CN113749630A - 一种基于ecg信号和ppg信号的血压监测系统和方法 - Google Patents
一种基于ecg信号和ppg信号的血压监测系统和方法 Download PDFInfo
- Publication number
- CN113749630A CN113749630A CN202111086954.5A CN202111086954A CN113749630A CN 113749630 A CN113749630 A CN 113749630A CN 202111086954 A CN202111086954 A CN 202111086954A CN 113749630 A CN113749630 A CN 113749630A
- Authority
- CN
- China
- Prior art keywords
- blood pressure
- signal
- data
- module
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14542—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/332—Portable devices specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Cardiology (AREA)
- Power Engineering (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Vascular Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明涉及可穿戴设备领域,为一种基于ECG信号和PPG信号的血压监测系统和方法,包括生理信号采集模块、数据传输模块、数据预处理模块、特征提取模块、异常值检测模块、特征选择模块、血压回归预测模块;通过部署在智能手表的生理信号采集模块,同步采集佩戴者的ECG信号和PPG信号,数据预处理模块对生理信号数据进行预处理,特征提取模块提取ECG信号和PPG信号的特征,数据异常值检测模块根据提取的生理信号特征进行异常值检测并剔除相关样本,特征选择模块选择出与血压相关的生理信号特征,血压回归预测模块对提取的生理信号特征进行血压预测,使血压预测模型更加适配于每个用户。本发明提高了血压监测设备的便携性的同时也能确保血压监测的精度。
Description
技术领域
本发明涉及可穿戴设备领域,具体涉及一种基于ECG信号和PPG信号的血压监测系统和方法。
背景技术
当前高血压已成为困扰人们健康的一大因素,是我国最常见、最具普遍性和代表性的慢性疾病之一,我国高血压的发病率占总人数的3%-10%,因此,针对高血压的及时监测和预防具有非常重大的意义。随着可穿戴医疗设备的蓬勃发展,为人们提供了更加便捷准确的自我健康监测方式。通过可穿戴设备,可以随时监测佩戴者的生理信号,如心电信号,脉搏信号,皮电信号等,从而获得佩戴者的健康状态,方便用户进行及时的预防和治疗。
目前测量血压主要方法是通过示波法进行血压测量,将袖带加压至阻断肱动脉血流,然后缓慢减压时测量手臂会传出压力小脉冲,通过仪器识别从手臂中传到袖带中的小脉冲,并加以差别,从而得到血压值,但是这种袖带式的血压测量方法难以集成到可穿戴电子设备上,不具备便携性,难以长时间监测佩戴者的血压状况。
发明内容
为解决现有技术所存在的技术问题,本发明提供一种基于ECG信号和PPG信号的血压监测系统和方法,同步采集用户的ECG信号和PPG信号,并对其进行特征提取等处理,选择出与血压相关的生理信号特征,使用迁移学习算法结合建立的数据库训练个人血压预测模型,对所选择的生理信号特征进行血压预测,使血压预测更加适配于每个用户,提高了血压监测设备的便携性,同时也能确保血压监测的精度。
本发明的一种基于ECG信号和PPG信号的血压监测系统,包括生理信号采集模块、数据传输模块、数据预处理模块、特征提取模块、异常值检测模块、特征选择模块、血压回归预测模块;
生理信号采集模块,用于同步采集用户的ECG信号、PPG信号;
数据传输模块,用于将所述ECG信号、PPG信号打包为数据包传输到手机移动端;
数据预处理模块,用于对采集到的ECG信号和PPG信号进行预处理,包括时间对齐、数据切分、信号去噪、归一化处理、峰值检测、数据剔除操作;
特征提取模块,用于对ECG信号和PPG信号进行特征提取;
异常值检测模块,用于检测并剔除在特征空间中分布的异常样本,获得纯净的样本数据;
特征选择模块,用于通过遗传算法筛选出与血压相关的生理信号特征;
血压回归预测模型模块,用于结合生理信号血压数据库,使用迁移学习算法针对每个用户进行血压预测模型训练,结合线性回归算法对选取的生理信号特征进行血压回归预测,输出收缩压和舒张压的预测值;调整血压预测模型参数,使得血压预测模型适配于每一位用户。
本发明的监测方法在本发明的一种基于ECG信号和PPG信号的血压监测系统的基础上实现,包括以下步骤:
步骤1、生理信号数据采集,同步采集用户的ECG信号和PPG信号;
步骤2、数据传输,将所述ECG信号、PPG信号打包为数据包传输到手机移动端,手机移动端将数据包上传至服务器;
步骤3、数据预处理,对ECG信号、PPG信号进行预处理,包括数据切分、时间对齐、信号去噪、归一化、峰值检测、数据剔除操作;
步骤4、特征提取,对数据预处理后的生理信号数据提取ECG信号和PPG信号的特征;
步骤5、数据异常值检测,通过孤立森林算法根据提取的生理信号特征进行异常值检测,并剔除异常样本;
步骤6、特征选择,选择出与血压相关的生理信号特征;
步骤7、血压回归预测,结合生理信号血压数据库,使用迁移学习Tradaboost算法针对每个用户进行血压预测模型训练,结合线性回归算法对选取的生理信号特征进行血压回归预测,输出收缩压和舒张压的预测值;调整血压预测模型参数,使得血压预测模型适配于每一位用户。
本发明与现有技术相比,具有如下优点和有益效果:
本发明通过部署在智能手表或手环装置的生理信号采集模块,同步采集佩戴者(即用户)的ECG信号和PPG信号,使用简单、方便携带、可随时进行血压监测;通过数据预处理模块对生理信号数据进行预处理;特征提取模块提取ECG信号和PPG信号的特征,数据异常值检测模块根据提取的生理信号特征进行异常值检测并剔除相关样本,特征选择模块选择出与血压相关的生理信号特征,血压回归预测模块使用迁移学习算法结合建立的数据库训练用户的个人血压预测模型,对提取的生理信号特征进行血压预测,使血压预测模型更加适配于每个用户,确保血压监测的精度。
附图说明
图1为本发明实施例中的整体系统框图;
图2为本发明实施例中数据预处理模块整体流程图;
图3本本发明实施例中切分成5秒的ECG信号片段图;
图4为本发明实施例中切分成5秒的PPG信号片段图;
图5为本发明实施例中提取PPG原始信号特征示意图;
图6为本发明实施例中提取ECG和PPG波峰时间差PAT特征示意图;
图7为本发明实施例中孤立森林算法效果图;
图8为本发明实施例中使用Tradaboost算法建立个人血压预测模型的流程图。
具体实施方式
下面将结合附图和实施例,对本发明技术方案做优选详细描述,显然所描述的实施例是本发明一部分实施例,而不是全部的实施例,本发明的实施方式并不限于此。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
如图1所示,一种基于ECG信号和PPG信号的血压监测系统,包括生理信号采集模块、数据传输模块、数据预处理模块、特征提取模块、异常值检测模块、特征选择模块、血压回归预测模块。通过部署在手表或手环装置的生理信号采集模块,同步采集佩戴者的肢体导联的心电图(ElectroCardioGram)ECG信号和光电容积脉搏波(PhotoPlethysmoGraphy)PPG信号,使用简单、方便携带、可随时进行血压监测;通过数据预处理模块对生理信号数据进行预处理;特征提取模块提取ECG信号和PPG信号的特征,数据异常值检测模块根据提取的生理信号特征进行异常值检测,并剔除相关的异常样本,特征选择模块选择出与血压相关的生理信号特征,血压回归预测模块使用迁移学习算法结合建立的数据库训练用户的个人血压预测模型,对提取的生理信号特征进行血压预测,使血压预测模型更加适配于每个用户,确保血压监测设备的精度。
生理信号采集模块,包括ECG传感器和PPG传感器,用于同步采集ECG信号、PPG信号这两种生理信号数据,得到采样频率为250Hz的ECG信号和PPG信号。优选地,ECG传感器和PPG传感器集成于一台智能手表或手环装置上,ECG传感器采用的是肢体单导联三电极,其中两个电极集成在智能手表或手环装置底部,另外一个电极集成在智能手表或手环装置右侧;PPG传感器采用的是光电传感器,集成于智能手表或手环装置底部,位于智能手表或手环装置上ECG传感器底部双电极的中央,将智能手表或手环装置佩戴于左手手腕处,开启采集生理信号数据时,右手食指轻触智能手表或手环装置右侧电极,智能手表或手环装置的主控程序开启250Hz的定时器中断,通过信号放大电路、模数转换电路等读取传感器中的ECG信号和PPG信号,同步采集采样频率为250Hz的ECG信号和PPG信号。
数据传输模块,用于将生理信号数据ECG信号和PPG信号通过蓝牙通信从传感器端传输到手机移动端,手机移动端再通过网络将生理信号数据上传至服务器。本实施例中,部署在智能手表端的蓝牙模块与手机移动端的蓝牙相连接,同步更新智能手表端上的时间信息,再将采集到的生理信号数据打包传输到手机移动端。数据包中以一秒的数据为一帧,每一帧数据均携带手表上的时间信息,然后手机移动端再通过网络将数据上传至服务器,减少手表终端的计算量同时能够保证整个血压预测模型的运算速度。
数据预处理模块,用于对采集到的ECG信号和PPG信号进行时间对齐、数据切分、信号去噪、归一化处理、峰值检测、数据剔除操作等预处理,剔除不满足条件的生理信号数据片段。如图2所示,数据预处理模块整体流程,数据传输模块将生理信号数据包传送至手机移动端,生理信号数据包中以1秒为一帧,帧头为当前时间信息,数据部分则为采集到的ECG信号和PPG信号。通过生理信号数据包中的时间信息,对齐两种生理信号,然后以T秒间隔进行数据切分,优选地T为5。ECG信号去噪首先设计200ms和600ms的中值滤波器,把心电信号的QRS波群、P波和T波滤除,得到ECG信号基线,在将原始信号和基线相减,得到消除基线漂移后的心电信号;然后设计50Hz的数字陷波器去除工频噪声干扰;最后设计截至频率为45Hz的低通滤波器滤除肌电噪声的影响,得到纯净的心电信号。PPG信号去噪首先使用小波变换分解出噪声细节分量,再通过小波逆变换进行信号重构,从而消除基线漂移,然后设计50Hz的数字陷波器去除工频噪声干扰以及设计截止频率为0.5Hz-4Hz的带通滤波器滤除高频噪声。先对滤波后的ECG信号和PPG信号进行归一化处理,然后再进行峰值检测,设置峰值检测的幅值阈值以及时间间隔阈值,避免误识别极大值。根据峰值检测结果进行数据剔除,由于正常静息状态下同时采集的ECG信号和PPG信号波峰是交替出现的,因此在5秒的生理信号片段中,检查ECG和PPG信号波峰的数量以及波峰位置是否交替出现,不满足条件的生理信号数据片段将被剔除。
特征提取模块,用于对ECG信号和PPG信号进行特征提取,提取的特征包括ECG信号的时频域特征、PPG信号的时频域特征以及两种生理信号的在时间上的联系,进行多特征融合以全面提取与血压相关的生理信息。其中,ECG信号的时域特征包括提取ECG信号一阶小波变换后获得的细节信号和近似信号的方差、均值、最大值、最小值、排列熵、样本熵,频域特征包括频带能量和频带能量占比;PPG信号的时域特征包括提取PPG原始信号的心率特征、脉冲与脉冲之间的皮尔逊相关系数、PPG原始信号、一阶导信号、二阶导信号的最大振幅、最小振幅、周期、最小振幅/最大振幅、脉冲幅度为10%、25%、33%、50%、66%、75%、100%时信号的收缩期时间、舒张期时间、收缩期时间/舒张期时间、收缩期时间+舒张期时间、收缩期信号面积、舒张期信号面积、收缩期信号面积或舒张期信号面积、收缩期信号面积和舒张期信号面积;PPG信号经过一阶、二阶和三阶小波变换后获得的细节信号和近似信号的方差、均值、最大值、最小值、排列熵、样本熵、频带能量以及频带能量占比;以及PPG原始信号的基频、基波振幅、二次谐波频率、二次谐波振幅、三次谐波频率、三次谐波振幅。两种生理信号在时间上的联系指同步采集的ECG和PPG波峰之间的时间差,称为脉冲到达时间。
具体地、如图3和图4所示,数据预处理模块将生理信号切分成5秒一段的生理信号数据片段,提取生理信号数据片段的如下特征参数:
(1)ECG时频域特征参数包括:小波变换获得的细节信号(cD)、近似信号(cA)的最小值(E_Min_cD1、E_Min_cD2、E_Min_cD3、E_Min_cA3)、最大值(E_Max_cD1、E_Max_cD2、E_Max_cD3、E_Max_cA3)、方差(E_Var_cD1、E_Var_cD2、E_Var_cD3、E_Var_cA3)、均值(E_Mean_cD1、E_Mean_cD2、E_Mean_cD3、E_Mean_cA3)、频带能量(E_Energy_cD1、E_Energy_cD2、E_Energy_cD3、E_Energy_cA3)、频带能量占比(E_Ratio_Energy_cD1、E_Ratio_Energy_cD2、E_Ratio_Energy_cD3、E_Ratio_Energy_cA3)、m=1样本熵(E_SampEn_1_cD1、E_SampEn_1_cD2、E_SampEn_1_cD3、E_SampEn_1_cA3)、m=2样本熵(E_SampEn_2_cD1、E_SampEn_2_cD2、E_SampEn_2_cD3、E_SampEn_2_cA3)、排列熵(E_PE_cD1、E_PE_cD2、E_PE_cD3、E_PE_cA3);
(2)如图5所示,PPG时频域特征参数包括:脉冲与脉冲之间的皮尔逊相关系数(pearson)、最大振幅(Ih)、脉冲最小振幅(Il)、脉冲信号周期(T_pi)、最小振幅/最大振幅(Il/Ih)、脉冲幅度为10%、25%、33%、50%、66%、75%、100%时收缩期时间(St10、St25、St33、St50、St66、St75、St)、舒张期时间(Dt10、Dt25、Dt33、Dt50、Dt66、Dt75、Dt)、收缩期和舒张期之比(St10/Dt10、St25/Dt25、St33/Dt33、St50/Dt50、St66/Dt66、St75/Dt75、、St/Dt)、收缩期和舒张期之和(St10+Dt10、St25+Dt25、St33+Dt33、St50+Dt50、St66+Dt66、St75+Dt75、St+Dt)、收缩期面积(A_St10、A_St25、A_St33、A_St50、A_St66、A_St75、、A_St)、舒张期面积(A_Dt10、A_Dt25、A_Dt33、A_Dt50、A_Dt66、A_Dt75、A_Dt)、收缩期和舒张期面积之比(A_St10/A_Dt10、A_St25/A_Dt25、A_St33/A_Dt33、A_St50/A_Dt50、A_St66/A_Dt66、A_St75/A_Dt75、A_St/A_Dt)、收缩期和舒张期面积之和(A_St10+A_Dt10、A_St25+A_Dt25、A_St33+A_Dt33、A_St50+A_Dt50、A_St66+A_Dt66、A_St75+A_Dt75、A_St+A_Dt);一阶、二阶导信号峰值(Ih_1d、Ih_2d)、谷值(Ih_1d、Ih_2d)、谷值/峰值(Il_1d/Ih_1d、Il_2d/Ih_2d)、上升期时间(St_1d、St_2d)、下降期时间(Dt_1d、Dt_2d)、从开始到谷值时间(St_1d+Dt_1d、St_2d+Dt_2d)、下降期时间/上升期时间(Dt_1d/St_1d、Dt_2d/St_2d)、上升期面积(A_St_1d、A_St_2d)、下降期面积(A_Dt_1d、A_Dt_2d)、上升期和下降期面积之和(A_St_1d+A_Dt_1d、A_St_2d+A_Dt_2d)、上升期和下降期面积之比(A_St_1d/A_Dt_1d、A_St_2d/A_Dt_2d)、基频(f_base)、基波振幅(sp_mag_base)、二次谐波频率(f_2)、二次谐波振幅(sp_mag_2)、三次谐波频率(f_3)、三次谐波振幅(sp_mag_3)、心率(HR)、小波变换获得的细节信号(cD)和近似信号(cA)的最小值(P_Min_cD1、P_Min_cD2、P_Min_cD3、P_Min_cA3)、最大值(P_Max_cD1、P_Max_cD2、P_Max_cD3、P_Max_cA3)、方差(P_Var_cD1、P_Var_cD2、P_Var_cD3、P_Var_cA3)、均值(P_Mean_cD1、P_Mean_cD2、P_Mean_cD3、P_Mean_cA3)、频带能量(P_Energy_cD1、P_Energy_cD2、P_Energy_cD3、P_Energy_cA3)、频带能量占比(P_Ratio_Energy_cD1、P_Ratio_Energy_cD2、P_Ratio_Energy_cD3、P_Ratio_Energy_cA3)、m=1样本熵(P_SampEn_1_cD1、P_SampEn_1_cD2、P_SampEn_1_cD3、P_SampEn_1_cA3)、m=2样本熵(P_SampEn_2_cD1、P_SampEn_2_cD2、P_SampEn_2_cD3、P_SampEn_2_cA3)、排列熵(P_PE_cD1、P_PE_cD2、P_PE_cD3、P_PE_cA3);
优选地,通过计算脉冲与脉冲之间的皮尔逊相关系数,获得PPG信号在某一时间段内脉冲与脉冲之间的相关性矩阵,从而反应短时间内PPG信号脉冲的变化程度。从5秒的PPG信号提取n个脉冲周期S1、S2、S3…Sn,脉冲与脉冲之间的计算公式如下:
其中,Si、Sj表示5秒PPG信号片段中分割出来的两个不同的脉冲信号周期,脉冲与脉冲之间的相关性矩阵如下:
计算相关性矩阵的中所有元素的均值、方差、最小值,均值反应了脉冲与脉冲之间相关性的平均水平,方差反应了脉冲与脉冲之间相关性的变化程度,最小值反应了脉冲与脉冲之间变化的最大程度。
(3)如图6所示,ECG信号和PPG信号之间时间上的相关的特征参数为ECG信号波峰和PPG信号波峰之间的时间差(PAT)。
异常值检测模块,用于检测并剔除在特征空间中分布在比较稀疏区域且距离密度高的群体比较远的异常样本,使得剔除后纯净的样本数据更能表征当前用户的血压信息。通过孤立森林算法对样本在特征空间中进行异常值检测,在特征空间中分布在比较稀疏区域且距离密度高的群体比较远的样本点被认为是异常样本,孤立异常样本并将异常样本剔除。所采集的4分钟生理信号数据切分成5秒一段的生理信号数据片段,然后进行滤波以及根据波峰位置、波峰大小、以及波峰数量剔除不合格样本,剩余的样本数据片段依然存在着难以滤除的强噪声和运动伪迹,从这些样本中提取的特征无法表征当前用户的血压情况,因此,通过孤立森林算法将切分的样本点映射至高维度的特征空间中,根据随机选择的每一维特征切分出不同的子空间,直到子空间中只有一个样本点,计算每个样本点的异常分数s,设置异常样本比例值,优选异常样本比例值为0.2,最后剔除在特征空间中分布在比较稀疏区域且距离密度高的群体比较远的异常样本。如图7所示,实施例中孤立森林算法效果图。
优选地,通过孤立森林算法对样本在特征空间中进行异常值检测的具体步骤包括:
步骤1:随机从剩余的样本数据片段中选取X个样本点并将其映射至高维度的特征空间中;
步骤2:随机选取一维特征,通过设置随机阈值,产生一个超平面,将特征空间中的样本数据切分为两个子空间,即产生一个孤立树的两个分支;
步骤3:在切割出来的子空间中不断重复步骤2,直到切分的子空间中只有一个样本点或者孤立树的分支数量到达上限;
步骤4:产生多个孤立树,综合每棵树的结果,计算每个剩余样本数据片段的异常分数s,计算公式如下:
其中n(x)为每棵树中节点的个数,C(X)为X个样本的平均路径。
步骤5:设置异常值分数阈值,当样本的异常分数评分超过该阈值时,则该样本将被视为异常样本,从剩余的样本数据片段中剔除。
特征选择模块,用于通过遗传算法搜索全局最优特征子集,筛选出与血压相关的生理信号特征以及剔除冗余特征,减少血压回归模型的计算量同时提高血压回归预测精度,主要包括以下步骤:初始化种群数量;设置适应度函数;随机从种群中选出特定数量的个体;交换个体之间的染色体,形成新的子代个体;按照一定概率对子代个体的染色体进行变异。
该遗传算法基于sklearn-genetic0.2工具包进行开发,设置参数如下:man_population=100,crossover_proba=0.5,mutation_proba=0.3,n_generations=100;选择的特征数量为5至40个;使用5折交叉验证的方法避免选择的特征具有局限性和特殊性。
血压回归预测模型模块,用于结合已建立的生理信号血压数据库,使用迁移学习算法Tradaboost针对每个用户进行个性化模型训练,结合线性回归算法对选取的生理信号特征进行血压回归预测,输出其对应的收缩压(SBP)和舒张压(DBP)的预测值;通过调整模型参数,而使得血压预测模型更加适配于每一位用户。
如图8所示,使用迁移学习算法Tradaboost针对每个用户进行个性化模型训练的具体步骤包括:
步骤1、建立群体的生理信号血压数据库,在隔音测试间中进行数据采集,招募受试者,采集受试者连续五天中8:00-10:00、14:00-16:00、18:00-20:00三个时段的真实血压以及对应的4分钟生理信号,作为源域数据;
步骤2、使用电子血压计和生理信号采集模块采集一天中8:00-10:00、14:00-16:00、18:00-20:00三个时段的真实血压以及对应的4分钟生理信号作为目标域数据;
步骤3、使用Tradaboost迁移学习算法,在训练过程中,通过计算源域数据中血压预测值和血压真实值的误差更新对应的样本权重,预测值与真实值越接近,其对应权重越大;反之,权重越小;通过不断降低源域数据中与目标域数据相矛盾的样本数据权重,从而过滤源域中与目标域不匹配的数据,使得模型更加适配于每位用户。
优选地,调整模型参数的具体训练步骤包括:
(1)、初始化单个样本权重,其计算公式如下:
其中,i代表单个样本,n代表源域样本数量,m代表目标域样本数量,则所有样本权重向量为:
其中,i代表单个样本,Dt代表样本的真实血压值和血压预测值yp的最大绝对误差;
(3)、更新样本权重,公式如下:
(4)、迭代次数N为10,重复步骤(2)、(3),不断更新样本权重,预测值与真实值越接近,其对应权重越大;反之,权重越小;通过不断降低源域中与目标域数据相矛盾的样本数据权重,从而过滤源域中与目标域不匹配的数据,使得训练的模型更加适配于每位用户。
用户在首次使用该血压监测系统进行血压监测时,需提供其一天中8:00-10:00、14:00-16:00、18:00-20:00三个时段测量到的真实血压数据以及4分钟的生理信号数据进行个人模型校准,校准后的模型在进行血压预测时,只需获取手表同时采集的5秒生理信号,即可预测出用户当前的血压值。本发明提高了血压监测设备的便携性的同时也能确保血压监测的精度。
基于相同的发明构思,本实施例还提出一种基于ECG信号和PPG信号的血压监测方法,包括以下步骤:
步骤1、生理信号数据采集,同步采集用户的ECG信号和PPG信号;
步骤2、数据传输,将所述ECG信号、PPG信号打包传输到手机移动端,手机移动端将数据上传至服务器;
步骤3、数据预处理,对采集的生理信号数据进行数据切分、时间对齐、信号去噪、归一化、峰值检测、数据剔除操作等预处理;
步骤4、特征提取,对数据预处理后的生理信号数据提取ECG信号和PPG信号的特征;
步骤5、数据异常值检测,通过孤立森林算法根据提取的生理信号特征进行异常值检测,并剔除相关的异常样本,剔除不满足条件的数据片段;
步骤6、特征选择,选择出与血压相关的生理信号特征;
步骤7、血压回归预测,结合生理信号血压数据库,使用迁移学习Tradaboost算法针对每个用户进行血压预测模型训练,结合线性回归算法对选取的生理信号特征进行血压回归预测,输出收缩压和舒张压的预测值;调整血压预测模型参数,使得血压预测模型适配于每一位用户。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种基于ECG信号和PPG信号的血压监测系统,其特征在于,包括:生理信号采集模块、数据传输模块、数据预处理模块、特征提取模块、异常值检测模块、特征选择模块、血压回归预测模块;
生理信号采集模块,用于同步采集用户的ECG信号、PPG信号;
数据传输模块,用于将所述ECG信号、PPG信号打包为数据包传输到手机移动端;
数据预处理模块,用于对ECG信号和PPG信号进行时间对齐、数据切分、信号去噪、归一化处理、峰值检测、数据剔除操作;
特征提取模块,用于对ECG信号和PPG信号进行特征提取;
异常值检测模块,用于检测并剔除在特征空间中分布的异常样本,获得纯净的样本数据;
特征选择模块,用于通过遗传算法筛选出与血压相关的生理信号特征;
血压回归预测模型模块,用于结合生理信号血压数据库,使用迁移学习算法针对每个用户进行血压预测模型训练,结合线性回归算法对选取的生理信号特征进行血压回归预测,输出收缩压和舒张压的预测值;调整血压预测模型参数,使得血压预测模型适配于每一位用户。
2.根据权利要求1所述的血压监测系统,其特征在于,生理信号采集模块包括部署在智能手表或手环装置的ECG传感器和PPG传感器,ECG传感器采用的是肢体单导联三电极,其中两个电极集成在智能手表或手环装置底部,另外一个电极集成在智能手表或手环装置右侧;PPG传感器采用的是光电传感器,集成于智能手表或手环装置底部。
3.根据权利要求1所述的血压监测系统,其特征在于,数据预处理模块具体用于:
根据数据包中的时间信息进行ECG信号和PPG信号对齐,将对ECG信号和PPG信号进行T秒长度的数据切分,通过中值滤波器、数字陷波器、低通滤波器滤除ECG信号噪声,通过小波变换、数字陷波器、带通滤波器滤除PPG信号噪声,对ECG信号和PPG信号片段进行归一化、峰值检测,根据波峰数量、波峰位置对ECG信号和PPG信号片段进行筛选。
4.根据权利要求1所述的血压监测系统,其特征在于,特征提取模块对ECG信号和PPG信号进行提取的特征包括ECG信号的时频域特征、PPG信号的时频域特征以及ECG信号、PPG信号两者在时间上的联系;
ECG信号、PPG信号两者在时间上的联系指同步采集的ECG信号和PPG信号波峰之间的时间差。
6.根据权利要求1所述的血压监测系统,其特征在于,异常值检测模块用于通过孤立森林算法对样本在特征空间中进行异常值检测,在特征空间中分布在比较稀疏区域且距离密度高的群体比较远的样本点被认为是异常样本,孤立异常样本并将异常样本剔除;
异常值检测模块进行异常值检测的具体步骤包括:
步骤1:随机从剩余的样本数据片段中选取X个样本点并将其映射至高维度的特征空间中;
步骤2:随机选取一维特征,通过设置随机阈值,产生一个超平面,将特征空间中的样本数据切分为两个子空间,即产生一个孤立树的两个分支;
步骤3:在切割出来的子空间中不断重复步骤2,直到切分的子空间中只有一个样本点或者孤立树的分支数量到达上限;
步骤4:产生多个孤立树,综合每棵树的结果,计算每个剩余样本数据片段的异常分数s,计算公式如下:
其中,n(x)为每棵树中节点的个数,C(X)为X个样本的平均路径;
步骤5:设置异常值分数阈值,当样本的异常分数评分超过该阈值时,则该样本将被视为异常样本,从剩余的样本数据片段中剔除。
7.根据权利要求1所述的血压监测系统,其特征在于,特征选择模块所使用得遗传算法中,参数设置如下:man_population=100,crossover_proba=0.5,mutation_proba=0.3,n_generations=100;选择的特征数量为5至40个;使用5折交叉验证的方法避免选择的特征具有局限性和特殊性。
8.根据权利要求1所述的血压监测系统,其特征在于,血压回归预测模型模块使用迁移学习算法针对每个用户进行个性化模型训练的具体步骤包括:
步骤1、建立群体的生理信号血压数据库,在隔音测试间中进行数据采集,采集受试者连续多天中多个时段的真实血压以及对应的预设时间生理信号,作为源域数据;
步骤2、使用电子血压计和生理信号采集模块采集一天中多个时段的真实血压以及对应的预设时间生理信号作为目标域数据;
步骤3、使用Tradaboost迁移学习算法,在训练过程中,通过计算源域数据中血压预测值和血压真实值的误差更新对应的样本权重,预测值与真实值越接近,其对应权重越大;反之,权重越小;通过不断降低源域数据中与目标域数据相矛盾的样本数据权重,从而过滤源域中与目标域不匹配的数据,使得模型更加适配于每位用户。
9.根据权利要求8所述的血压监测系统,其特征在于,步骤3还包括:
(1)、初始化单个样本权重,其计算公式如下:
其中,i代表单个样本,n代表源域样本数量,m代表目标域样本数量,则所有样本权重向量为:
其中,i代表单个样本,Dt代表样本的真实血压值和血压预测值的最大绝对误差;
(3)、更新样本权重,公式如下:
(4)、迭代多次,重复步骤(2)、(3),不断更新样本权重,预测值与真实值越接近,其对应权重越大;反之,其对应权重越小;通过不断降低源域中与目标域数据相矛盾的样本数据权重,从而过滤源域中与目标域不匹配的数据,使得训练的模型更加适配于每位用户。
10.一种基于ECG信号和PPG信号的血压监测方法,其特征在于,包括以下步骤:
步骤1、生理信号数据采集,同步采集用户的ECG信号和PPG信号;
步骤2、数据传输,将所述ECG信号、PPG信号打包为数据包传输到手机移动端,手机移动端将数据包上传至服务器;
步骤3、数据预处理,对ECG信号、PPG信号进行预处理,包括数据切分、时间对齐、信号去噪、归一化、峰值检测、数据剔除操作;
步骤4、特征提取,对数据预处理后的生理信号数据提取ECG信号和PPG信号的特征;
步骤5、数据异常值检测,通过孤立森林算法根据提取的生理信号特征进行异常值检测,并剔除异常样本;
步骤6、特征选择,选择出与血压相关的生理信号特征;
步骤7、血压回归预测,结合生理信号血压数据库,使用迁移学习Tradaboost算法针对每个用户进行血压预测模型训练,结合线性回归算法对选取的生理信号特征进行血压回归预测,输出收缩压和舒张压的预测值;调整血压预测模型参数,使得血压预测模型适配于每一位用户。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111086954.5A CN113749630B (zh) | 2021-09-16 | 2021-09-16 | 一种基于ecg信号和ppg信号的血压监测系统和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111086954.5A CN113749630B (zh) | 2021-09-16 | 2021-09-16 | 一种基于ecg信号和ppg信号的血压监测系统和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113749630A true CN113749630A (zh) | 2021-12-07 |
CN113749630B CN113749630B (zh) | 2022-06-07 |
Family
ID=78796021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111086954.5A Active CN113749630B (zh) | 2021-09-16 | 2021-09-16 | 一种基于ecg信号和ppg信号的血压监测系统和方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113749630B (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114403831A (zh) * | 2022-03-25 | 2022-04-29 | 广东玖智科技有限公司 | 一种ppg波形脉冲提取方法及装置 |
CN114515147A (zh) * | 2021-12-20 | 2022-05-20 | 之江实验室 | 一种基于bcg信号与ppg信号融合的生理监测系统 |
CN114587311A (zh) * | 2022-04-02 | 2022-06-07 | 杭州华视诺维医疗科技有限公司 | 一种基于多阶多模态的非袖带式血压测量装置 |
CN115568853A (zh) * | 2022-09-26 | 2023-01-06 | 山东大学 | 一种基于皮电信号的心理压力状态评估方法及系统 |
CN115770028A (zh) * | 2022-12-16 | 2023-03-10 | 深圳市爱都科技有限公司 | 血压检测方法、系统、装置及存储介质 |
CN116133108A (zh) * | 2023-02-03 | 2023-05-16 | 天津大学 | 一种低功耗蓝牙通信的数据同步方法及电子设备 |
CN117195139A (zh) * | 2023-11-08 | 2023-12-08 | 北京珺安惠尔健康科技有限公司 | 基于机器学习的慢性病健康数据动态监测方法 |
CN117204835A (zh) * | 2023-09-11 | 2023-12-12 | 苏州福流医疗科技有限公司 | 一种基于ppg技术的血压测量方法、装置及计算机存储介质 |
CN118078270A (zh) * | 2024-04-25 | 2024-05-28 | 华南理工大学 | 基于ecg、ppg信号的心电运动监测系统及运动状态评估方法 |
CN118749932A (zh) * | 2024-09-05 | 2024-10-11 | 吉林大学 | 一种血液透析过程中患者健康数据监测方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107788965A (zh) * | 2016-09-05 | 2018-03-13 | 京东方科技集团股份有限公司 | 一种血压的确定方法及装置 |
US20180235487A1 (en) * | 2017-02-23 | 2018-08-23 | Tata Consultancy Services Limited | Method and system for cuffless blood pressure estimation using photoplethysmogram features and pulse transit time |
CN110251105A (zh) * | 2019-06-12 | 2019-09-20 | 广州视源电子科技股份有限公司 | 一种无创血压测量方法、装置、设备及系统 |
CN113040738A (zh) * | 2021-03-29 | 2021-06-29 | 南京邮电大学 | 血压检测装置及血压检测方法 |
CN113180623A (zh) * | 2021-06-01 | 2021-07-30 | 山东大学 | 无袖式血压测量方法、系统、设备及存储介质 |
-
2021
- 2021-09-16 CN CN202111086954.5A patent/CN113749630B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107788965A (zh) * | 2016-09-05 | 2018-03-13 | 京东方科技集团股份有限公司 | 一种血压的确定方法及装置 |
US20180235487A1 (en) * | 2017-02-23 | 2018-08-23 | Tata Consultancy Services Limited | Method and system for cuffless blood pressure estimation using photoplethysmogram features and pulse transit time |
CN110251105A (zh) * | 2019-06-12 | 2019-09-20 | 广州视源电子科技股份有限公司 | 一种无创血压测量方法、装置、设备及系统 |
CN113040738A (zh) * | 2021-03-29 | 2021-06-29 | 南京邮电大学 | 血压检测装置及血压检测方法 |
CN113180623A (zh) * | 2021-06-01 | 2021-07-30 | 山东大学 | 无袖式血压测量方法、系统、设备及存储介质 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114515147B (zh) * | 2021-12-20 | 2023-10-03 | 之江实验室 | 一种基于bcg信号与ppg信号融合的生理监测系统 |
CN114515147A (zh) * | 2021-12-20 | 2022-05-20 | 之江实验室 | 一种基于bcg信号与ppg信号融合的生理监测系统 |
CN114403831A (zh) * | 2022-03-25 | 2022-04-29 | 广东玖智科技有限公司 | 一种ppg波形脉冲提取方法及装置 |
CN114587311A (zh) * | 2022-04-02 | 2022-06-07 | 杭州华视诺维医疗科技有限公司 | 一种基于多阶多模态的非袖带式血压测量装置 |
CN114587311B (zh) * | 2022-04-02 | 2024-09-03 | 杭州华视诺维医疗科技有限公司 | 一种基于多阶多模态的非袖带式血压测量装置 |
WO2023185873A1 (zh) * | 2022-04-02 | 2023-10-05 | 北京华视诺维医疗科技有限公司 | 一种基于多阶多模态的非袖带式血压测量装置及方法 |
CN115568853A (zh) * | 2022-09-26 | 2023-01-06 | 山东大学 | 一种基于皮电信号的心理压力状态评估方法及系统 |
CN115770028A (zh) * | 2022-12-16 | 2023-03-10 | 深圳市爱都科技有限公司 | 血压检测方法、系统、装置及存储介质 |
CN116133108B (zh) * | 2023-02-03 | 2023-06-23 | 天津大学 | 一种低功耗蓝牙通信的数据同步方法及电子设备 |
CN116133108A (zh) * | 2023-02-03 | 2023-05-16 | 天津大学 | 一种低功耗蓝牙通信的数据同步方法及电子设备 |
CN117204835A (zh) * | 2023-09-11 | 2023-12-12 | 苏州福流医疗科技有限公司 | 一种基于ppg技术的血压测量方法、装置及计算机存储介质 |
CN117195139A (zh) * | 2023-11-08 | 2023-12-08 | 北京珺安惠尔健康科技有限公司 | 基于机器学习的慢性病健康数据动态监测方法 |
CN117195139B (zh) * | 2023-11-08 | 2024-02-09 | 北京珺安惠尔健康科技有限公司 | 基于机器学习的慢性病健康数据动态监测方法 |
CN118078270A (zh) * | 2024-04-25 | 2024-05-28 | 华南理工大学 | 基于ecg、ppg信号的心电运动监测系统及运动状态评估方法 |
CN118078270B (zh) * | 2024-04-25 | 2024-07-26 | 华南理工大学 | 基于ecg、ppg信号的心电运动监测系统及运动状态评估方法 |
CN118749932A (zh) * | 2024-09-05 | 2024-10-11 | 吉林大学 | 一种血液透析过程中患者健康数据监测方法及系统 |
CN118749932B (zh) * | 2024-09-05 | 2024-11-05 | 吉林大学 | 一种血液透析过程中患者健康数据监测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113749630B (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113749630B (zh) | 一种基于ecg信号和ppg信号的血压监测系统和方法 | |
CN107495962B (zh) | 一种单导联脑电的睡眠自动分期方法 | |
CN109620262B (zh) | 一种基于可穿戴手环的情绪识别系统及方法 | |
CN109157202B (zh) | 一种基于多生理信号深度融合的心血管疾病预警系统 | |
CN108577830A (zh) | 一种面向用户的体征信息动态监护方法和动态监护系统 | |
CN112998690B (zh) | 一种基于脉搏波多特征融合的呼吸率提取方法 | |
US20140148714A1 (en) | Automatic online delineation of a multi-lead electrocardiogram bio signal | |
CN112568886A (zh) | 心律的检测方法、电子设备以及计算机可读存储介质 | |
Haleem et al. | A deep learning based ECG segmentation tool for detection of ECG beat parameters | |
CN111297340A (zh) | 基于gps与心率结合的运动状态监测方法 | |
CN105708441A (zh) | 可佩戴指套及心电图和脉象采集终端 | |
Nath et al. | PPG based continuous blood pressure monitoring framework for smart home environment | |
CN111248900A (zh) | 一种基于单通道心脑信息耦合分析方法及系统 | |
Bastos et al. | Filtering parameters selection method and peaks extraction for ecg and ppg signals | |
CN116548935A (zh) | 基于柔性有机光探测器和深度学习算法的血压测量系统 | |
Santo et al. | Respiration rate extraction from ECG signal via discrete wavelet transform | |
CN115836847A (zh) | 一种血压预测装置及设备 | |
CN114903445A (zh) | 一种心脑血管疾病智能监测预警系统 | |
CN113476024A (zh) | 一种病区医学信号连续动态监测系统 | |
CN114343596A (zh) | 一种基于反向血流传播时间的连续血压测量系统及方法 | |
Tavares et al. | Traffic model based on autoregression for ppg signals in wearable networks | |
CN113509169A (zh) | 一种基于多参数非接触睡眠呼吸暂停检测系统及方法 | |
KH et al. | Wearable ECG electrodes for detection of heart rate and arrhythmia classification | |
Orhan et al. | Heart rate detection on single-arm ECG by using dual-median approach | |
CN115886815B (zh) | 一种情绪压力监测方法、装置及智能穿戴设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |