CN113917642B - A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform - Google Patents
A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform Download PDFInfo
- Publication number
- CN113917642B CN113917642B CN202111114453.3A CN202111114453A CN113917642B CN 113917642 B CN113917642 B CN 113917642B CN 202111114453 A CN202111114453 A CN 202111114453A CN 113917642 B CN113917642 B CN 113917642B
- Authority
- CN
- China
- Prior art keywords
- micro
- nano
- optical element
- level
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 60
- 230000007246 mechanism Effects 0.000 claims abstract description 33
- 238000013519 translation Methods 0.000 claims description 17
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 5
- 210000005069 ears Anatomy 0.000 claims description 4
- 238000004026 adhesive bonding Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006335 epoxy glue Polymers 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
Abstract
本发明公开了一种串并联耦合的多自由度光学元件精密调节平台,解决乐传统的光学元件调节平台无法同时兼顾多自由度的精密调节,以及调节平台自身低复杂度、高可靠性的问题,该平台包括支撑座、一级调整机构以及二级调整机构;通过一级调整机构中的第一微纳级驱动组件可驱动光学元件沿Z方向平移,以及绕X,Y两个方向旋转,通过二级调整机构中的第二微纳级驱动组件可驱动光学元件沿X,Y两个方向平移,从而实现光学系统中光学元件空间位置多维高精度调节,进而提高光学系统性能指标。
The invention discloses a series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform, which solves the problems that the traditional optical element adjustment platform cannot simultaneously take into account the multi-degree-of-freedom precision adjustment, and the adjustment platform itself has low complexity and high reliability. , the platform includes a support base, a first-level adjustment mechanism and a second-level adjustment mechanism; the optical element can be driven to translate along the Z direction and rotate around the X and Y directions through the first micro-nano-level driving component in the first-level adjustment mechanism. The second micro-nano-level driving component in the secondary adjustment mechanism can drive the optical element to translate along the X and Y directions, so as to realize the multi-dimensional and high-precision adjustment of the spatial position of the optical element in the optical system, thereby improving the performance index of the optical system.
Description
技术领域technical field
本发明涉及一种光学元件的调节平台,尤其涉及一种串并联耦合的多自由度光学元件精密调节平台。The invention relates to an adjustment platform for optical elements, in particular to a series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform.
背景技术Background technique
光电测量系统/设备是国家防务、科学探索及社会民生等领域的重要支撑,而光学系统作为光电测量设备的眼睛,其性能指标的优劣决定了光电测量系统/设备的效能。光学系统本质上而言是通过不同形式光学元件的精密布局,对光能的调控与再分布,其性能指标的实现依赖于光学元件的高精度(um、nm级)空间排布。The photoelectric measurement system/equipment is an important support in the fields of national defense, scientific exploration, and social and people's livelihood, and the optical system is the eye of the photoelectric measurement device, and its performance indicators determine the efficiency of the photoelectric measurement system/equipment. In essence, the optical system controls and redistributes light energy through the precise layout of different forms of optical components. The realization of its performance indicators depends on the high-precision (um, nm) spatial arrangement of the optical components.
空间非合作目标的复杂化、机动化,要求光学系统相对更大的视场、更高的视轴(LOS)稳定精度;空对地目标搜索需要更高效率的大范围推扫;公共交通记录监视需要对更多目标进行高分辨成像、探测。上述更大视场、更高扫描效率、更高分辨等光学相关性能指标的实现,均以光学元件空间位置精准操控为实现手段。The complexity and motorization of non-cooperative space targets require a relatively larger field of view and higher line-of-sight (LOS) stabilization accuracy of the optical system; air-to-ground target search requires a more efficient large-scale push-broom; public transportation records Surveillance requires high-resolution imaging and detection of more targets. The realization of the above-mentioned optical-related performance indicators such as larger field of view, higher scanning efficiency, and higher resolution is achieved by precise control of the spatial position of optical components.
科技的不断进度,对光学系统提出了日趋高的性能指标要求,传统的光学元件调节平台已无法满足当前光学元件精准调控的需求。The continuous progress of science and technology has put forward increasingly high performance index requirements for optical systems, and traditional optical component adjustment platforms have been unable to meet the current requirements for precise adjustment of optical components.
