿态角度数差值的绝对值之和之和小于等于1,则控制参数γ2的值按0.08大小增加,直至差值的绝对值之和小于等于0.1;如果三种期望姿态角度数与相应的实时姿态角度数差值的绝对值之和小于等于0.1,则控制参数γ2的值按0.03大小增加,直至差值的绝对值之和在小于等于0.01;如果三种期望姿态角度数与相应的实时姿态角度数差值的绝对值之和小于等于0.01,则控制参数γ2的值不改变,这满足四旋翼植保无人机在姿态系统中轨迹跟踪精度的性能要求。If the three desired attitude angles And the corresponding real-time attitude angle If the sum of the absolute values of the differences is greater than 1, the value of the control parameter γ2 is increased by 0.15 until the sum of the absolute values of the differences is less than or equal to 1; if the three desired attitude angles are And the corresponding real-time attitude angle If the sum of the absolute values of the differences is less than or equal to 1, the value of the control parameter γ2 is increased by 0.08 until the sum of the absolute values of the differences is less than or equal to 0.1; if the three desired attitude angles are And the corresponding real-time attitude angle If the sum of the absolute values of the differences is less than or equal to 0.1, the value of the control parameter γ2 is increased by 0.03 until the sum of the absolute values of the differences is less than or equal to 0.01; if the three desired attitude angles are And the corresponding real-time attitude angle If the sum of the absolute values of the differences is less than or equal to 0.01, the value of the control parameter γ 2 does not change, which meets the performance requirements of the trajectory tracking accuracy of the quadrotor plant protection UAV in the attitude system.
有益效果Beneficial Effects
本发明的基于抗饱和有限时间自适应神经网络容错技术的四旋翼植保无人机跟踪控制方法,与现有技术相比可以保证四旋翼植保无人机的轨迹跟踪误差在有限时间范围内收敛;其次,该方法具有强鲁棒性、良好的抗饱和性以及执行器容错能力,可以在外界时变干扰、输入饱和以及执行器错误同时存在的情况下,实现四旋翼植保无人机的高性能轨迹跟踪控制;同时,该方法可以有效地减少自适应神经网络参数的在线计算数量,降低了在线计算负担。The tracking and control method of the quadrotor plant protection UAV based on the anti-saturation finite-time adaptive neural network fault-tolerant technology of the present invention can ensure that the trajectory tracking error of the quadrotor plant protection UAV converges within a limited time range compared with the prior art; secondly, the method has strong robustness, good anti-saturation and actuator fault tolerance, and can realize high-performance trajectory tracking control of the quadrotor plant protection UAV in the presence of external time-varying interference, input saturation and actuator errors; at the same time, the method can effectively reduce the number of online calculations of the adaptive neural network parameters, thereby reducing the online calculation burden.
本发明可以保证四旋翼植保无人机在受到外部扰动、输入饱和以及执行器错误的影响下,轨迹跟踪误差仍能在有限时间内收敛至有界范围,提高了飞行控制系统的鲁棒性、抗饱和性和执行器容错能力,同时减少了控制器中自适应参数的数量,减轻了参数在线计算的负担。The present invention can ensure that the trajectory tracking error of the quad-rotor plant protection UAV can still converge to a bounded range within a limited time under the influence of external disturbances, input saturation and actuator errors, thereby improving the robustness, anti-saturation and actuator fault tolerance of the flight control system, while reducing the number of adaptive parameters in the controller and alleviating the burden of online parameter calculation.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明的方法顺序图;Fig. 1 is a method sequence diagram of the present invention;
图2是本发明中四旋翼植保无人机的模型示意图;FIG2 is a schematic diagram of a model of a four-rotor plant protection UAV in the present invention;
图3是本发明的实时三维轨迹跟踪响应曲线图;FIG3 is a real-time three-dimensional trajectory tracking response curve diagram of the present invention;
图4是本发明的x轴方向的轨迹跟踪响应曲线图;FIG4 is a trajectory tracking response curve diagram of the present invention in the x-axis direction;
图5是本发明的y轴方向的轨迹跟踪响应曲线图;FIG5 is a trajectory tracking response curve diagram of the present invention in the y-axis direction;
图6是本发明的z轴方向的轨迹跟踪响应曲线图;FIG6 is a trajectory tracking response curve diagram of the present invention in the z-axis direction;
图7是本发明的横摇角轨迹跟踪响应曲线图;FIG7 is a roll angle trajectory tracking response curve diagram of the present invention;
图8是本发明的俯仰角轨迹跟踪响应曲线图;FIG8 is a pitch angle trajectory tracking response curve diagram of the present invention;
图9是本发明的偏航角轨迹跟踪响应曲线图;FIG9 is a yaw angle trajectory tracking response curve diagram of the present invention;
图10是本发明的实际控制输入响应曲线图;FIG10 is a graph showing an actual control input response of the present invention;
图11是本发明的自适应神经网络参数响应曲线图。FIG. 11 is a graph showing the parameter response of the adaptive neural network of the present invention.
具体实施方式DETAILED DESCRIPTION
为使对本发明的结构特征及所达成的功效有更进一步的了解与认识,用以较佳的实施例及附图配合详细的说明,说明如下:In order to have a further understanding and recognition of the structural features and the effects achieved by the present invention, a preferred embodiment and accompanying drawings are used for detailed description as follows:
如图1所示,本发明所涉及的四旋翼植保无人机模型示意图,其中,在无人机对称位置上装配了4个相同的电机(编号为电机1、电机2、电机3和电机4),通过调节四个电机的转速来控制无人机的位置和姿态运动。{Oa,xa,ya,za}是地球坐标系,{Ob,xb,yb,zb}是机体坐标系,d、m和g分别表示电机与无人机质心的距离、四旋翼植保无人机的自身质量和重力系数。As shown in FIG1 , a schematic diagram of a quad-rotor agricultural drone model of the present invention is shown, wherein four identical motors (numbered as motor 1, motor 2, motor 3 and motor 4) are mounted at symmetrical positions of the drone, and the position and attitude motion of the drone are controlled by adjusting the speed of the four motors. {O a , x a , y a , z a } is the earth coordinate system, {O b , x b , y b , z b } is the body coordinate system, d, m and g represent the distance between the motor and the center of mass of the drone, the mass of the quad-rotor agricultural drone and the gravity coefficient, respectively.
如图2所示,本发明所述的基于抗饱和有限时间自适应神经网络容错技术的四旋翼植保无人机跟踪控制方法,包括以下步骤:As shown in FIG2 , the tracking control method of the quadrotor plant protection UAV based on the anti-saturation finite time adaptive neural network fault tolerance technology of the present invention comprises the following steps:
第一步,期望轨迹数据的设定和存储:根据四旋翼植保无人机所执行的飞行任务要求,通过地面终端输入期望轨迹数据;通过机载网络模块接收地面终端所输入的期望轨迹数据,并保存到飞行数据存储器I中。其中,期望轨迹数据包括:期望姿态角度数(期望翻滚角度数、期望俯仰角度数和期望偏航角度数)和期望位置坐标(期望x轴位置坐标、期望y轴位置坐标和期望z轴位置坐标)。The first step is to set and store the expected trajectory data: according to the flight mission requirements of the quadrotor plant protection UAV, the expected trajectory data is input through the ground terminal; the expected trajectory data input by the ground terminal is received through the airborne network module and saved in the flight data storage device I. The expected trajectory data includes: expected attitude angles (expected roll angles, expected pitch angles, and expected yaw angles) and expected position coordinates (expected x-axis position coordinates, expected y-axis position coordinates, and expected z-axis position coordinates).
第二步,实时轨迹数据的采集和存储:通过四旋翼植保无人机所搭载的位置传感器、姿态传感器采集实时轨迹数据,并将所采集的实时轨迹数据保存在飞行数据存储器II中。实时轨迹数据包括:实时姿态角度数(实时翻滚角度数、实时俯仰角度数和实时偏航角度数)和实时位置坐标(实时x轴位置坐标、实时y轴位置坐标和实时z轴位置坐标)。The second step is to collect and store real-time trajectory data: collect real-time trajectory data through the position sensor and attitude sensor carried by the quadrotor agricultural drone, and save the collected real-time trajectory data in the flight data storage device II. The real-time trajectory data includes: real-time attitude angles (real-time roll angles, real-time pitch angles, and real-time yaw angles) and real-time position coordinates (real-time x-axis position coordinates, real-time y-axis position coordinates, and real-time z-axis position coordinates).
第三步,四旋翼植保无人机复合数学模型的建立。根据四旋翼植保无人机的固有机械特性以及在飞行时受到执行器故障、输入饱和以及时变风扰的干扰因素,建立四旋翼植保无人机的完整复合数学模型。需要特别说明的是,本发明考虑了外部扰动、输入饱和以及执行器错误三种因素,并且考虑了姿态动力系统和位置动力系统之间的耦合,这不仅能更好地反映四旋翼植保无人机在实际情况下的飞行特性,也能更好地应对实际飞行过程中所遇到的紧急情况。然而,这些干扰因素大大增加了控制器的设计难度和复杂性。其具体步骤如下:The third step is to establish a composite mathematical model of the four-rotor plant protection UAV. A complete composite mathematical model of the four-rotor plant protection UAV is established based on the inherent mechanical characteristics of the four-rotor plant protection UAV and the interference factors of actuator failure, input saturation and time-varying wind disturbance during flight. It should be noted that the present invention takes into account three factors: external disturbance, input saturation and actuator error, and considers the coupling between the attitude dynamic system and the position dynamic system, which can not only better reflect the flight characteristics of the four-rotor plant protection UAV under actual conditions, but also better deal with emergencies encountered during actual flight. However, these interference factors greatly increase the difficulty and complexity of the controller design. The specific steps are as follows:
(1)基于坐标系转换方法,建立四旋翼植保无人机的位置运动学数学模型和姿态运动学数学模型,具体表达式分别如下所示:(1) Based on the coordinate system transformation method, the position kinematics mathematical model and attitude kinematics mathematical model of the quadrotor agricultural drone are established. The specific expressions are as follows:
其中,P=[x,y,z]T和分别表示四旋翼植保无人机在地球坐标系中的欧几里得位置向量和欧拉角向量,其中x、y和z分别表示在xa轴、ya轴和za轴上的位置坐标,φ、θ和分别表示绕xa轴的横摇角度数、绕ya轴的俯仰角度数和绕za轴的偏航角度数,V=[u,v,w]T和Ω=[p,q,r]T分别表示四旋翼植保无人机在机体坐标系中的线速度向量和角速度向量,其中,u、v和w分别表示在xb轴、yb轴和zb轴上的线速度,p、q和r分别表示绕xb轴的横摇角速度、绕yb轴的俯仰角速度和绕zb轴的偏航角速度,和分别表示四旋翼植保无人机在地球坐标系中的线速度向量和角速度向量,其中和分别表示在xa轴、ya轴和za轴上的线速度,和分别表示绕xa轴的横摇角速度、绕ya轴的俯仰角速度和绕za轴的偏航角速度,Rt和Rs分别表示正交矩阵和欧拉矩阵,具体表达式分别如下所示:Where P = [x, y, z] T and represents the Euclidean position vector and Euler angle vector of the quadrotor agricultural drone in the earth coordinate system, respectively, where x, y, and z represent the position coordinates on the x a- axis, y a- axis, and z a- axis, respectively, and φ, θ, and Respectively represent the roll angle around the x a axis, the pitch angle around the y a axis, and the yaw angle around the z a axis, V = [u, v, w] T and Ω = [p, q, r] T respectively represent the linear velocity vector and angular velocity vector of the quadrotor agricultural drone in the body coordinate system, where u, v, and w represent the linear velocities on the x b axis, y b axis, and z b axis, respectively, and p, q, and r represent the roll angular velocity around the x b axis, the pitch angular velocity around the y b axis, and the yaw angular velocity around the z b axis, respectively. and They represent the linear velocity vector and angular velocity vector of the quadrotor agricultural drone in the earth coordinate system, respectively. and They represent the linear velocities on the x a axis, y a axis and z a axis respectively, and They represent the roll angular velocity around the x a axis, the pitch angular velocity around the y a axis, and the yaw angular velocity around the z a axis, respectively. R t and R s represent the orthogonal matrix and the Euler matrix, respectively. The specific expressions are as follows:
(2)利用欧拉拉格朗日建模方法,考虑四旋翼植保无人机的自身机械结构特点以及在飞行时所受到的外界时变风扰影响,建立四旋翼植保无人机的位置动力学数学模型和姿态动力学数学模型,具体表达式分别如下所示:(2) Using the Euler Lagrangian modeling method, the position dynamics mathematical model and attitude dynamics mathematical model of the quadrotor agricultural drone are established by considering the mechanical structure characteristics of the quadrotor agricultural drone and the influence of external time-varying wind disturbance during flight. The specific expressions are as follows:
其中,Ir=diag(Ix,Iy,Iz)表示正定转动惯量矩阵,其中Ix、Iy和Iz分别表示绕x轴、y轴和z轴的转动惯量系数,m表示四旋翼植保无人机的自身质量,和分别表示四旋翼植保无人机在机体坐标系中的线加速度向量和角加速度向量,其中,和分别表示在xb轴、yb轴和zb轴上的线加速度,和分别表示绕xb轴的横摇角加速度、绕yb轴的俯仰角加速度和绕zb轴的偏航角加速度;Wherein, I r = diag(I x ,I y ,I z ) represents the positive definite moment of inertia matrix, where I x , I y and I z represent the moment of inertia coefficients around the x-axis, y-axis and z-axis respectively, m represents the mass of the quadrotor plant protection drone, and They represent the linear acceleration vector and angular acceleration vector of the quadrotor agricultural drone in the body coordinate system, respectively. and denote the linear acceleration on the x b axis, y b axis and z b axis respectively, and They represent the roll angular acceleration around the x b axis, the pitch angular acceleration around the y b axis, and the yaw angular acceleration around the z b axis respectively;
Fs=[0,0,uo,1]T和Ts=[uo,2,uo,3,uo,4]T分别表示升力和控制力矩, Fs = [0,0,u o,1 ] T and Ts = [u o,2 ,u o,3 ,u o,4 ] T represent lift and control torque respectively.
其中,uo,i,(i=1,2,3,4)的具体计算表达式如下:Among them, the specific calculation expression of u o,i ,(i=1,2,3,4) is as follows:
其中,wi,(i=1,2,3,4)表示第i个电机转子的转速,d表示电机与四旋翼植保无人机质心的距离,c1和c2分别表示螺旋桨推力系数和转矩系数,Fa和Ta分别表示在姿态动力系统和位置动力系统中的空气阻力,具体表达式分别如下:Among them, w i ,(i=1,2,3,4) represents the rotation speed of the i-th motor rotor, d represents the distance between the motor and the mass center of the quadrotor agricultural drone, c 1 and c 2 represent the propeller thrust coefficient and torque coefficient respectively, F a and T a represent the air resistance in the attitude power system and position power system respectively. The specific expressions are as follows:
其中,Kf=diag(Kf,1,Kf,2,Kf,3)和Kt=diag(Kt,1,Kt,2,Kt,3)分别表示姿态系统的阻力系数矩阵和位置系统的阻力系数矩阵;Wherein, Kf = diag(Kf ,1 , Kf,2 , Kf ,3 ) and Kt = diag(Kt ,1 , Kt,2 , Kt,3 ) represent the drag coefficient matrix of the attitude system and the drag coefficient matrix of the position system respectively;
Fg表示系统重力,其具体表达式如下所示:F g represents the system gravity, and its specific expression is as follows:
其中,E=[0,0,1]T,m表示四旋翼植保无人机的自身质量,g表示重力加速度,为正交矩阵Rt的逆矩阵,Tg表示陀螺力矩,其具体表达式如下所示:Where, E = [0,0,1] T , m represents the mass of the quadrotor agricultural drone, g represents the acceleration of gravity, is the inverse matrix of the orthogonal matrix R t , T g represents the gyro torque, and its specific expression is as follows:
其中,J表示每个转子的惯性系数,Where J represents the inertia coefficient of each rotor,
符号(Ω)×表示Ω向量的斜对称矩阵,其满足如下形式:The symbol (Ω) × represents a skew-symmetric matrix of the Ω vector, which satisfies the following form:
(3)基于四旋翼植保无人机的运动学数学模型、动力学数学模型、位置动力学数学模型和姿态动力学数学模型,建立不考虑执行器错误和输入饱和的非完整复合数学模型,具体表达式分别如下所示:(3) Based on the kinematic mathematical model, dynamic mathematical model, position dynamic mathematical model and attitude dynamic mathematical model of the quadrotor agricultural drone, a non-complete composite mathematical model that does not consider actuator errors and input saturation is established. The specific expressions are as follows:
其中,表示四旋翼植保无人机的虚拟输入向量;in, Represents the virtual input vector of the quadrotor agricultural drone;
以及和分别表示位置系统和姿态系统中的非线性,da=[dx,dy,dz]T和分别表示位置系统和姿态系统中的集总扰动。 as well as and denote the nonlinearity in the position system and attitude system respectively, da = [ dx , dy , dz ] T and denote the lumped disturbances in the position system and attitude system, respectively.
(4)考虑执行器错误的影响,具体的数学表达式如下所示:(4) Considering the influence of actuator error, the specific mathematical expression is as follows:
uo,i=ρiui+ri,i=1,2,3,4,u o,i =ρ i u i +r i ,i=1,2,3,4,
其中,uo,i和ui分别表示实际的控制信号和期望的控制信号,ρi和ri分别表示有效系数和附加故障。Among them, u o,i and ui represent the actual control signal and the expected control signal respectively, ρ i and ri represent the effective coefficient and the additional fault respectively.
(5)考虑执行器输入饱和的影响,具体的数学表达式如下所示:(5) Considering the influence of actuator input saturation, the specific mathematical expression is as follows:
sat(ui)=sign(ui)min{|ui|,umax,i},i=1,2,3,4,sat(u i )=sign(u i )min{|u i |,u max,i },i=1,2,3,4,
其中,umax,i表示控制信号ui的上界值,符号函数sign(ui)定义为Where u max,i represents the upper limit of the control signal u i , and the sign function sign(u i ) is defined as
(6)基于非完整复合数学模型、执行器错误的数学表达式以及输入饱和的数学表达式,建立考虑执行器错误和输入饱和的完整复合数学模型和具体表达式如下所示:(6) Based on the incomplete composite mathematical model, the mathematical expression of actuator error, and the mathematical expression of input saturation, a complete composite mathematical model considering actuator error and input saturation is established and The specific expression is as follows:
其中,ρb=[ρ1,ρ2,ρ3]T,rb=[r1,r2,r3]T Among them, ρ b = [ρ 1 , ρ 2 , ρ 3 ] T , r b = [r 1 , r 2 , r 3 ] T
和 and
第四步,四旋翼植保无人机飞行误差数学模型的建立:基于四旋翼植保无人机复合数学模型,建立四旋翼植保无人机的飞行误差数学模型。需要特别说明的是,本发明建立的四旋翼植保无人机的飞行误差模型是为了引进滤波系数γ1和γ2,以便能更直接地调节位置误差的收敛速度和姿态误差的收敛速度。The fourth step is to establish a mathematical model of the flight error of the quadrotor plant protection drone: Based on the composite mathematical model of the quadrotor plant protection drone, a mathematical model of the flight error of the quadrotor plant protection drone is established. It should be noted that the flight error model of the quadrotor plant protection drone established in the present invention is to introduce filter coefficients γ 1 and γ 2 so as to more directly adjust the convergence speed of the position error and the convergence speed of the attitude error.
所述四旋翼植保无人机飞行误差数学模型的建立包括以下步骤:The establishment of the flight error mathematical model of the quadrotor plant protection UAV includes the following steps:
(1)定义位置误差e1、姿态误差e2、线速度误差以及角速度误差具体的数学表达式分别如下所示:(1) Define position error e 1 , attitude error e 2 , and linear velocity error And the angular velocity error The specific mathematical expressions are as follows:
e1=P-Pd,e2=Θ-Θd, e 1 =PP d , e 2 =Θ-Θ d ,
其中,Pd=[xd,yd,zd]T和分别表示在地球坐标系中的期望位置信号和期望姿态信号。Among them, P d =[x d ,y d ,z d ] T and They represent the expected position signal and expected attitude signal in the earth coordinate system respectively.
(2)基于所定义的位置误差e1、姿态误差e2、线速度误差以及角速度误差设计位置系统的滤波跟踪误差ξ1和姿态系统的滤波跟踪误差ξ2,具体的数学表达式如下:(2) Based on the defined position error e 1 , attitude error e 2 , and linear velocity error And the angular velocity error Design the filter tracking error ξ 1 of the position system and the filter tracking error ξ 2 of the attitude system. The specific mathematical expressions are as follows:
其中,γ1>0和γ2>0表示滤波系数,通过增大γ1和γ2能够提高跟踪误差的收敛速度。Here, γ 1 >0 and γ 2 >0 represent filter coefficients, and the convergence speed of the tracking error can be improved by increasing γ 1 and γ 2 .
(3)基于位置的滤波跟踪误差ξ1、姿态的滤波跟踪误差ξ2以及完整复合数学模型和建立四旋翼植保无人机的飞行误差数学模型和具体的数学表达式如下:(3) Based on the position-based filtering tracking error ξ 1 , the attitude-based filtering tracking error ξ 2 , and the complete composite mathematical model and Establishing a mathematical model of flight error for a quadrotor agricultural drone and The specific mathematical expression is as follows:
其中,和分别表示在位置系统和姿态系统中的复杂非线性变量。in, and Represent the complex nonlinear variables in the position system and attitude system respectively.
第五步,饱和补偿系统的设计和数据存储:基于四旋翼植保无人机的飞行误差数学模型设计饱和补偿系统,并将饱和补偿系统信号数据更新并保存到飞行数据存储器III中。本发明所设计的饱和补偿系统不需要假设期望控制输入的大小是有界的,同时也能保证饱和补偿系统是有限时间收敛的。Step 5, design and data storage of saturation compensation system: design a saturation compensation system based on the flight error mathematical model of the quadrotor plant protection UAV, and update and save the saturation compensation system signal data into the flight data memory III. The saturation compensation system designed by the present invention does not need to assume that the size of the expected control input is bounded, and can also ensure that the saturation compensation system converges in a finite time.
饱和补偿系统的设计和数据存储包括以下步骤:The design and data storage of the saturation compensation system include the following steps:
(1)基于位置系统的滤波跟踪误差ξ1和姿态系统的滤波跟踪误差ξ2,建立饱和补偿系统和其具体的数学表达式如下所示:(1) Based on the filter tracking error ξ 1 of the position system and the filter tracking error ξ 2 of the attitude system, a saturation compensation system is established and Its specific mathematical expression is as follows:
其中,ΔU2=Tt-sat(Tt),K1>0和K2>0表示输入补偿辅助系统的控制参数,υ1和υ2分别表示位置系统和姿态系统中输入的补偿辅助变量,ρ1和ρ2表示正奇数,且满足条件ρ1<ρ2;in, ΔU 2 =T t -sat(T t ), K 1 >0 and K 2 >0 represent control parameters of the input compensation auxiliary system, υ 1 and υ 2 represent compensation auxiliary variables input in the position system and attitude system, respectively, ρ 1 and ρ 2 represent positive odd numbers, and satisfy the condition ρ 1 <ρ 2 ;
(2)将补偿辅助变量数据υ1和υ2更新并保存到飞行数据存储器III中。(2) Update and save the compensation auxiliary variable data υ1 and υ2 into the flight data memory III.
第六步,自适应神经网络参数的设计和数据存储:基于四旋翼植保无人机的飞行误差数学模型设计自适应神经网络参数,并将自适应神经网络参数的数据更新并保存到飞行数据存储器IV中。本发明利用所设计的自适应算法在线更新两个集总参数,而不是更新两个矢量或者两个矩阵。因此,这极大地减少了控制器中自适应参数的数量,从而有效地降低了计算负担。除此以外,本发明的自适应算法是基于δ-改性技术所设计的,从而有效地避免了参数漂移的问题。自适应神经网络参数的设计和数据存储包括以下步骤:Step 6, design and data storage of adaptive neural network parameters: Adaptive neural network parameters are designed based on the flight error mathematical model of the quad-rotor plant protection UAV, and the data of the adaptive neural network parameters are updated and saved in the flight data memory IV. The present invention uses the designed adaptive algorithm to update two lumped parameters online instead of updating two vectors or two matrices. Therefore, this greatly reduces the number of adaptive parameters in the controller, thereby effectively reducing the computational burden. In addition, the adaptive algorithm of the present invention is designed based on δ-modification technology, thereby effectively avoiding the problem of parameter drift. The design and data storage of adaptive neural network parameters include the following steps:
(1)根据s1和s2的定义,得如下不等式:(1) According to the definitions of s 1 and s 2 , we get the following inequality:
然后,基于径向基函数神经网络对非线性函数的强逼近能力,引入径向基函数神经网络,其具体的数学表达式如下所示:Then, based on the strong approximation ability of radial basis function neural network to nonlinear functions, radial basis function neural network is introduced, and its specific mathematical expression is as follows:
h(Z)=W*TΞ(Z)+δ(Z),h(Z)=W * TΞ(Z)+δ(Z),
其中,和W*TΞ(Z)分别表示径向基函数神经网络的输入和输出,n表示输入的数量,h(Z)表示非线性函数,δ(Z)表示逼近误差,W*表示最优权重向量,其根据如下公式计算:in, and W *T Ξ(Z) respectively represent the input and output of the radial basis function neural network, n represents the number of inputs, h(Z) represents the nonlinear function, δ(Z) represents the approximation error, and W * represents the optimal weight vector, which is calculated according to the following formula:
其中,表示径向基函数神经网络的权重向量,表示高斯基函数,其具体的数学表达式如下:in, represents the weight vector of the radial basis function neural network, represents the Gaussian basis function, and its specific mathematical expression is as follows:
其中,m=1,2,...,ksum,ksum表示隐藏层中总的神经元;和μ分别表示径向基函数神经网络的中心和半径。Where, m = 1, 2, ..., k sum , k sum represents the total number of neurons in the hidden layer; and μ represent the center and radius of the radial basis function neural network, respectively.
(2)利用径向基函数神经网络逼近非线性函数η1(Z1)和η2(Z2),其具体的数学表达式如下所示:(2) The radial basis function neural network is used to approximate the nonlinear functions η 1 (Z 1 ) and η 2 (Z 2 ). The specific mathematical expressions are as follows:
进一步得:Further:
其中,和Ψi(Zi)=1+Ξi(Zi),(i=1,2)分别表示未知虚参数和已知的可计算正标量参数。in, and Ψ i (Z i ) = 1 + Ξ i (Z i ), (i = 1, 2) represent the unknown imaginary parameters and the known computable positive scalar parameters respectively.
(3)设计的自适应神经网络参数和如下所示:(3) Designed adaptive neural network parameters and As shown below:
其中,bi和ci,(i=1,2)均表示正的设计参数;表示βi的上界估计值;Wherein, bi and c i (i=1,2) both represent positive design parameters; represents the upper bound estimate of β i ;
(4)将自适应神经网络参数数据和更新并保存到飞行数据存储器IV中。(4) Adaptive neural network parameter data and Update and save to flight data memory IV.
第七步,基于抗饱和有限时间自适应神经网络容错跟踪控制器的设计和控制信号的存储:基于四旋翼植保无人机的飞行误差数学模型和饱和补偿系统,设计基于抗饱和有限时间自适应神经网络容错跟踪控制器,并将基于抗饱和有限时间自适应神经网络容错跟踪控制信号数据更新并保存到飞行数据存储器V中。本发明所设计的基于抗饱和有限时间自适应神经网络容错跟踪控制器,可以同时处理外部扰动、执行器错误和输入饱和的问题,这些问题极大地增加了控制器的设计难度。除此以外,这极大地减少了控制器中自适应参数的数量,简化了设计结构,减轻了参数在线计算的负担。因此,所设计的控制器更经济可靠,同时能更好的应对实际飞行过程中所遇到的紧急情况,满足安全飞行要求。所述基于抗饱和有限时间自适应神经网络容错跟踪控制器的设计和控制信号的存储包括以下步骤:The seventh step is the design of the anti-saturation finite time adaptive neural network fault-tolerant tracking controller and the storage of control signals: based on the flight error mathematical model and saturation compensation system of the four-rotor plant protection UAV, a finite time adaptive neural network fault-tolerant tracking controller based on anti-saturation is designed, and the control signal data based on the anti-saturation finite time adaptive neural network fault-tolerant tracking is updated and saved in the flight data storage device V. The anti-saturation finite time adaptive neural network fault-tolerant tracking controller designed by the present invention can simultaneously handle the problems of external disturbances, actuator errors and input saturation, which greatly increase the difficulty of controller design. In addition, this greatly reduces the number of adaptive parameters in the controller, simplifies the design structure, and reduces the burden of online parameter calculation. Therefore, the designed controller is more economical and reliable, and can better cope with emergency situations encountered during actual flight and meet the requirements of safe flight. The design of the anti-saturation finite time adaptive neural network fault-tolerant tracking controller and the storage of control signals include the following steps:
(1)基于滤波跟踪误差ξ1和ξ2、饱和补偿系统和自适应神经网络参数和以及完整复合数学模型和设计基于抗饱和有限时间自适应神经网络容错跟踪控制器,其具体的数学表达式如下所示:(1) Based on the filtering tracking errors ξ 1 and ξ 2 and the saturation compensation system and Adaptive neural network parameters and And a complete composite mathematical model and The design is based on an anti-saturation finite-time adaptive neural network fault-tolerant tracking controller, and its specific mathematical expression is as follows:
其中,ki和ai,(i=1,2)表示正设计参数,Among them, ki and ai , (i = 1, 2) represent positive design parameters,
由于四旋翼植保无人机是具有四个输入(uo,1,uo,2,uo,3,uo,4)6个输出的欠驱动系统,利用三个虚拟控制输入信号(q1,q2,q3)计算实际控制输入信号uo,1,即:Since the quadrotor agricultural drone has four inputs (u o,1 ,u o,2 ,u o,3 ,u o,4 ) and six outputs For an under-actuated system, the actual control input signal u o,1 is calculated using three virtual control input signals (q 1 ,q 2 ,q 3 ), namely:
另外,期望俯仰角φd和期望偏航角θd的计算公式分别如下所示:In addition, the calculation formulas for the desired pitch angle φ d and the desired yaw angle θ d are respectively as follows:
(2)将基于抗饱和有限时间自适应神经网络容错跟踪控制信号数据和Tt更新并保存到飞行数据存储器V中。(2) The fault-tolerant tracking control signal data based on the anti-saturation finite-time adaptive neural network and T t are updated and saved in the flight data memory V.
第八步,实时轨迹数据的更新:将基于抗饱和有限时间自适应神经网络容错跟踪控制信号输入到四旋翼植保无人机的完整复合数学模型中,输出实时轨迹数据并保存到飞行数据存储器II中。Step 8. Update of real-time trajectory data: Input the fault-tolerant tracking control signal based on the anti-saturation finite-time adaptive neural network into the complete composite mathematical model of the quadrotor plant protection UAV, output the real-time trajectory data and save it in the flight data storage device II.
(1)将基于抗饱和有限时间自适应神经网络容错跟踪控制信号输入到四旋翼植保无人机的完整复合数学模型,输出实时轨迹数据的二阶导数,即:三个线加速度和三个角加速度并保存到飞行数据存储器II中。(1) Input the fault-tolerant tracking control signal based on the anti-saturation finite-time adaptive neural network into the complete composite mathematical model of the quadrotor plant protection UAV, and output the second-order derivative of the real-time trajectory data, namely: three linear accelerations and three angular accelerations And saved to the flight data memory II.
(2)对三个线加速度和三个角加速度进行二次积分,获得实时轨迹数据。(2) For three linear accelerations and three angular accelerations Perform secondary integration to obtain real-time trajectory data.
第九步,位置系统和姿态系统中参数数值的调整:通过监测饱和补偿信号的数据变化、自适应神经网络参数的数据变化以及期望轨迹数据与实际轨迹数据的差值变化,对位置系统中的设计参数、控制参数进行调整,以此实现四旋翼植保无人机的跟踪控制。The ninth step is to adjust the parameter values in the position system and attitude system: by monitoring the data changes of the saturation compensation signal, the data changes of the adaptive neural network parameters, and the difference changes between the expected trajectory data and the actual trajectory data, the design parameters and control parameters in the position system are adjusted to achieve tracking control of the quadrotor plant protection UAV.
其具体步骤如下:The specific steps are as follows:
(1)将保存在飞行数据存储器I、II和III中的期望轨迹数据、实时轨迹数据和实时自适应神经网络参数,以及复杂非线性变量,输入到饱和补偿系统和径向基函数神经网络中,输出新的饱和补偿信号和新的自适应神经网络参数。(1) The desired trajectory data, real-time trajectory data, real-time adaptive neural network parameters, and complex nonlinear variables stored in flight data memories I, II, and III are input into the saturation compensation system and radial basis function neural network, and new saturation compensation signals and new adaptive neural network parameters are output.
(2)将保存在飞行数据存储器I和II中的实时轨迹数据和期望轨迹数据、新的饱和补偿信号以及新的自适应神经网络参数,输入到基于抗饱和有限时间自适应神经网络容错跟踪控制器中,输出用于调整四旋翼植保无人机轨迹的控制信号。(2) The real-time trajectory data and expected trajectory data stored in flight data memories I and II, the new saturation compensation signal, and the new adaptive neural network parameters are input into the anti-saturation finite-time adaptive neural network fault-tolerant tracking controller, and the control signal for adjusting the trajectory of the quadrotor plant protection UAV is output.
(3)将用于调整四旋翼植保无人机轨迹的控制信号,输入到四旋翼植保无人机的完整复合数学模型中,输出实时轨迹数据的二阶导数,即:三个线加速度和三个角加速度再对实时轨迹数据的二阶导数进行二次积分,得到新的实时轨迹数据,即:在xa轴、ya轴和za轴上的位置坐标x、y和z,以及绕xa轴的横摇角度数φ、绕ya轴的俯仰角度数θ和绕za轴的偏航角度数 (3) The control signal used to adjust the trajectory of the quadrotor agricultural drone is input into the complete composite mathematical model of the quadrotor agricultural drone, and the second-order derivative of the real-time trajectory data is output, namely: three linear accelerations and three angular accelerations Then perform a second integration on the second-order derivative of the real- time trajectory data to obtain the new real-time trajectory data, namely: the position coordinates x, y and z on the xa axis, ya axis and za axis, as well as the roll angle φ around the xa axis, the pitch angle θ around the ya axis and the yaw angle around the za axis.
(4)将新的实时轨迹数据、新的饱和补偿信号数据、新的自适应神经网络参数数据以及用于调整四旋翼植保无人机轨迹的输入控制信号更新,并分别存储于飞行数据存储器II、III、IV和V中。(4) The new real-time trajectory data, the new saturation compensation signal data, the new adaptive neural network parameter data and the input control signal for adjusting the trajectory of the quad-rotor plant protection UAV are updated and stored in the flight data memories II, III, IV and V respectively.
(5)观测飞行数据库III中饱和补偿信号数据的变化:(5) Changes in saturation compensation signal data in the observation flight database III:
A1)位置系统中设计参数k1和a1的变化调整:如果在位置系统中的饱和补偿信号的绝对值在大于等于0.2的范围变化,则设计参数k1按0.5大小增加,并且设计参数a1的值按0.2大小增加,直至位置系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化;如果位置系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化,则设计参数k1按0.3大小增加,并且设计参数a1的值按0.1大小增加,直至位置系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化;如果位置系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化,则设计参数k1和a1的值均不变化,这满足四旋翼植保无人机在位置系统中输入信号补偿的性能要求;A1) Change adjustment of design parameters k1 and a1 in the position system: if the absolute value of the saturation compensation signal in the position system changes within a range greater than or equal to 0.2, the design parameter k1 is increased by 0.5, and the value of the design parameter a1 is increased by 0.2, until the absolute value of the saturation compensation signal in the position system changes within a range less than or equal to 0.2; if the absolute value of the saturation compensation signal in the position system changes within a range less than or equal to 0.2, the design parameter k1 is increased by 0.3, and the value of the design parameter a1 is increased by 0.1, until the absolute value of the saturation compensation signal in the position system changes within a range less than or equal to 0.02; if the absolute value of the saturation compensation signal in the position system changes within a range less than or equal to 0.02, the values of the design parameters k1 and a1 do not change, which meets the performance requirements of input signal compensation in the position system of the quad-rotor plant protection UAV;
A2)姿态系统中设计参数k2和a2的变化调整:如果在姿态系统中的饱和补偿信号的绝对值在大于等于0.2的范围变化,则设计参数k2按0.5大小增加,并且设计参数a2的值按0.2大小增加,直至姿态系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化;如果姿态系统中的饱和补偿信号的绝对值在小于等于0.2的范围内变化,则设计参数k2按0.3大小增加,并且设计参数a2的值按0.1大小增加,直至姿态系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化;如果姿态系统中的饱和补偿信号的绝对值在小于等于0.02范围内变化,则设计参数k2和a2的值均不变化,这满足四旋翼植保无人机在姿态系统中输入信号补偿的性能要求。A2) Change adjustment of design parameters k2 and a2 in the attitude system: If the absolute value of the saturated compensation signal in the attitude system changes in a range greater than or equal to 0.2, the design parameter k2 is increased by 0.5, and the value of the design parameter a2 is increased by 0.2, until the absolute value of the saturated compensation signal in the attitude system changes in a range less than or equal to 0.2; if the absolute value of the saturated compensation signal in the attitude system changes in a range less than or equal to 0.2, the design parameter k2 is increased by 0.3, and the value of the design parameter a2 is increased by 0.1, until the absolute value of the saturated compensation signal in the attitude system changes in a range less than or equal to 0.02; if the absolute value of the saturated compensation signal in the attitude system changes in a range less than or equal to 0.02, the values of the design parameters k2 and a2 do not change, which meets the performance requirements of input signal compensation in the attitude system of the quadrotor plant protection UAV.
(6)观测飞行数据库IV中自适应神经网络参数数据的变化:(6) Changes in the adaptive neural network parameter data in the observed flight database IV:
B1)位置系统中设计参数b1和c1的变化调整:如果在位置系统中的自适应神经网络参数值随时间递增变化,则设计参数b1的值按0.2大小递减,同时设计参数c1的值按0.25大小增加,直至位置系统中的自适应神经网络参数值随时间单调递减;如果位置系统中的自适应神经网络参数值需要大于25秒才能收敛至零,则设计参数b1的值按0.08大小递减,同时设计参数c1的值按0.12大小增加,直至位置系统中的自适应神经网络参数值需要小于25秒收敛至零附近;如果位置系统中的自适应神经网络参数值需要小于25秒收敛至零附近,则设计参数b1的值按0.04大小递减,同时设计参数c1的值按0.06大小增加,直至位置系统中的自适应神经网络参数值需要10秒到25秒范围内才能收敛至零附近;如果位置系统中的自适应神经网络参数值需要10秒到25秒范围内收敛至零附近,则设计参数b1的值不变化,同时设计参数c1的值按0.04大小增加,直至位置系统中的自适应神经网络参数值在10秒内能收敛至零附近;如果位置系统中的自适应神经网络参数值在10秒以内收敛至零,则设计参数b1和c1的值均不变化,这满足四旋翼植保无人机在位置系统中自适应神经网络参数收敛的性能要求;B1) Change adjustment of design parameters b1 and c1 in the position system: If the adaptive neural network parameter value in the position system increases with time, the value of the design parameter b1 decreases by 0.2, and the value of the design parameter c1 increases by 0.25, until the adaptive neural network parameter value in the position system decreases monotonically with time; if the adaptive neural network parameter value in the position system needs more than 25 seconds to converge to zero, the value of the design parameter b1 decreases by 0.08, and the value of the design parameter c1 increases by 0.12, until the adaptive neural network parameter value in the position system needs less than 25 seconds to converge to zero; if the adaptive neural network parameter value in the position system needs less than 25 seconds to converge to zero, the value of the design parameter b1 decreases by 0.04, and the value of the design parameter c1 increases by 0.12. The value of 1 is increased by 0.06 until the adaptive neural network parameter value in the position system needs 10 to 25 seconds to converge to zero; if the adaptive neural network parameter value in the position system needs 10 to 25 seconds to converge to zero, the value of the design parameter b 1 does not change, and the value of the design parameter c 1 is increased by 0.04 until the adaptive neural network parameter value in the position system can converge to zero within 10 seconds; if the adaptive neural network parameter value in the position system converges to zero within 10 seconds, the values of the design parameters b 1 and c 1 do not change, which meets the performance requirements of the adaptive neural network parameter convergence in the position system of the quadrotor plant protection drone;
B2)姿态系统中设计参数b2和c2的变化调整:如果在姿态系统中的自适应神经网络参数值随时间递增变化,则设计参数b2的值按0.2大小递减,同时设计参数c2的值按0.25大小增加,直至姿态系统中的自适应神经网络参数值随时间单调递减;如果姿态系统中的自适应神经网络参数值需要大于25秒才能收敛至零,则设计参数b2的值按0.08大小递减,同时设计参数c2的值按0.12大小增加,直至姿态系统中的自适应神经网络参数值需要小于25秒收敛至零附近;如果姿态系统中的自适应神经网络参数值需要小于25秒收敛至零附近,则设计参数b2的值按0.04大小递减,同时设计参数c2的值按0.06大小增加,直至姿态系统中的自适应神经网络参数值需要10秒到25秒范围内才能收敛至零附近;如果姿态系统中的自适应神经网络参数值需要10秒到25秒范围内收敛至零附近,则设计参数b2的值不变化,同时设计参数c2的值按0.04大小增加,直至姿态系统中的自适应神经网络参数值在10秒范围内收敛至零;如果姿态系统中的自适应神经网络参数值在10秒范围内收敛至零,则设计参数b2和c2的值均不变化,这满足四旋翼植保无人机在姿态系统中自适应神经网络参数收敛的性能要求。B2) Change adjustment of design parameters b2 and c2 in the attitude system: If the adaptive neural network parameter value in the attitude system increases with time, the value of the design parameter b2 decreases by 0.2, and the value of the design parameter c2 increases by 0.25, until the adaptive neural network parameter value in the attitude system decreases monotonically with time; if the adaptive neural network parameter value in the attitude system needs more than 25 seconds to converge to zero, the value of the design parameter b2 decreases by 0.08, and the value of the design parameter c2 increases by 0.12, until the adaptive neural network parameter value in the attitude system needs less than 25 seconds to converge to zero; if the adaptive neural network parameter value in the attitude system needs less than 25 seconds to converge to zero, the value of the design parameter b2 decreases by 0.04, and the value of the design parameter c2 increases by 0.12. The value of 2 is increased by 0.06 until the adaptive neural network parameter value in the attitude system converges to near zero within 10 seconds to 25 seconds; if the adaptive neural network parameter value in the attitude system converges to near zero within 10 seconds to 25 seconds, the value of the design parameter b2 does not change, and the value of the design parameter c2 is increased by 0.04 until the adaptive neural network parameter value in the attitude system converges to zero within 10 seconds; if the adaptive neural network parameter value in the attitude system converges to zero within 10 seconds, the values of the design parameters b2 and c2 do not change, which meets the performance requirements of the adaptive neural network parameter convergence in the attitude system of the quadrotor plant protection UAV.
(7)通过飞行数据库I和II中的期望轨迹数据与实际轨迹数据进行差值比较:(7) Compare the difference between the expected trajectory data and the actual trajectory data in flight databases I and II:
C1)位置系统中控制参数γ1的变化调整:如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和大于1.5,则控制参数γ1的值按0.18大小增加,直至差值的绝对值之和小于等于1.5;如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和小于等于1.5,则控制参数γ1的值按0.1大小增加,直至差值的绝对值之和小于等于0.1;如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和小于等于0.1,则控制参数γ1的值按0.06大小增加,直至差值的绝对值之和小于等于0.01;如果三种期望位置(xd,yd,zd)与相应的实时位置(x,y,z)差值的绝对值之和小于等于0.01,控制参数γ1的值不改变,这满足四旋翼植保无人机在位置系统中轨迹跟踪精度的性能要求;C1) Change adjustment of control parameter γ 1 in the position system: If the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is greater than 1.5, the value of control parameter γ 1 is increased by 0.18 until the sum of the absolute values of the differences is less than or equal to 1.5; if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is less than or equal to 1.5, the value of control parameter γ 1 is increased by 0.1 until the sum of the absolute values of the differences is less than or equal to 0.1; if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is less than or equal to 0.1, the value of control parameter γ 1 is increased by 0.06 until the sum of the absolute values of the differences is less than or equal to 0.01; if the sum of the absolute values of the differences between the three expected positions (x d , y d , z d ) and the corresponding real-time positions (x, y, z) is less than or equal to 0.1 ) and the corresponding real-time position (x, y, z) is less than or equal to 0.01, and the value of the control parameter γ 1 does not change, which meets the performance requirements of the trajectory tracking accuracy of the quadrotor plant protection UAV in the position system;
C2)姿态系统中控制参数γ2的变化调整:如果三种期望姿态角度与相应的实时姿态角度数差值的绝对值之和大于1,则控制参数γ2的值按0.15大小增加,直至差值的绝对值之和小于等于1;如果三种期望姿态角度数与相应的实时姿态角度数差值的绝对值之和之和小于等于1,则控制参数γ2的值按0.08大小增加,直至差值的绝对值之和小于等于0.1;如果三种期望姿态角度数与相应的实时姿态角度数差值的绝对值之和小于等于0.1,则控制参数γ2的值按0.03大小增加,直至差值的绝对值之和在小于等于0.01;如果三种期望姿态角与相应的实时姿态角度数差值的绝对值之和小于等于0.01,则控制参数γ2的值不改变,这满足四旋翼植保无人机在姿态系统中轨迹跟踪精度的性能要求。C2) Change adjustment of control parameter γ 2 in attitude system: If the three desired attitude angles And the corresponding real-time attitude angle If the sum of the absolute values of the differences is greater than 1, the value of the control parameter γ2 is increased by 0.15 until the sum of the absolute values of the differences is less than or equal to 1; if the three desired attitude angles are And the corresponding real-time attitude angle If the sum of the absolute values of the differences is less than or equal to 1, the value of the control parameter γ2 is increased by 0.08 until the sum of the absolute values of the differences is less than or equal to 0.1; if the three desired attitude angles are And the corresponding real-time attitude angle If the sum of the absolute values of the differences is less than or equal to 0.1, the value of the control parameter γ2 is increased by 0.03 until the sum of the absolute values of the differences is less than or equal to 0.01; if the three desired attitude angles And the corresponding real-time attitude angle If the sum of the absolute values of the differences is less than or equal to 0.01, the value of the control parameter γ 2 does not change, which meets the performance requirements of the trajectory tracking accuracy of the quadrotor plant protection UAV in the attitude system.
为了证明四旋翼植保无人机的跟踪误差信号e1和e2在有限时间范围内收敛至有界区域,考虑如下复合李雅普诺夫函数V:In order to prove that the tracking error signals e1 and e2 of the quadrotor plant protection drone converge to a bounded region within a finite time range, consider the following composite Lyapunov function V:
其中,和表示估计误差,和分别表示β1和β2的估计值。in, and represents the estimation error, and denote the estimated values of β1 and β2 , respectively.
将基于抗饱和有限时间自适应神经网络容错跟踪控制器、四旋翼植保无人机的飞行误差数学模型、饱和补偿系统和自适应神经网络参数,代入到李雅普诺夫函数V的一阶导数中,可得:Substituting the anti-saturation finite-time adaptive neural network fault-tolerant tracking controller, the flight error mathematical model of the quadrotor plant protection UAV, the saturation compensation system and the adaptive neural network parameters into the first-order derivative of the Lyapunov function V, we can obtain:
其中,in,
以及 as well as
根据有限时间稳定性定理可知,只要满足 和K2>0,闭环系统的跟踪信号ξ1,ξ2,υ1,υ2在有限时间T1收敛至原点附近的有界区域Ω1。According to the finite time stability theorem, as long as and K 2 >0, the tracking signals ξ 1 ,ξ 2 , υ 1 ,υ 2 converge to a bounded region Ω 1 near the origin in finite time T 1 .
具体地,有限时间T1的计算公式为Specifically, the calculation formula for the finite time T 1 is:
,其中:0<ε1<1,T0表示初始时间。 , where: 0<ε 1 <1, T 0 represents the initial time.
具体地,有界区域Ω1的计算公式为Specifically, the bounded region Ω 1 is calculated as
因此,基于所设计的位置滤波跟踪误差和姿态滤波跟踪误差,可得出位置跟踪误差和姿态跟踪误差将分别收敛至如下有界区域: Therefore, based on the designed position filter tracking error and attitude filter tracking error, it can be concluded that the position tracking error and attitude tracking error will converge to the following bounded areas respectively:
综上所述,本发明在四旋翼植保无人机在受外界时变风扰、输入饱和以及执行器错误的影响下,设计的基于抗饱和有限时间自适应神经网络容错跟踪控制器仍能够保证所有闭环系统信号和跟踪误差在有限时间内收敛至有界区域,增强了系统的鲁棒性、执行器抗饱和性能以及执行器容错能力,有助于保证四旋翼植保无人机的高性能安全自主飞行。同时,减少了自适应神经网络参数的在线计算数量,有效地降低了机载控制中心的计算负担。In summary, the present invention, when the quad-rotor plant protection UAV is affected by external time-varying wind disturbance, input saturation and actuator errors, the designed anti-saturation finite time adaptive neural network fault-tolerant tracking controller can still ensure that all closed-loop system signals and tracking errors converge to a bounded area within a finite time, thereby enhancing the robustness of the system, the actuator anti-saturation performance and the actuator fault tolerance, and helping to ensure the high-performance, safe and autonomous flight of the quad-rotor plant protection UAV. At the same time, the number of online calculations of the adaptive neural network parameters is reduced, effectively reducing the computational burden of the airborne control center.
为了验证本发明所提控制器的优越性,在具体地实施例中,基于MATLAB仿真平台上构建四旋翼植保无人机轨迹跟踪控制系统。在本发明实施例中,四旋翼植保无人机的物理参数如下:m=2[kg],g=9.8[m/s2],d=0.2[m],Jr=0.002[kg·m2],Io,x=Io,y=1.2416[N·m·s2/rad],Io,z=2.4832[N·m·s2/rad],Kf,1=Kf,2=Kf,3=0.01[N·s/m]和Kt,1=Kt,2=Kt,3=0.001[N·m·s/rad]。In order to verify the superiority of the controller proposed in the present invention, in a specific embodiment, a trajectory tracking control system of a four-rotor plant protection UAV is constructed based on a MATLAB simulation platform. In the embodiment of the present invention, the physical parameters of the four-rotor plant protection UAV are as follows: m = 2 [kg], g = 9.8 [m/s 2 ], d = 0.2 [m], Jr = 0.002 [kg·m 2 ], Io,x = Io,y = 1.2416 [N·m·s 2 /rad], Io ,z = 2.4832 [N·m·s 2 /rad], Kf,1 = Kf ,2 = Kf,3 = 0.01 [N·s/m] and Kt,1 = Kt,2 = Kt,3 = 0.001 [N·m·s/rad].
四旋翼植保无人机受到的时变扰动如下:The time-varying disturbances to the quadrotor plant protection drone are as follows:
和四旋翼植保无人机受到的执行器故障如下: [r1,r2,r3,r4]T=[0.1,0.02,0.1sin(0.2t),0]T。四旋翼植保无人机受到的输入饱和限制如下:umax,1=35[N]和umax,2=umax,3=umax,4=40[N·m]。四旋翼植保无人机从初始轨迹 and The actuator failures of the quadrotor agricultural drone are as follows: [r 1 ,r 2 ,r 3 ,r 4 ] T =[0.1,0.02,0.1sin(0.2t),0] T . The input saturation limits of the quadrotor agricultural drone are as follows: u max,1 =35[N] and u max,2 =u max,3 =u max,4 =40[N·m]. The quadrotor agricultural drone changes from the initial trajectory
起飞跟踪期望轨迹Takeoff tracking desired trajectory
选取的控制参数如下:The selected control parameters are as follows:
γ1=10,γ2=6,k1=10,k2=2,a1=a2=1,b1=0.003,b2=0.002,c1=c2=0.6,β1(0)=β2(0)=0,σ=0,μ=5,ksum=200,ρ1=15,ρ2=17,K1=2.5和K2=3.5。γ 1 =10, γ 2 =6, k 1 =10, k 2 =2, a 1 =a 2 =1, b 1 =0.003, b 2 =0.002, c 1 =c 2 =0.6, β 1 (0 )=β 2 (0)=0, σ=0, μ=5, k sum =200, ρ 1 =15, ρ 2 =17, K 1 =2.5 and K 2 =3.5.
如图3-图10所示,从图3中可以看出四旋翼植保无人机的实际轨迹能很好地跟踪上期望轨迹。从图4、图5、图6可以看出四旋翼植保无人机在外部风扰、执行器错误和输入饱和的影响下,其在x,y,z轴上的实时轨迹信号能分别准确地跟踪上对应的期望位置信号。从图7、图8、图9可以看出四旋翼植保无人机在外部风扰、执行器错误和输入饱和的影响下,其实时翻滚角信号、实时俯仰角信号和实时偏航角信号能分别准确地跟踪上对应的期望姿态信号。从图10中可以看出四旋翼植保无人机的四个输出信号均满足输入饱和的约束条件,有效地解决了输入饱和的问题。从图11中可以看出两个自适应参数的值有界且最终收敛至0附近,避免了参数漂移的问题。As shown in Figures 3 to 10, it can be seen from Figure 3 that the actual trajectory of the quadrotor agricultural drone can track the expected trajectory well. From Figures 4, 5, and 6, it can be seen that under the influence of external wind disturbance, actuator error, and input saturation, the real-time trajectory signals of the quadrotor agricultural drone on the x, y, and z axes can accurately track the corresponding expected position signals respectively. From Figures 7, 8, and 9, it can be seen that under the influence of external wind disturbance, actuator error, and input saturation, the real-time roll angle signal, real-time pitch angle signal, and real-time yaw angle signal of the quadrotor agricultural drone can accurately track the corresponding expected attitude signals respectively. From Figure 10, it can be seen that the four output signals of the quadrotor agricultural drone meet the input saturation constraint conditions, effectively solving the problem of input saturation. From Figure 11, it can be seen that the values of the two adaptive parameters are bounded and eventually converge to near 0, avoiding the problem of parameter drift.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。The above shows and describes the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited to the above embodiments. The above embodiments and descriptions only describe the principles of the present invention. The present invention may be subject to various changes and improvements without departing from the spirit and scope of the present invention. These changes and improvements fall within the scope of the present invention. The scope of protection claimed by the present invention is defined by the attached claims and their equivalents.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110987581.2A CN113961010B (en) | 2021-08-26 | 2021-08-26 | Tracking control method for quadrotor plant protection UAV |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110987581.2A CN113961010B (en) | 2021-08-26 | 2021-08-26 | Tracking control method for quadrotor plant protection UAV |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113961010A CN113961010A (en) | 2022-01-21 |
CN113961010B true CN113961010B (en) | 2023-07-18 |
Family
ID=79460735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110987581.2A Active CN113961010B (en) | 2021-08-26 | 2021-08-26 | Tracking control method for quadrotor plant protection UAV |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113961010B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114895698A (en) * | 2022-06-15 | 2022-08-12 | 广州软件学院 | A trajectory tracking control method for quadrotor UAV under time-varying state constraints |
CN118011833B (en) * | 2024-03-12 | 2025-01-21 | 河北科技大学 | Fault-tolerant control method for quadrotor drone under actuator failure and input saturation |
CN117908362B (en) * | 2024-03-15 | 2024-06-07 | 山东大学 | Composite anti-saturation control method and control system for flexible joint robot |
CN117908576B (en) * | 2024-03-19 | 2024-05-28 | 南京信息工程大学 | A finite-time fault-tolerant control method for quadrotor UAV with anti-saturation |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049640A (en) * | 2014-06-27 | 2014-09-17 | 金陵科技学院 | Unmanned air vehicle attitude robust fault tolerance control method based on neural network observer |
US9146557B1 (en) * | 2014-04-23 | 2015-09-29 | King Fahd University Of Petroleum And Minerals | Adaptive control method for unmanned vehicle with slung load |
CN105843240A (en) * | 2016-04-08 | 2016-08-10 | 北京航空航天大学 | Spacecraft attitude integral sliding mode fault tolerance control method taking consideration of performer fault |
WO2016193713A1 (en) * | 2015-06-02 | 2016-12-08 | Marine Electrical Consulting Limited | Method and apparatus for adaptive motion compensation |
CN107943094A (en) * | 2017-12-27 | 2018-04-20 | 上海应用技术大学 | The sliding-mode control and its controller of a kind of quadrotor |
CN108375907A (en) * | 2018-03-28 | 2018-08-07 | 北京航空航天大学 | Hypersonic aircraft Adaptive Compensation Control Method based on neural network |
CN108803317A (en) * | 2018-05-08 | 2018-11-13 | 天津大学 | Adaptive multivariable quadrotor drone finite time fault tolerant control method |
CN109188910A (en) * | 2018-09-28 | 2019-01-11 | 浙江工业大学 | A kind of fault-tolerant tracking and controlling method of the adaptive neural network of rigid aircraft |
GB201910669D0 (en) * | 2018-07-25 | 2019-09-11 | Univ Northwestern Polytechnical | Method for controlling relative attitude of spacecrafts having multi-source disturbances and actuator saturation |
CN111948944A (en) * | 2020-08-07 | 2020-11-17 | 南京航空航天大学 | A fault-tolerant control method for quadrotor formation based on adaptive neural network |
CN113220031A (en) * | 2021-05-13 | 2021-08-06 | 中国科学院合肥物质科学研究院 | Anti-saturation finite time-based attitude tracking control method for rotary wing type plant protection unmanned aerial vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9978285B2 (en) * | 2015-06-10 | 2018-05-22 | Ecole Polytechnique Federale De Lausanne (Epfl) | Autonomous and non-autonomous dynamic model based navigation system for unmanned vehicles |
US11693373B2 (en) * | 2018-12-10 | 2023-07-04 | California Institute Of Technology | Systems and methods for robust learning-based control during forward and landing flight under uncertain conditions |
-
2021
- 2021-08-26 CN CN202110987581.2A patent/CN113961010B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9146557B1 (en) * | 2014-04-23 | 2015-09-29 | King Fahd University Of Petroleum And Minerals | Adaptive control method for unmanned vehicle with slung load |
CN104049640A (en) * | 2014-06-27 | 2014-09-17 | 金陵科技学院 | Unmanned air vehicle attitude robust fault tolerance control method based on neural network observer |
WO2016193713A1 (en) * | 2015-06-02 | 2016-12-08 | Marine Electrical Consulting Limited | Method and apparatus for adaptive motion compensation |
CN105843240A (en) * | 2016-04-08 | 2016-08-10 | 北京航空航天大学 | Spacecraft attitude integral sliding mode fault tolerance control method taking consideration of performer fault |
CN107943094A (en) * | 2017-12-27 | 2018-04-20 | 上海应用技术大学 | The sliding-mode control and its controller of a kind of quadrotor |
CN108375907A (en) * | 2018-03-28 | 2018-08-07 | 北京航空航天大学 | Hypersonic aircraft Adaptive Compensation Control Method based on neural network |
CN108803317A (en) * | 2018-05-08 | 2018-11-13 | 天津大学 | Adaptive multivariable quadrotor drone finite time fault tolerant control method |
GB201910669D0 (en) * | 2018-07-25 | 2019-09-11 | Univ Northwestern Polytechnical | Method for controlling relative attitude of spacecrafts having multi-source disturbances and actuator saturation |
CN109188910A (en) * | 2018-09-28 | 2019-01-11 | 浙江工业大学 | A kind of fault-tolerant tracking and controlling method of the adaptive neural network of rigid aircraft |
CN111948944A (en) * | 2020-08-07 | 2020-11-17 | 南京航空航天大学 | A fault-tolerant control method for quadrotor formation based on adaptive neural network |
CN113220031A (en) * | 2021-05-13 | 2021-08-06 | 中国科学院合肥物质科学研究院 | Anti-saturation finite time-based attitude tracking control method for rotary wing type plant protection unmanned aerial vehicle |
Non-Patent Citations (2)
Title |
---|
一种改善无人机自动返航降落误差的方法;刘康等;现代电子技术;第41卷(第6期);第61-69页 * |
输入饱和与姿态受限的四旋翼无人机反步姿态控制;魏青铜等;控制理论与应用;第32卷(第10期);第1361-1369页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113961010A (en) | 2022-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113961010B (en) | Tracking control method for quadrotor plant protection UAV | |
Chen et al. | Human-in-the-loop consensus tracking control for UAV systems via an improved prescribed performance approach | |
CN111766899B (en) | Interference observer-based quad-rotor unmanned aerial vehicle cluster anti-interference formation control method | |
CN107807663B (en) | Formation keeping control method for unmanned aerial vehicles based on adaptive control | |
CN103760906B (en) | Neural network and non-linear continuous depopulated helicopter attitude control method | |
CN108594837A (en) | Model-free quadrotor drone contrail tracker and method based on PD-SMC and RISE | |
CN110825122B (en) | Active anti-jamming tracking control method for circular trajectory of quadrotor UAV | |
CN108638068B (en) | A design method of a flying robot control system carrying a redundant manipulator | |
CN114138010B (en) | A multi-agent high-order sliding mode formation control method based on weighted bias | |
CN110850887A (en) | A composite dynamic inverse anti-jamming attitude control method for quadrotor UAV | |
CN112230670B (en) | Formation control method for multi-four-rotor aircraft with predictor | |
CN108681331A (en) | A kind of Attitude tracking control method of Near Space Flying Vehicles | |
Yan et al. | Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults | |
CN115373363A (en) | A sliding-mode fault-tolerant control method for constrained UAV systems under actuator faults | |
CN115826394A (en) | Control method of quad-rotor unmanned aerial vehicle based on fractional order PID and fractional order terminal sliding mode | |
CN111061282A (en) | Four-rotor unmanned aerial vehicle suspension flight system control method based on energy method | |
CN118759837A (en) | Fault-tolerant control method for high-speed UAV considering amplitude and rate constraints | |
CN117452975A (en) | Security performance cooperative formation control design method for four-rotor unmanned aerial vehicle cluster | |
CN113885548B (en) | A multi-quadrotor UAV output constrained state consistent game controller | |
CN114019997B (en) | Finite time control method under position tracking deviation constraint of fixed wing unmanned aerial vehicle | |
Li et al. | Adaptive neural network-based fault-tolerant control for quadrotor-slung-load system under marine scene | |
CN110347036B (en) | Autonomous wind-resistant intelligent control method for UAV based on fuzzy sliding mode control | |
CN113220031A (en) | Anti-saturation finite time-based attitude tracking control method for rotary wing type plant protection unmanned aerial vehicle | |
CN118394123A (en) | Fuzzy linear active disturbance rejection control method for quadrotor UAV based on improved LESO | |
Li et al. | State prediction and anti-interference-based flight path-following for UAVs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |