CN113888412B - 一种用于糖尿病视网膜病变分类的图像超分辨率重建方法 - Google Patents
一种用于糖尿病视网膜病变分类的图像超分辨率重建方法 Download PDFInfo
- Publication number
- CN113888412B CN113888412B CN202111396384.XA CN202111396384A CN113888412B CN 113888412 B CN113888412 B CN 113888412B CN 202111396384 A CN202111396384 A CN 202111396384A CN 113888412 B CN113888412 B CN 113888412B
- Authority
- CN
- China
- Prior art keywords
- module
- feature
- feature map
- feature extraction
- esf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 206010012689 Diabetic retinopathy Diseases 0.000 title claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 58
- 238000010586 diagram Methods 0.000 claims abstract description 39
- 230000004927 fusion Effects 0.000 claims abstract description 31
- 210000001525 retina Anatomy 0.000 claims abstract description 18
- 230000009467 reduction Effects 0.000 claims abstract description 16
- 238000005070 sampling Methods 0.000 claims abstract description 11
- 230000004913 activation Effects 0.000 claims description 30
- 238000011176 pooling Methods 0.000 claims description 19
- 101100323284 Mus musculus Ankrd27 gene Proteins 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 21
- 230000035945 sensitivity Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004256 retinal image Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Eye Examination Apparatus (AREA)
- Image Analysis (AREA)
Abstract
Description
模型 | 放大倍数 | 测试集测试结果(PSNR/SSIM) |
实施例1 | 2 | 36.42/0.9589 |
对比例2 | 2 | 35.83/0.9511 |
对比例3 | 2 | 35.34/0.9485 |
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111396384.XA CN113888412B (zh) | 2021-11-23 | 2021-11-23 | 一种用于糖尿病视网膜病变分类的图像超分辨率重建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111396384.XA CN113888412B (zh) | 2021-11-23 | 2021-11-23 | 一种用于糖尿病视网膜病变分类的图像超分辨率重建方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113888412A CN113888412A (zh) | 2022-01-04 |
CN113888412B true CN113888412B (zh) | 2022-04-05 |
Family
ID=79015540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111396384.XA Active CN113888412B (zh) | 2021-11-23 | 2021-11-23 | 一种用于糖尿病视网膜病变分类的图像超分辨率重建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113888412B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114419612B (zh) * | 2022-01-10 | 2024-11-08 | 重庆锐云科技有限公司 | 一种用于景区车牌识别的图像超分辨率重建方法及装置 |
CN114882203B (zh) * | 2022-05-20 | 2024-05-28 | 江阴萃合智能装备有限公司 | 一种用于电力电网巡检机器人的图像超分辨率重建方法 |
CN115187814B (zh) * | 2022-07-25 | 2024-05-10 | 重庆芸山实业有限公司 | 一种基于人工智能的菊花叶病诊断方法及设备 |
CN115587979B (zh) * | 2022-10-10 | 2023-08-15 | 山东财经大学 | 基于三阶段注意力网络的糖尿病视网膜病变分级的方法 |
CN117372284B (zh) * | 2023-12-04 | 2024-02-23 | 江苏富翰医疗产业发展有限公司 | 眼底图像处理方法及系统 |
CN117853738B (zh) * | 2024-03-06 | 2024-05-10 | 贵州健易测科技有限公司 | 一种用于对茶叶分级的图像处理方法及设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111047515A (zh) * | 2019-12-29 | 2020-04-21 | 兰州理工大学 | 一种基于注意力机制的空洞卷积神经网络图像超分辨率重建方法 |
CN113592718A (zh) * | 2021-08-12 | 2021-11-02 | 中国矿业大学 | 基于多尺度残差网络的矿井图像超分辨率重建方法及系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111445390B (zh) * | 2020-02-28 | 2022-03-25 | 天津大学 | 基于宽残差注意力的三维医学图像超分辨率重建方法 |
CN112330542B (zh) * | 2020-11-18 | 2022-05-03 | 重庆邮电大学 | 基于crcsan网络的图像重建系统及方法 |
CN112862688B (zh) * | 2021-03-08 | 2021-11-23 | 西华大学 | 基于跨尺度注意力网络的图像超分辨率重建系统及方法 |
CN113409191B (zh) * | 2021-06-02 | 2023-04-07 | 广东工业大学 | 一种基于注意力反馈机制的轻量级图像超分方法及系统 |
CN113222822B (zh) * | 2021-06-02 | 2023-01-24 | 西安电子科技大学 | 基于多尺度变换的高光谱图像超分辨率重建方法 |
CN113436076B (zh) * | 2021-07-26 | 2022-01-28 | 深圳赛陆医疗科技有限公司 | 逐步融合特征的图像超分辨率重建方法及电子设备 |
-
2021
- 2021-11-23 CN CN202111396384.XA patent/CN113888412B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111047515A (zh) * | 2019-12-29 | 2020-04-21 | 兰州理工大学 | 一种基于注意力机制的空洞卷积神经网络图像超分辨率重建方法 |
CN113592718A (zh) * | 2021-08-12 | 2021-11-02 | 中国矿业大学 | 基于多尺度残差网络的矿井图像超分辨率重建方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113888412A (zh) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113888412B (zh) | 一种用于糖尿病视网膜病变分类的图像超分辨率重建方法 | |
CN112132817B (zh) | 一种混合注意力机制的眼底图像视网膜血管分割方法 | |
CN111145170B (zh) | 一种基于深度学习的医学影像分割方法 | |
CN112529839B (zh) | 一种核磁共振图像中颈动脉血管中心线的提取方法及系统 | |
CN114283158A (zh) | 一种视网膜血管图像分割方法、装置及计算机设备 | |
CN110047138A (zh) | 一种磁共振薄层图像重建方法 | |
CN114037624B (zh) | 一种用于糖尿病肾脏病变分类的图像增强方法及设备 | |
CN115375711A (zh) | 基于多尺度融合的全局上下文关注网络的图像分割方法 | |
CN115035127B (zh) | 一种基于生成式对抗网络的视网膜血管分割方法 | |
CN115526829A (zh) | 基于ViT与上下文特征融合的蜂窝肺病灶分割方法及网络 | |
Sorić et al. | Using convolutional neural network for chest X-ray image classification | |
Zhang et al. | MC-UNet multi-module concatenation based on U-shape network for retinal blood vessels segmentation | |
CN117333751A (zh) | 一种医学图像融合方法 | |
CN114418987A (zh) | 一种多阶段特征融合的视网膜血管分割方法及系统 | |
Huang et al. | DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel | |
Zijian et al. | AFFD-Net: A Dual-Decoder Network Based on Attention-Enhancing and Feature Fusion for Retinal Vessel Segmentation | |
CN114170089B (zh) | 一种用于糖尿病视网膜病变分类的方法及电子设备 | |
CN117314935A (zh) | 基于扩散模型的低质量眼底图像的增强及分割方法及系统 | |
Sri et al. | Detection Of MRI Brain Tumor Using Customized Deep Learning Method Via Web App | |
Gu et al. | Retinal vessel segmentation via adversarial learning and iterative refinement | |
CN115330600A (zh) | 一种基于改进srgan的肺部ct图像超分辨率方法 | |
CN115410032A (zh) | 基于自监督学习的octa图像分类结构训练方法 | |
CN114118199A (zh) | 一种用于智能泵腔体内窥镜故障诊断的图像分类方法及系统 | |
Jalali et al. | VGA‐Net: Vessel graph based attentional U‐Net for retinal vessel segmentation | |
CN118736052B (zh) | 一种基于高斯图Lasso估计的轻量级核磁共振成像图处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220316 Address after: No. 4-605-338, Yintan cultural and creative park, No. 88, Yapeng Road, Jiangxinzhou street, Jianye District, Nanjing, Jiangsu 210019 Applicant after: Nanjing yunshang digital Finance Technology Co.,Ltd. Address before: 610031 No. 2, group 5, Yinzi village, Nanyue Town, Dachuan District, Dazhou City, Sichuan Province Applicant before: Zhong Jiaxing |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220809 Address after: 100089 room 301-3045, 3 / F, building 1, 2 and 3, qinchunjiayuan, Xisanqi, Haidian District, Beijing Patentee after: Wuzheng Intelligent Technology (Beijing) Co.,Ltd. Address before: No. 4-605-338, Yintan cultural and creative park, No. 88, Yapeng Road, Jiangxinzhou street, Jianye District, Nanjing, Jiangsu 210019 Patentee before: Nanjing yunshang digital Finance Technology Co.,Ltd. |