传统的快速反射镜通常仅能调节两维旋转自由度,对有调焦动作(通常沿光轴平移方向)的需求无能为力;Traditional fast mirrors can usually only adjust two-dimensional rotational degrees of freedom, and cannot do anything for the need for focusing action (usually along the optical axis translation direction);
而典型扫描机构仅能实现平面内二维平移,无法调节旋转量;The typical scanning mechanism can only achieve two-dimensional translation in the plane, and cannot adjust the amount of rotation;
成熟的商业化Stewart六自由度调整台,可实现多自由度调节,但由于其高度耦合的动力学模型,导致死点、失稳等奇异特性,需要进行复杂精密的运动学求解,对控制系统提出了较高的要求,系统复杂度较高。The mature commercial Stewart six-degree-of-freedom adjustment table can realize multi-degree-of-freedom adjustment, but due to its highly coupled dynamic model, it leads to singular characteristics such as dead point and instability, which requires complex and precise kinematics solutions. Higher requirements are put forward, and the system complexity is higher.
发明内容SUMMARY OF THE INVENTION
为解决传统的光学元件调节平台无法同时兼顾多自由度的精密调节,以及调节平台自身低复杂度、高可靠性的问题,本发明提供了一种串并联耦合的多自由度光学元件精密调节平台。In order to solve the problems that the traditional optical element adjustment platform cannot take into account the precise adjustment of multiple degrees of freedom at the same time, as well as the low complexity and high reliability of the adjustment platform itself, the present invention provides a series-parallel coupled multi-degree-of-freedom optical element precise adjustment platform. .
本发明的基本实现原理是:The basic realization principle of the present invention is:
选择微纳直线电机作为驱动元件,以柔顺单元为基础作为载荷的支撑和导向机构,实现光学元件的多维高精度调节。The micro-nano linear motor is selected as the driving element, and the compliant unit is used as the supporting and guiding mechanism of the load to realize the multi-dimensional and high-precision adjustment of the optical element.
本发明解决其技术问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:
一种串并联耦合的多自由度光学元件精密调节平台,其特征在于:包括支撑座、一级调整机构以及二级调整机构;A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform is characterized by comprising a support base, a primary adjustment mechanism and a secondary adjustment mechanism;
支撑座用于安装被调节光学元件;The support base is used to install the adjusted optical element;
一级调整机构包括一级框架以及第一微纳级驱动组件;The first-level adjustment mechanism includes a first-level frame and a first micro-nano-level driving component;
一级框架包括上层导向片、支撑柱以及下层底板;上层导向片与下层底板平行设置,且上层导向片与下层底板之间通过三个支撑柱连接;上层导向片上安装支撑座;The first-level frame includes an upper-layer guide piece, a support column and a lower-layer base plate; the upper-layer guide piece and the lower-layer base plate are arranged in parallel, and the upper-layer guide piece and the lower-layer base plate are connected by three support columns; a support seat is installed on the upper-layer guide piece;
第一微纳级驱动组件至少为三个,且均匀安装于一级框架的下层底板上,至少三个第一微纳级驱动组件的柔性驱动端均穿过上层导向片与所述支撑座连接;There are at least three first micro-nano-level driving components, and they are evenly installed on the lower bottom plate of the primary frame, and the flexible driving ends of the at least three first micro-nano level driving components are connected to the support seat through the upper guide plate ;
二级调整机构包括第二微纳级驱动组件、柔性导向杆及基座;The secondary adjustment mechanism includes a second micro-nano-level driving component, a flexible guide rod and a base;
第二微纳级驱动组件为两个,且均固定安装于基座上,第二微纳级驱动组件的驱动端均与所述下层底板连接,There are two second micro-nano-level driving components, and both are fixedly installed on the base, and the driving ends of the second micro-nano-level driving components are all connected to the lower bottom plate,
柔性导向杆至少为三根,且均匀分布;柔性导向杆的一端与基座固连,另一端穿过所述下层底板后与所述支撑柱的侧耳固定连接;There are at least three flexible guide rods and they are evenly distributed; one end of the flexible guide rod is fixedly connected with the base, and the other end is fixedly connected with the side ear of the support column after passing through the lower bottom plate;
在至少三个第一微纳级驱动组件的驱动下,上层导向片约束下,以及柔性导向杆的导向作用下,支撑座具有绕X、Y轴的转动及沿Z向的平移的自由度;Under the driving of at least three first micro-nano-level driving components, under the constraint of the upper guide plate, and under the guiding action of the flexible guide rod, the support seat has the degrees of freedom of rotation around the X and Y axes and translation along the Z direction;
在两个第二微纳级驱动组件的驱动,以及柔性导向杆作用下,支撑座具有沿X、Y轴平移的自由度。Under the driving of the two second micro-nano-level driving components and the action of the flexible guide rod, the support base has the freedom of translation along the X and Y axes.
进一步地,上述上层导向片采用慢走丝一体化加工成型,且上层导向片六个方向的刚度需满足以下条件:Further, the above-mentioned upper-layer guide piece adopts the integrated processing and molding of slow-moving wire, and the rigidity of the upper-layer guide piece in six directions needs to meet the following conditions:
其中,kx1,ky1,kz1分别表示上层导向片沿X、Y、Z三个方向的平移刚度;kRx1,kRy1,kRz1分别表示上层导向片绕X、Y、Z三个方向的旋转刚度;Among them, k x1 , k y1 , k z1 represent the translation stiffness of the upper guide piece along the X, Y, Z directions, respectively; k Rx1 , k Ry1 , k Rz1 represent the upper guide piece around the X, Y, Z directions, respectively the rotational stiffness;
进一步地,上层导向片的厚度小于1.5mm。Further, the thickness of the upper guide sheet is less than 1.5mm.
进一步地,上述第一微纳级驱动组件包括第一微纳级直线电机以及柔性杆;柔性杆的下端与第一微纳级直线电机位移输出端连接,柔性杆的上端穿过上层导向片后与支撑座连接。Further, the above-mentioned first micro-nano-level driving assembly includes a first micro-nano-level linear motor and a flexible rod; the lower end of the flexible rod is connected with the displacement output end of the first micro-nano-level linear motor, and the upper end of the flexible rod passes through the upper guide plate after the Connect to the support base.
进一步地,上述柔性杆包括自上而下依次设置的顶部、变形部以及固定部;所述顶部用于与所述支撑座连接,所述变形部用于提供Z向平移的位移量,以及绕X,Y轴旋转的旋转量,所述固定部用于与微纳级直线电机位移输出端连接。Further, the above-mentioned flexible rod includes a top, a deforming part and a fixing part arranged in sequence from top to bottom; the top is used for connecting with the support base, and the deforming part is used for providing the displacement amount of Z-direction translation, and around the The rotation amount of X and Y axis rotation, and the fixed part is used to connect with the displacement output end of the micro-nano linear motor.
进一步地,上述变形部的长度L1及直径φd1需满足的条件为: Further, the conditions that the length L 1 and diameter φd 1 of the above-mentioned deformed portion need to meet are:
进一步地,上述柔性导向杆包括自上而下依次设置的导向段、变形段以及固定段;所述导向段与所述支撑柱的侧耳固定连接,所述变形段用于提供X,Y方向的平移位移量,所述固定段用于与基座固连。Further, the above-mentioned flexible guide rod includes a guide section, a deformation section and a fixed section arranged in sequence from top to bottom; the guide section is fixedly connected with the side ears of the support column, and the deformation section is used to provide X and Y directions. The amount of translation displacement, the fixed segment is used to be fixedly connected with the base.
进一步地,上述变形段的长度L2及直径φd2需满足的条件为: Further, the conditions that the length L 2 and the diameter φd 2 of the above-mentioned deformed section need to meet are:
进一步地,上述第二微纳级驱动组件为第二微纳级直线电机。Further, the above-mentioned second micro-nano-level driving component is a second micro-nano-level linear motor.
进一步地,上述支撑座为设置有镂空减重孔的三角形结构,其采用涂胶的方式固定被调整光学元件。Further, the above-mentioned support base is a triangular structure provided with hollow weight-reducing holes, and the optical element to be adjusted is fixed by means of gluing.
本发明的有益效果在于:The beneficial effects of the present invention are:
1、本发明基于一级调整机构的上层导向片、柔性杆,以及二级调整机构的柔性导向杆,再结合微纳级直线电机构成了柔性构型的串并联调整平台,相比于传统直线轴承、导轨、铰链等结构形式,其变形主要建立在结构件薄弱环节的弹性变形上,完全消除了运动中的摩擦和粘滞,同时其免维护,可在真空、高低温等多种环境中使用,没有特殊的润滑需求,也完全避免了对光学系统的干扰和污染。1. The present invention is based on the upper guide plate and flexible rod of the primary adjustment mechanism, and the flexible guide rod of the secondary adjustment mechanism, combined with the micro-nano linear motor to form a series-parallel adjustment platform with a flexible configuration. Bearings, guide rails, hinges and other structural forms, the deformation is mainly based on the elastic deformation of the weak links of the structural parts, which completely eliminates friction and sticking during movement, and at the same time, it is maintenance-free and can be used in vacuum, high and low temperature and other environments. In use, there is no special lubrication requirement, and interference and contamination of the optical system are completely avoided.
2、本发明采用的一级调整机构和二级调整机构基本实现了无摩擦构型,具有很高的动作分辨率,可以在弹性变形范围内实现高频、高精度、高分辨的动作调整。2. The primary adjustment mechanism and the secondary adjustment mechanism adopted in the present invention basically realize a frictionless configuration, have high motion resolution, and can realize high-frequency, high-precision, and high-resolution motion adjustment within the elastic deformation range.
3、本发明用串并联形式的两级调整结构,相比于经典Stewart平台,其建模及驱动控制将极大简化,尤其适用于指标定制化程度较高的场合.3. Compared with the classic Stewart platform, the present invention uses a two-stage adjustment structure in the form of series and parallel, which greatly simplifies its modeling and drive control, and is especially suitable for occasions with a high degree of customization of indicators.
4、本发明的调整平台零部件数量少、结构形式简单紧凑,采用一体化加工制造,无拦光效应,同时便于装配调试,与光学元件接口可灵活定制。4. The adjusting platform of the present invention has few parts and components, simple and compact structure, adopts integrated processing and manufacture, has no light blocking effect, is easy to assemble and debug, and can be flexibly customized for the interface with the optical element.
5、本发明的采用微纳级直线电机作为驱动源,可在毫米级调节范围内,达到纳米级调节精度,相比于存在间隙的丝杠等传统调节方式,精度显著提高。5. The micro-nano linear motor of the present invention is used as the driving source, which can achieve nano-level adjustment accuracy within the millimeter-level adjustment range. Compared with traditional adjustment methods such as lead screws with gaps, the accuracy is significantly improved.
附图说明Description of drawings
图1为本发明的结构示意图。FIG. 1 is a schematic structural diagram of the present invention.
图2为图1的剖视图。FIG. 2 is a cross-sectional view of FIG. 1 .
图3为未安装光学元件时的装配立体图。FIG. 3 is an assembly perspective view when the optical element is not mounted.
图4为一级框架的结构图。Figure 4 is a structural diagram of the primary frame.
图5为一级调整结构的俯视示意图;5 is a schematic top view of a first-level adjustment structure;
图6为二级调整结构的俯视示意图;6 is a schematic top view of a secondary adjustment structure;
图7为柔性杆的示意图。Figure 7 is a schematic diagram of a flexible rod.
图8为柔性导向杆的示意图。Figure 8 is a schematic diagram of a flexible guide rod.
附图标记如下:The reference numbers are as follows:
1-光学元件、2-支撑座、3-一级调整机构、4-二级调整机构、5一级框架、6-第一微纳级驱动组件、7-上层导向片、8-支撑柱、9-下层底板、10-第一微纳级直线电机、11-柔性杆、111-顶部、112-变形部、113-固定部、12-第二微纳级驱动组件、13-柔性导向杆、131-导向段、132-变形段、133-固定段、14-基座。1-optical element, 2-support base, 3-first-level adjustment mechanism, 4-secondary adjustment mechanism, 5-level-1 frame, 6-first micro-nano-level drive assembly, 7-upper guide plate, 8-support column, 9-lower bottom plate, 10-first micro-nano linear motor, 11-flexible rod, 111-top, 112-deformation part, 113-fixed part, 12-second micro-nano-level drive assembly, 13-flexible guide rod, 131-guide segment, 132-deformation segment, 133-fixed segment, 14-base.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。In order to make the above objects, features and advantages of the present invention more obvious and easy to understand, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention, not all of them. Example. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。Many specific details are set forth in the following description to facilitate a full understanding of the present invention, but the present invention can also be implemented in other ways different from those described herein, and those skilled in the art can do so without departing from the connotation of the present invention. Similar promotion, therefore, the present invention is not limited by the specific embodiments disclosed below.
同时在本发明的描述中,需要说明的是,术语中的“上、下、内和外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一、第二或第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。At the same time, in the description of the present invention, it should be noted that the orientation or positional relationship indicated in terms such as "upper, lower, inner and outer" is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention. The invention and simplified description do not indicate or imply that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the invention. Furthermore, the terms "first, second or third" are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
本发明中除非另有明确的规定和限定,术语“安装、相连、连接”应做广义理解,例如:可以是固定连接、可拆卸连接或一体式连接:同样可以是机械连接、电连接或直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。Unless otherwise expressly specified and limited in the present invention, the term "installation, connection, connection" should be understood in a broad sense, for example: it may be a fixed connection, a detachable connection or an integral connection; it may also be a mechanical connection, an electrical connection or a direct connection. The connection can also be indirectly connected through an intermediate medium, or it can be the internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
本发明提供的串并联耦合的多自由度光学元件精密调节平台,分为串接的一级调整机构和二级调整机构,通过一级调整机构中的第一微纳级驱动组件可驱动光学元件沿Z方向平移,以及绕X,Y两个方向旋转,通过二级调整机构中的第二微纳级驱动组件可驱动光学元件沿X,Y两个方向平移,从而实现光学系统中光学元件空间位置多维高精度调节,进而提高光学系统性能指标。The series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform provided by the present invention is divided into a series-connected primary adjustment mechanism and a secondary adjustment mechanism, and the optical element can be driven by the first micro-nano-level driving component in the primary adjustment mechanism Translate along the Z direction, and rotate around the X and Y directions. The second micro-nano-level driving component in the secondary adjustment mechanism can drive the optical element to translate along the X and Y directions, so as to realize the optical element space in the optical system. Position multi-dimensional high-precision adjustment, thereby improving the performance index of the optical system.
需要说明的是:本实施例中Z方向为光学元件的光轴方向,X,Y方向为垂直与光轴方向的两个方向;It should be noted that: in this embodiment, the Z direction is the optical axis direction of the optical element, and the X and Y directions are the two directions perpendicular to the optical axis direction;
如图1-3所示,一种串并联耦合的多自由度光学元件精密调节平台的具体结构为:包括支撑座2、一级调整机构3以及二级调整机构4;As shown in Figures 1-3, the specific structure of a series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform is: including a
支撑座2用于安装被调节光学元件1,并与光学元件1共同组成该精密调整平台的调整对象,采用具有镂空减重孔的三角形结构作为轻量化设计,被调整光学元件与支撑座采用环氧胶可靠固连并保证光学表面面型精度。The
一级调整机构3包括一级框架5以及第一微纳级驱动组件6;The first-
如图4所示,一级框架5包括上层导向片7、支撑柱8以及下层底板9;上层导向片7与下层底板9平行设置,且上层导向片7与下层底板9之间通过三个支撑柱8连接;上层导向片7上安装支撑座2;As shown in FIG. 4 , the
本实施例中,上层导向片7采用慢走丝一体化加工成型,一般上层导向片7的厚度小于1.5mm,其在6个自由度上的刚度为需要满足以下条件:In this embodiment, the upper
其中,kx1,ky1,kz1分别表示上层导向片沿X、Y、Z三个方向的平移刚度;kRx1,kRy1,kRz1分别表示上层导向片绕X、Y、Z三个方向的旋转刚度;Among them, k x1 , k y1 , k z1 represent the translation stiffness of the upper guide piece along the X, Y, Z directions, respectively; k Rx1 , k Ry1 , k Rz1 represent the upper guide piece around the X, Y, Z directions, respectively the rotational stiffness;
第一微纳级驱动组件6为三个,且均匀安装于一级框架的下层底板9上,三个第一微纳级驱动组件6的柔性驱动端均穿过上层导向片7与所述支撑座2连接;There are three first micro-nano-
具体来说,如图7所示,第一微纳级驱动组件6包括第一微纳级直线电机10以及柔性杆11;柔性杆11包括自上而下依次设置的顶部111、变形部112以及固定部113;顶部111用于与所述支撑座2连接,变形部112用于提供Z向平移的位移量,以及绕X,Y轴旋转的旋转量,固定部113用于与第一微纳级直线电机10位移输出端连接,且柔性杆11的变形部112的长度L1及直径φd1需满足的条件为: Specifically, as shown in FIG. 7 , the first micro-nano-
由于柔性导向杆在绕X轴及Y轴弯曲上具有较大柔度,沿Z向拉压方向具有较大刚度,结合上层导向片3的刚度特性,其释放绕X、Y轴旋转及Z轴平移自由度。Since the flexible guide rod has greater flexibility in bending around the X-axis and Y-axis, and has greater rigidity along the Z-direction tension and compression, combined with the stiffness characteristics of the
二级调整机构4包括第二微纳级驱动组件12、柔性导向杆13及基座14;The
第二微纳级驱动组件12为两个,且均固定安装于基座14上,第二微纳级驱动组件12的驱动端均与所述下层底板9连接;本实施例中第二微纳级驱动组件12为第二微纳级直线电机;There are two second micro-nano-
具体来说,如图8所示,柔性导向杆13为三根,且均匀分布;柔性导向杆13包括自上而下依次设置的导向段131、变形段132以及固定段133;导向段131与所述支撑柱8的侧耳81固定连接,变形段132用于提供X,Y方向的平移位移量,固定段133用于与基座14固连,且柔性导向杆的变形段132长度L2及直径φd2需满足的条件为: Specifically, as shown in FIG. 8 , there are three
柔性导向杆的抗弯截面系数W及拉压刚度EA可描述为:The flexural section coefficient and tensile and compressive stiffness EA of the flexible guide rod can be described as:
由于柔性导向杆在X、Y方向上较大的弯曲柔度,其释放了X、Y方向的平移自由度,约束了其余自由度。Due to the large bending flexibility of the flexible guide rod in the X and Y directions, it releases the translational degrees of freedom in the X and Y directions and constrains the remaining degrees of freedom.
基于上述对调整平台整体结构及各个部件的描述,现对该调节平台该的装调过程进行介绍:Based on the above description of the overall structure of the adjustment platform and its various components, the adjustment process of the adjustment platform is now introduced:
装配过程Assembly process
首先,将支撑座2与上层导向片7对应位置固连,将三个柔性杆11分别与三个第一微纳级直线电机10连接形成三个第一微纳级驱动组件6,并将三个第一微纳级驱动组件6安装于下层底板9上,且与支撑座2上三处连接点位置对应,将支撑座2、上层导向片7与三个第一微纳级驱动组件6进行连接,最后利用环氧胶将光学元件1固连于支撑座2上;First, the
然后将两个第二微纳级直线电机12安装于基座14上,如图4右所示,再将3处柔性导向杆13安装于基座14上,并与所述支撑柱8的位置相对应,最后将3处柔性导向杆13与支撑柱8的侧耳81固定连接,形成串并联耦合的多自由度精密调节平台。Then install the two second micro-nano
使用过程Use process
一级调整机构的过程过程为:The process of the first-level adjustment agency is as follows:
3个圆周均布第一微纳级直线电机10的协同驱动,通过上层导向片7及柔性杆11的组合变形,可实现光学元件1三个自由度调整。该过程具体为:参见图1和图5,两个第一微纳级直线电机10(图中A电机和B电机)同向等值驱动,另外一个第一微纳级直线电机10(图中C电机)反向驱动,可实现绕X轴的旋转动作;或者两个第一微纳级直线电机0(图中A电机和C电机)反向等值驱动,另外一个第一微纳级直线电机10(图中B电机)不参与运动,可实现绕Y轴的旋转动作;三个第一微纳级直线电机10的同向等值驱动,可实现沿Z轴的平动;The coordinated driving of the first micro-nano
二级调整机构的过程过程为:The process of the secondary adjustment agency is as follows:
通过第二微纳级直线电机的驱动,结合柔性导向杆13的变形,实现二级调整机构4的二自由度运动,具体为:参见图1和图6,在一个第二微纳级直线电机驱动下,可实现一级调整机构3、支撑座2及光学元件1均沿X向的平移调整,在另一个第二微纳级直线电机驱动下,可实现一级调整机构3、支撑座2及光学元件1均沿Y向的平移调整;Through the driving of the second micro-nano linear motor, combined with the deformation of the
由以上可知,本发明的一、二级调整机构在本级内都属于并联耦合调整,而在两级调整机构之间属于串联连接。级内耦合运动可通过解耦算法精确控制,级间串联连接具有一对一的解耦关系,简单易控。串并联耦合的一体化调整台,在保证多自由度精准调节的前提下,所需控制系统更为简洁。It can be seen from the above that the first and second-stage adjustment mechanisms of the present invention both belong to parallel coupling adjustment within this stage, and belong to series connection between the two-stage adjustment mechanisms. The coupling motion within the stage can be precisely controlled by the decoupling algorithm, and the series connection between the stages has a one-to-one decoupling relationship, which is simple and easy to control. The integrated adjustment stage coupled in series and parallel, on the premise of ensuring accurate adjustment of multiple degrees of freedom, requires a more concise control system.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111114453.3A CN113917642B (en) | 2021-09-23 | 2021-09-23 | A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111114453.3A CN113917642B (en) | 2021-09-23 | 2021-09-23 | A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113917642A CN113917642A (en) | 2022-01-11 |
CN113917642B true CN113917642B (en) | 2022-07-19 |
Family
ID=79235850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111114453.3A Active CN113917642B (en) | 2021-09-23 | 2021-09-23 | A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113917642B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117008270B (en) * | 2023-09-26 | 2023-12-08 | 上海隐冠半导体技术有限公司 | Leveling focusing mechanism |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1454753A (en) * | 2003-06-20 | 2003-11-12 | 北京工业大学 | Series-parallel micro operation parallel-connection robot mechanical apparatus |
CN102592684A (en) * | 2011-12-12 | 2012-07-18 | 江西理工大学 | Spatial three-dimensionally translatory and two-dimensionally rotary full-compliant parallel mechanism |
CN205614644U (en) * | 2016-03-25 | 2016-10-05 | 西安电子科技大学 | Four degree of freedom fine motion precision positioning systems |
CN106338805A (en) * | 2016-10-31 | 2017-01-18 | 中国科学院长春光学精密机械与物理研究所 | Optical element's six-degree-of-freedom micro-displacement adjusting device, projection objective lens and lithography machine |
CN110058404A (en) * | 2019-04-26 | 2019-07-26 | 广东工业大学 | A kind of big stroke micro-nano beat platform of piezoelectric driven integral type |
CN110531482A (en) * | 2019-08-28 | 2019-12-03 | 中国科学院西安光学精密机械研究所 | A kind of flexible high-precision time mirror assembly focus adjusting mechanism |
CN111203857A (en) * | 2020-01-16 | 2020-05-29 | 上海交通大学 | Flexible Parallel Mechanism with Multi-DOF Translation Motion |
CN112476373A (en) * | 2020-10-15 | 2021-03-12 | 广东工业大学 | Space 6-RRRR compliant parallel nano positioning platform |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7057370B2 (en) * | 2003-06-21 | 2006-06-06 | Igor Victorovich Touzov | Ultra-fast precision motor with X, Y and Theta motion and ultra-fast optical decoding and absolute position detector |
KR100979539B1 (en) * | 2010-01-29 | 2010-09-02 | 아주대학교산학협력단 | In-plane 3 degree-of-freedom positioning stage |
-
2021
- 2021-09-23 CN CN202111114453.3A patent/CN113917642B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1454753A (en) * | 2003-06-20 | 2003-11-12 | 北京工业大学 | Series-parallel micro operation parallel-connection robot mechanical apparatus |
CN102592684A (en) * | 2011-12-12 | 2012-07-18 | 江西理工大学 | Spatial three-dimensionally translatory and two-dimensionally rotary full-compliant parallel mechanism |
CN205614644U (en) * | 2016-03-25 | 2016-10-05 | 西安电子科技大学 | Four degree of freedom fine motion precision positioning systems |
CN106338805A (en) * | 2016-10-31 | 2017-01-18 | 中国科学院长春光学精密机械与物理研究所 | Optical element's six-degree-of-freedom micro-displacement adjusting device, projection objective lens and lithography machine |
CN110058404A (en) * | 2019-04-26 | 2019-07-26 | 广东工业大学 | A kind of big stroke micro-nano beat platform of piezoelectric driven integral type |
CN110531482A (en) * | 2019-08-28 | 2019-12-03 | 中国科学院西安光学精密机械研究所 | A kind of flexible high-precision time mirror assembly focus adjusting mechanism |
CN111203857A (en) * | 2020-01-16 | 2020-05-29 | 上海交通大学 | Flexible Parallel Mechanism with Multi-DOF Translation Motion |
CN112476373A (en) * | 2020-10-15 | 2021-03-12 | 广东工业大学 | Space 6-RRRR compliant parallel nano positioning platform |
Non-Patent Citations (2)
Title |
---|
Yung-Tien Liu etc..A 3-DOF Rotational Precision Positioning Stage using Spring-mounted PZT Actuators.《Towards Synthesis of Micro-/Nano-systems: The 11th International Conference on Precision Engineering (ICPE)》.2007,全文. * |
张福瑞 等.柔性轴在卫星光通信中的使用与优化设计.《红外与激光工程》.2019,第48卷(第8期), * |
Also Published As
Publication number | Publication date |
---|---|
CN113917642A (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103309009B (en) | Piezoelectric Ceramic Linear Motor Focusing Device Applied to Optical System | |
CN106113028B (en) | A kind of the leaf spring type micro-nano operating platform and method of more driving Three Degree Of Freedoms | |
CN113917642B (en) | A series-parallel coupled multi-degree-of-freedom optical element precision adjustment platform | |
CN109256174B (en) | High-precision spatial translation micro-positioning platform | |
CN113464780B (en) | A flexible positioning platform with three translational degrees of freedom in space | |
CN109584947B (en) | Three-degree-of-freedom, large-travel, and high-precision micro-positioning platform based on bridge-type amplifying mechanism | |
CN109129494B (en) | A parallel micro-compensation device | |
CN110010190B (en) | Three-dimensional constant force parallel flexible micro-positioning platform | |
CN109256175B (en) | High-precision large-travel space translation micro-positioning platform | |
CN108389603B (en) | A double compound flexible parallel four-bar mechanism | |
CN106772889B (en) | Six-dimensional adjusting support | |
CN110161643B (en) | Optical platform device based on kinematics support | |
CN108037576A (en) | A accurate concatenation mechanism of allosteric awl rod type for space concatenation speculum | |
CN208156385U (en) | High-precision space focusing mechanism with annular layout | |
CN111488000A (en) | Cascade-amplified two-dimensional pointing adjustment device and method with embedded declination sensing unit | |
CN107656367B (en) | Scanning mirror assembly for satellite-borne scanning mechanism | |
CN207352970U (en) | Drive component and flexible precision positioning platform | |
CN113791493B (en) | A fast mirror based on macro-micro two-stage composite action | |
CN212694842U (en) | A micro-positioning platform based on 2T3R flexible motion pair | |
CN110919032B (en) | Two-degree-of-freedom servo tool rest with large-stroke high-frequency response | |
CN211413668U (en) | Two-degree-of-freedom servo tool rest with large-stroke high-frequency response | |
CN114922904B (en) | Parallel decoupling xyz large-stroke positioning platform based on compliant hinge | |
CN207541321U (en) | Space splicing, positioning, locking and adjusting integrated mechanism and space splicing reflecting mirror | |
CN110095021B (en) | Image space scanning device for large-view-field infrared optical system | |
CN221726363U (en) | A long focal length stable tracking system suitable for helicopter-mounted optoelectronic pod |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |