Nothing Special   »   [go: up one dir, main page]

CN113720474A - 基于cmos工艺的红外探测器镜像像元和红外探测器 - Google Patents

基于cmos工艺的红外探测器镜像像元和红外探测器 Download PDF

Info

Publication number
CN113720474A
CN113720474A CN202110324026.1A CN202110324026A CN113720474A CN 113720474 A CN113720474 A CN 113720474A CN 202110324026 A CN202110324026 A CN 202110324026A CN 113720474 A CN113720474 A CN 113720474A
Authority
CN
China
Prior art keywords
cmos
layer
infrared
infrared detector
mirror image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110324026.1A
Other languages
English (en)
Other versions
CN113720474B (zh
Inventor
翟光杰
武佩
潘辉
翟光强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing North Gaoye Technology Co ltd
Original Assignee
Beijing North Gaoye Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing North Gaoye Technology Co ltd filed Critical Beijing North Gaoye Technology Co ltd
Priority to CN202110324026.1A priority Critical patent/CN113720474B/zh
Publication of CN113720474A publication Critical patent/CN113720474A/zh
Application granted granted Critical
Publication of CN113720474B publication Critical patent/CN113720474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • G01J5/24Use of specially adapted circuits, e.g. bridge circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本公开涉及一种基于CMOS工艺的红外探测器镜像像元和红外探测器,该镜像像元包括:CMOS测量电路系统和CMOS红外传感结构,CMOS测量电路系统和CMOS红外传感结构均使用CMOS工艺制备,在CMOS测量电路系统上直接制备CMOS红外传感结构;CMOS红外传感结构包括反射层、红外转换结构和多个柱状结构,红外转换结构通过柱状结构和支撑底座与CMOS测量电路系统电连接;CMOS红外传感结构还包括金属结构,金属结构位于红外转换结构和反射层之间,至少部分反射板位于金属结构的正投影区域内。通过本公开的技术方案,解决了传统MEMS工艺红外探测器的性能低,像素规模低,良率低等问题。

Description

基于CMOS工艺的红外探测器镜像像元和红外探测器
技术领域
本公开涉及红外探测技术领域,尤其涉及一种基于CMOS工艺的红外探测器镜像像元和红外探测器。
背景技术
监控市场、车辅市场、家居市场、智能制造市场以及手机应用等领域都对非制冷高性能的芯片有着强烈的需求,且对芯片性能的好坏、性能的一致性以及产品的价格都有一定的要求,每年预计有亿颗以上芯片的潜在需求,而目前的工艺方案和架构无法满足市场需求。
目前红外探测器采用的是测量电路和红外传感结构结合的方式,测量电路采用CMOS(Complementary Metal-Oxide-Semiconductor,互补金属氧化物半导体)工艺制备,而红外传感结构采用MEMS(Micro-Electro-Mechanical System,微电子机械系统)工艺制备,导致存在如下问题:
(1)红外传感结构采用MEMS工艺制备,以聚酰亚胺作为牺牲层,与CMOS工艺不兼容。
(2)聚酰亚胺作为牺牲层,存在释放不干净影响探测器芯片真空度的问题,还会使后续薄膜生长温度受限制,不利于材料的选择。
(3)聚酰亚胺会造成谐振腔高度不一致,工作主波长难以保证。
(4)MEMS工艺制程的控制远差于CMOS工艺,芯片的性能一致性和探测性能都会受到制约。
(5)MEMS产能低,良率低,成本高,不能实现大规模批量生产。
(6)MEMS现有的工艺能力不足以支撑更高性能的探测器制备,更小的线宽以及更薄的膜厚,不利于实现芯片的小型化。
红外探测器的工作原理是吸收红外辐射信号,红外辐射信号的吸收引起温度的变化,温度变化引起自身电阻值的变化,通过测量电阻值的变化探测红外辐射信号的大小。红外探测器在工作过程中,可能会引入衬底噪声、背景噪声以及自热产生的噪声等,影响到红外探测器探测结果的准确性。
现有技术中,红外探测器中设置有镜像像元,通过镜像像元获取红外探测器的噪声信号,从而得到降噪后的探测信号,提高探测结果的准确性。但是,目前并没有公开能够获取噪声信号的像元结构。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种基于CMOS工艺的红外探测器镜像像元和红外探测器,通过本公开的技术方案,解决了传统MEMS工艺红外探测器的性能低,像素规模低,良率低等问题,提高了探测结果的准确性。
第一方面,本公开实施例提供了一种基于CMOS工艺的红外探测器镜像像元,包括:
CMOS测量电路系统和CMOS红外传感结构,所述CMOS测量电路系统和所述CMOS红外传感结构均使用CMOS工艺制备,在所述CMOS测量电路系统上直接制备所述CMOS红外传感结构;
所述CMOS红外传感结构的CMOS制作工艺包括金属互连工艺、通孔工艺以及RDL工艺,所述CMOS红外传感结构包括至少两层金属互连层、至少两层介质层和多个互连通孔;
所述CMOS红外传感结构包括位于所述CMOS测量电路系统上的反射层、红外转换结构和多个柱状结构,所述柱状结构位于所述反射层和所述红外转换结构之间,所述反射层包括反射板和支撑底座,所述红外转换结构通过所述柱状结构和所述支撑底座与所述CMOS测量电路系统电连接;
所述CMOS红外传感结构还包括金属结构,所述金属结构位于所述红外转换结构和所述反射层之间,至少部分所述反射板位于所述金属结构的正投影区域内。
可选地,所述金属结构与所述反射板接触设置,或者所述金属结构和所述反射板之间设置有至少一层密闭释放隔绝层,所述密闭释放隔绝层用于在制作所述CMOS红外传感结构的刻蚀过程中,保护所述CMOS测量电路系统不受工艺影响。
可选地,所述反射板上设置有至少一层所述密闭释放隔绝层,所述密闭释放隔绝层包覆所述柱状结构。
可选地,所述金属结构与接地的所述柱状结构电连接。
可选地,构成所述密闭释放隔绝层的材料包括硅、锗、锗化硅、非晶硅、非晶锗、非晶硅锗、非晶碳、碳化硅、氧化铝或氮化硅中的至少一种。
可选地,所述柱状结构包括多个独立柱状结构,所述独立柱状结构位于不同层,所述独立柱状结构对应一层或多层所述密闭释放隔绝层设置。
可选地,所述红外转换结构包括吸收板和多个梁结构,所述吸收板用于将红外信号转换为电信号并通过对应的所述梁结构与对应的所述柱状结构电连接;
所述吸收板和所述梁结构位于同一层或位于不同层。
可选地,所述吸收板和所述梁结构位于不同层,所述梁结构包括第一电极层,所述吸收板包括第二电极层和热敏层,所述第二电极层通过所述第一电极层电连接至所述柱状结构。
可选地,所述支撑底座的边长小于等于3微米且大于等于0.5微米。
可选地,牺牲层用于使所述CMOS红外传感结构形成镂空结构,构成所述牺牲层的材料是氧化硅,采用气相氟化氢、四氟化碳和三氟甲烷中的至少一种对所述牺牲层进行腐蚀。
第二方面,本公开实施例提供了一种基于CMOS工艺的红外探测器,包括多个如第一方面提供的任一种基于CMOS工艺的红外探测器镜像像元。
本公开提供的技术方案与现有技术相比具有如下优点:
(1)通过CMOS红外传感结构包括金属结构,金属结构位于红外转换结构和反射层之间,至少部分反射板位于金属结构的正投影区域内,透过红外转换结构的红外光在金属结构的表面发生反射,反射板不会反射红外光,即改变了CMOS测量电路系统与红外转换结构之间的谐振腔的高度,使得谐振腔不再满足红外光的谐振条件,故谐振腔内不会产生谐振光,此时,红外转换结构产生的电信号源于温度噪声,因此,通过镜像像元能够获取到红外探测器的噪声信号,据此能够获取更加准确的探测信号,从而提高探测结果的准确性。此外,金属结构位于支撑层临近CMOS测量电路系统的一侧,在同时制备有效像元和镜像像元的过程中,通过增加工艺制程,并配合相应的掩膜版在镜像像元内部增加金属结构,而有效像元无增加的金属结构,从而使得两种像元结构的同步实现,可以简化工艺流程。
(2)本发明实施例利用CMOS工艺实现了CMOS测量电路系统和CMOS红外传感结构在CMOS生产线上一体化制备,相较于MEMS工艺,CMOS不存在工艺兼容问题,解决了MEMS工艺面临的技术难点,采用CMOS工艺产线工艺制备红外探测器也可以减小运输成本,减少运输等问题造成的风险;红外探测器以氧化硅作为牺牲层,氧化硅与CMOS工艺完全兼容,制备工艺简单且易于控制,CMOS工艺也不会出现牺牲层聚酰亚胺释放不干净影响探测器芯片真空度的问题,且后续薄膜生长温度不受牺牲层材料的限制,可以实现牺牲层多层工艺设计,不受工艺限制,可以很容易地利用牺牲层实现平坦化,降低工艺难度和可能存在的风险;一体化CMOS工艺制备的红外探测器可实现芯片高良品率、低成本、高产能且大规模集成化生产的目标,为红外探测器提供更广阔的应用市场;基于CMOS工艺的红外探测器可以使红外探测器实现特征结构更小的尺寸和更薄的膜厚,使得红外探测器占空比更大、热导更低、热容更小,从而使得红外探测器的探测灵敏度更高、探测距离更远以及探测性能更好;基于CMOS工艺的红外探测器,可以使探测器像元尺寸更小,实现相同阵列像素下更小的芯片面积,更利于实现芯片小型化;基于CMOS工艺的红外探测器,工艺产线成熟,工艺控制精度更高,可以更好地达到设计要求,产品的一致性更好,更利于电路片调整性能,更利于产业化批量生产。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的立体结构示意图;
图2为本发明实施例提供的另一种基于CMOS工艺的红外探测器镜像像元的立体结构示意图;
图3为本发明实施例提供的一种CMOS测量电路系统的结构示意图;
图4为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图5为本发明实施例提供的另一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图6为本发明实施例提供的一种金属结构的结构示意图;
图7为本发明实施例提供的另一种金属结构的结构示意图;
图8为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图9为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图10为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图11为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图12为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图13为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图;
图14为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的局部立体结构示意图;
图15为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图;
图16为本发明实施例提供的另一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图;
图17本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图;
图18为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图;
图19为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图;
图20为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图;
图21为本发明实施例提供的一种基于CMOS工艺的红外探测器的立体结构示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面将对本发明的方案进行进一步描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但本发明还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本发明的一部分实施例,而不是全部的实施例。
图1为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的立体结构示意图,图2为本发明实施例提供的另一种基于CMOS工艺的红外探测器镜像像元的立体结构示意图,结合图1和图2所示,基于CMOS工艺的红外探测器镜像像元100包括CMOS测量电路系统101和CMOS红外传感结构102,CMOS测量电路系统101和CMOS红外传感结构102均使用CMOS工艺制备,在CMOS测量电路系统101上直接制备CMOS红外传感结构102。
具体地,CMOS红外传感结构102用于将外部红外信号转换为电信号并传输至CMOS测量电路系统101,CMOS测量电路系统101根据接收到的电信号反映出对应红外信号的温度信息,实现红外探测器的温度检测功能。设置CMOS测量电路系统101和CMOS红外传感结构102均使用CMOS工艺制备,在CMOS测量电路系统101上直接制备CMOS红外传感结构102,即先采用CMOS工艺制备CMOS测量电路系统101,再利用CMOS生产线以及该生产线兼容的各项工艺的参数,利用CMOS工艺连续制备CMOS红外传感结构102。
由此,本发明实施例利用CMOS工艺实现了CMOS测量电路系统101和CMOS红外传感结构102在CMOS生产线上一体化制备,相较于MEMS工艺,CMOS不存在工艺兼容问题,解决了MEMS工艺面临的技术难点,采用CMOS产线工艺制备红外探测器也可以减小运输成本,减少运输等问题造成的风险;红外探测器以氧化硅作为牺牲层,氧化硅与CMOS工艺完全兼容,制备工艺简单且易于控制,CMOS工艺也不会出现牺牲层聚酰亚胺释放不干净影响探测器芯片真空度的问题,且后续薄膜生长温度不受牺牲层材料的限制,可以实现牺牲层多层工艺设计,不受工艺限制,可以很容易地利用牺牲层实现平坦化,降低工艺难度和可能存在的风险;一体化CMOS工艺制备的红外探测器可实现芯片高良品率、低成本、高产能且大规模集成化生产的目标,为红外探测器提供更广阔的应用市场;基于CMOS工艺的红外探测器可以使红外探测器实现特征结构更小的尺寸和更薄的膜厚,使得红外探测器占空比更大、热导更低、热容更小,从而使得红外探测器的探测灵敏度更高、探测距离更远以及探测性能更好;基于CMOS工艺的红外探测器,可以使探测器像元尺寸更小,实现相同阵列像素下更小的芯片面积,更利于实现芯片小型化;基于CMOS工艺的红外探测器,工艺产线成熟,工艺控制精度更高,可以更好地达到设计要求,产品的一致性更好,更利于电路片调整性能,更利于产业化批量生产。
结合图1和图2,CMOS红外传感结构102包括位于CMOS测量电路系统101上的反射层110、红外转换结构120和多个柱状结构130,柱状结构130位于反射层110和红外转换结构120之间,反射层110包括支撑底座111和反射板112,红外转换结构120通过柱状结构130和支撑底座111与CMOS测量电路系统101电连接。
具体地,柱状结构130位于反射层110和红外转换结构120之间,用于在CMOS测量电路系统101上的牺牲层释放后支撑红外转换结构120,牺牲层位于反射层110与红外转换结构120之间,柱状结构130为金属结构,红外转换结构120经由红外信号转换出来的电信号经过对应的柱状结构130以及对应的支撑底座111传输至CMOS测量电路系统101,CMOS测量电路系统101处理电信号以反映出温度信息,实现红外探测器非接触式的红外温度检测。CMOS红外传感结构102通过不同的电极结构输出正电信号和接地电信号,正电信号和接地电信号通过不同的柱状结构130传输至与柱状结构130电连接的支撑底座111,图1和图2示例性地示意沿平行于CMOS测量电路系统101的方向,CMOS红外传感结构102包括四个柱状结构130,可以设置其中两个柱状结构130用于传输正电信号,另两个柱状结构130用于传输接地电信号,也可以设置CMOS红外传感结构102包括两个柱状结构130,分别传输正电信号和接地电信号。另外,反射层110包括反射板112和支撑底座111,反射层110的一部分用于充当柱状结构130与CMOS测量电路系统101电连接的电介质,即支撑底座111,反射板112则用于反射红外线至红外转换结构120,配合反射层110和红外转换结构120之间形成的谐振腔实现红外线的二次吸收,以提高红外探测器的红外吸收率,优化红外探测器的红外探测性能。
结合图1和图2,CMOS红外传感结构102还包括金属结构140,金属结构140位于红外转换结构120和反射层110之间,至少部分反射板112位于金属结构140的正投影区域内。
具体地,金属结构140位于红外转换结构120和反射层110之间,金属结构140覆盖至少部分反射板112,透过红外转换结构120的红外光入射至金属结构140后,被金属结构140反射至红外转换结构120,此时反射板112接收不到红外光,因此改变了谐振腔的高度,破坏了谐振腔产生谐振的条件,使得红外光在谐振腔中不会产生谐振,也就是说,此时谐振腔中不会产生谐振光。
红外转换结构120能够吸收目标物体的红外辐射能量,并将温度信号转换成电信号,由于反射层110与红外转换结构120之间不产生谐振光,红外转换结构120能够吸收的红外辐射能量很少,可以认为红外转换结构120对红外辐射信号不响应。此时,红外转换结构120产生的电信号源于CMOS测量电路系统101的热辐射和外部环境的热辐射等温度噪声,即红外转换结构120产生的信号为噪声信号,镜像像元产生的电信号即为噪声信号,因此,通过镜像像元能够获取到红外探测器的噪声信号。
红外探测器包括有效像元和镜像像元,有效像元和镜像像元均由于热辐射而发生阻值变化,镜像像元与有效像元受到同样的固定辐射时,镜像像元与有效像元的阻值相同,二者的温度系数也相同,二者在相同环境温度下的温度漂移量相同,两者的变化同步。由此可知,镜像像元与有效像元的区别在于镜像像元不响应红外辐射信号,而有效像元响应红外辐射信号,也就是说,有效像元产生的信号为红外辐射信号与噪声信号的叠加,对有效像元产生的信号进行降噪后,能够获取目标物的红外辐射信号,从而提高探测结果的准确性。
综上所述,本发明实施例通过CMOS红外传感结构包括金属结构,金属结构位于红外转换结构和反射层之间,至少部分反射板位于金属结构的正投影区域内,透过红外转换结构的红外光在金属结构的表面发生反射,反射板不会反射红外光,即改变了CMOS测量电路系统与红外转换结构之间的谐振腔的高度,使得谐振腔不再满足红外光的谐振条件,故谐振腔内不会产生谐振光,此时,红外转换结构产生的电信号源于温度噪声,因此,通过镜像像元能够获取到红外探测器的噪声信号,据此能够获取更加准确的探测信号,从而提高探测结果的准确性。
此外,金属结构140位于红外转换结构临近CMOS测量电路系统的一侧,在同时制备有效像元和镜像像元的过程中,通过增加工艺制程,并配合相应的掩膜版在镜像像元内部增加金属结构,而有效像元无增加的金属结构,从而使得两种像元结构的同步实现,可以简化工艺流程。
CMOS红外传感结构102的CMOS制作工艺包括金属互连工艺、通孔工艺以及RDL工艺,CMOS红外传感结构102包括至少两层金属互连层、至少两层介质层和多个互连通孔。介质层至少包括一层牺牲层和一层热敏感介质层,热敏感介质层至少包括热敏层,还可以包括支撑层和/或钝化层,金属互连层至少包括反射层110和电极层;其中,热敏感介质层包括电阻温度系数大于设定值的热敏材料,电阻温度系数例如可以大于等于0.015/K,电阻温度系数大于设定值的热敏材料构成热敏感介质层中的热敏层,热敏感介质层用于将其吸收的红外辐射对应的温度变化转化为电阻变化,进而通过CMOS测量电路系统101将红外目标信号转化成可实现电读出的信号。
具体地,金属互连工艺用于实现上下两层金属互连层的电连接,通孔工艺用于形成连接上下金属互连层的互连通孔,RDL工艺即重布线层工艺,具体是指在电路顶层金属的上方重新布一层金属且与电路顶层金属有钨柱电连接,采用RDL工艺可以在CMOS测量电路系统101的顶层金属上再制备红外探测器中的反射层110,反射层110上的支撑底座111与CMOS测量电路系统101的顶层金属电连接。另外,热敏感介质层包括电阻温度系数大于设定值的热敏材料,电阻温度系数例如可以大于等于0.015/K,有利于提高红外探测器的探测灵敏度。
需要说明的是,红外转换结构120可以是单层结构,红外转换结构120依次通过柱状结构130和支撑底座111,与CMOS测量电路系统101电连接,如图1所示。在其他实施方式中,红外转换结构120还可以是双层结构,柱状结构130位于双层结构中靠近CMOS测量电路系统101一侧的结构与反射层110之间,如图2所示。
图3为本发明实施例提供的一种CMOS测量电路系统的结构示意图。结合图1至图3,CMOS测量电路系统101包括偏压产生电路7、列级模拟前端电路8和行级电路9,偏压产生电路7的输入端连接行级电路9的输出端,列级模拟前端电路8的输入端连接偏压产生电路7的输出端,行级电路9中包括行级镜像像元Rsm和行选开关K1,列级模拟前端电路8中包括盲像元RD;其中,行级电路9分布在每个像素内并根据时序产生电路的行选通信号选取待处理信号,并在偏压产生电路7的作用下输出电流信号至列级模拟前端电路8以进行电流电压转换输出;行级电路9受行选开关K1控制而被选通时向偏压产生电路7输出第三偏置电压VRsm,偏压产生电路7根据输入的恒压及第三偏置电压VRsm输出第一偏置电压V1和第二偏置电压V2,列级模拟前端电路8根据第一偏置电压V1和第二偏置电压V2得到两路电流,并对所产生的两路电流之差进行跨阻放大并作为输出电压输出。
具体地,行级电路9包括行级镜像像元Rsm和行选开关K1,行级电路9用于根据行选开关K1的选通状态生成第三偏置电压VRsm。示例性地,行级镜像像元Rsm可以进行遮光处理,使行级镜像像元Rsm受到温度恒等于衬底温度的遮光片的固定辐射,行选开关K1可以用晶体管实现,行选开关K1闭合,行级镜像像元Rsm与偏压产生电路7的连接,即行级电路9受行选开关K1控制而被选通时向偏压产生电路7输出第三偏置电压VRsm。偏压产生电路7可以包括第一偏压产生电路71和第二偏压产生电路72,第一偏压产生电路71用于根据输入的恒压生成第一偏置电压V1,输入的恒压例如可以为电压恒定的正电源信号。第二偏压产生电路72可以包括偏压控制子电路721和多个选通驱动子电路722,偏压控制子电路721用于根据第三偏置电压VRsm控制选通驱动子电路722分别产生对应的第二偏置电压V。
列级模拟前端电路8包括多个列控制子电路81,列控制子电路81与选通驱动子电路722对应设置,示例性地,可以设置列控制子电路81与选通驱动子电路722一一对应设置,选通驱动子电路722用于根据其自身的选通状态向对应的列控制子电路81提供第二偏置电压V2。示例性地,可以设置选通驱动子电路722被选通时,选通驱动子电路722向对应的列控制子电路81提供第二偏置电压V2;选通驱动子电路722未被选通时,选通驱动子电路722停止向对应的列控制子电路81提供第二偏置电压V2。
列级模拟前端电路8包括有效像元RS和盲像元RD,列控制子电路用于根据第一偏置电压V1和盲像元RD产生第一电流I1,以及根据第二偏置电压V2和有效像元RS产生第二电流I2,并对第一电流I1与第二电流I2的差值进行跨阻放大后输出,行级镜像像元Rsm与有效像元RS在相同环境温度下的温度漂移量相同。
示例性地,行级镜像像元Rsm与CMOS测量电路系统101之间热绝缘,且对行级镜像像元Rsm进行遮光处理,行级镜像像元Rsm受到来自温度恒等于衬底温度的遮光片的固定辐射。有效像元RS的吸收板121与CMOS测量电路系统101之间热绝缘,且有效像元RS接受外部辐射。行级镜像像元Rsm与有效像元RS的吸收板121都与CMOS测量电路系统101之间热绝缘,因此行级镜像像元Rsm与有效像元RS均具有自热效应。
通过行选开关K1选通对应的行级镜像像元Rsm时,行级镜像像元Rsm与有效像元RS均由于焦耳热而发生阻值变化,但行级镜像像元Rsm与有效像元RS受到同样的固定辐射时,行级镜像像元Rsm与有效像元RS的阻值相同,二者的温度系数也相同,二者在相同环境温度下的温度漂移量相同,两者的变化同步,有利于利用行级镜像像元Rsm与有效像元RS在相同环境温度下的温度漂移量相同的特性,有效补偿行级镜像像元Rsm与有效像元RS由于自热效应而发生的阻值变化,实现读出电路的稳定输出。
另外,通过设置第二偏压产生电路7包括偏压控制子电路721和多个选通驱动子电路722,偏压控制子电路721用于根据行控制信号控制选通驱动子电路722分别产生对应的第二偏置电压V2,使得每行像素均有一路驱动单独驱动该行的像素整列,降低了对第二偏置电压V2的要求,即提高了偏压产生电路7的驱动能力,有利于利用读出电路驱动更大规模的红外探测器像素阵列。另外,CMOS测量电路系统101的具体细节工作原理为本领域技术人员公知内容,这里不再赘述。
可选地,图4为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图,图5为本发明实施例提供的另一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图,结合图4和图5,金属结构140与反射板112接触设置,或者金属结构140和反射板112之间设置有至少一层密闭释放隔绝层150,密闭释放隔绝层150用于在制作CMOS红外传感结构的刻蚀过程中,保护所述CMOS测量电路系统不受工艺影响。
示例性地,以图4所示红外探测器镜像像元100为例,红外探测器镜像像元100制备方法可以包括,采用CMOS工艺在CMOS测量电路系统101上形成反射层110,刻蚀反射层110形成支撑底座111和反射板112。在反射层110上沉积密闭释放隔绝层150,刻蚀密闭释放隔绝层150后形成露出反射层110的通孔,在通孔内填充金属材料,形成如图6所示的金属结构140,其中,金属结构140与反射层110直接接触。金属结构140与密闭释放隔绝层150同层设置,在密闭释放隔绝层150与金属结构140上依次形成牺牲层(图中未示出)和柱状结构130,柱状结构130正对支撑底座111且与支撑底座111电连接,释放牺牲层后形成如图4所示的红外探测器镜像像元100。
金属结构140可以如图4和图6所示分布于反射板112正对的区域与支撑底座111正对的区域,其中,与反射板112对应的金属结构140用于反射红外光,与支撑底座111对应的金属结构140用于将柱状结构130与支撑底座111电连接。支撑底座111对应的金属结构140能够电连接柱状结构130与支撑底座111,能够减小柱状结构130的高度,故用于形成柱状结构130的膜层厚度较小,工艺制程中比较容易控制膜层的厚度,减轻工艺难度,提高产品的一致性。
此外,通过将金属结构140与反射板112接触设置,能够减小红外探测器镜像像元中膜层的数量,从而减少工艺制程的数量,节省红外探测器的工艺时间,利于提高红外探测器的生产效率。
在其他实施方中,金属结构140还可以如图7和图8所示分布于反射板112正对的区域,形成的金属结构140用于反射红外光。在支撑底座111上依次设置密闭释放隔绝层150,密闭释放隔绝层150背离CMOS测量电路系统101一侧表面与金属结构140背离CMOS测量电路系统101一侧表面齐平,在密闭释放隔绝层150和金属结构140上依次形成牺牲层(图中未示出)和柱状结构130,柱状结构130正对支撑底座111,且与支撑底座111电连接,释放牺牲层后形成如图8所示的红外探测器镜像像元。
示例性地,以图5所示红外探测器镜像像元100为例,红外探测器镜像像元100制备方法可以包括,采用CMOS工艺在CMOS测量电路系统101上形成反射层110,刻蚀反射层110形成支撑底座111和反射板112,在反射层110上依次沉积下层密闭释放隔绝层150和上层密闭释放隔绝层150,刻蚀上层密闭释放隔绝层150并露出下层密闭释放隔绝层150,在刻蚀出的通孔内填充金属材料,形成如图5所示的金属结构140。上层密闭释放隔绝层150背离CMOS测量电路系统101一侧表面与金属结构140背离CMOS测量电路系统101一侧表面齐平,在上层密闭释放隔绝层150和金属结构140上依次形成牺牲层(图中未示出)和柱状结构130,柱状结构130正对支撑底座111,且与支撑底座111电连接,释放支撑层后形成如图5所示的红外探测器镜像像元100。
图5仅示例性展示了,金属结构140和反射板112之间设置有一层密闭释放隔绝层150,在实际应用中,金属结构140和反射板112之间还可以设置更多层密闭释放隔绝层150,本发明实施例对此不作具体限制。
对于探测器全CMOS工艺而言,密闭释放隔绝层150位于红外探测器镜像像元与有效像元中,对有效像元来说,密闭释放隔绝层150位于其谐振腔内,密闭释放隔绝层150的折射率大于真空的折射率,因此,通过密闭释放隔绝层150能够增大谐振腔的光程,从而能够减小谐振腔的实际高度,进而减小了牺牲层的厚度,降低牺牲层的释放难度。
可选地,继续参加图5,反射板112上设置有至少一层密闭释放隔绝层150,密闭释放隔绝层150包覆柱状结构130。
具体地,密闭释放隔绝层150覆盖位于密闭释放隔绝层150下方的反射层110和下方介质层,反射层110包括支撑底座111和反射板112,支撑底座111作为读出电路和CMOS红外传感结构电连接的结构,密闭释放隔绝层150作为的保护层,能够起到保护CMOS测量电路系统、下方介质层以及反射板112的作用;同时,密闭释放隔绝层150包覆柱状结构130,可以作为柱状结构130的支撑结构,增强柱状结构130的力学强度,提高镜像像元100的结构稳定性,从而能够提高红外探测器的结构稳定性和抗冲击能力。
图9为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图,密闭释放隔绝层150还可以位于CMOS测量电路系统101和CMOS红外传感结构102之间的界面,例如密闭释放隔绝层150位于反射层110和CMOS测量电路系统101之间,即密闭释放隔绝层150位于反射层110的金属互连层的下方,支撑底座111通过贯穿密闭释放隔绝层150的通孔与CMOS测量电路系统101电连接。具体地,由于CMOS测量电路系统101和CMOS红外传感结构102均采用CMOS工艺制备形成,当制备形成CMOS测量电路系统101后,将制备形成包含有CMOS测量电路系统101的晶圆传输至下一道工艺制备形成CMOS红外传感结构102,因为氧化硅是CMOS工艺中最常用的介质材料,CMOS电路上多以氧化硅作为金属层间的绝缘层,所以腐蚀2um左右厚度的氧化硅时如果没有隔绝层作为阻挡,将会严重影响电路,所以为了释放所述牺牲层氧化硅时不会腐蚀CMOS测量电路系统上的氧化硅介质,设置了密闭释放隔绝层150。在制备形成CMOS测量电路系统101后,在CMOS测量电路系统101上制备形成密闭释放隔绝层150,利用密闭释放隔绝层150对CMOS测量电路系统101进行保护,而为了保证支撑底座111与CMOS测量电路系统101的电连接,在制备形成密闭释放隔绝层150后,在密闭释放隔绝层150对应支撑底座111的区域采用刻蚀工艺形成通孔,通过通孔实现支撑底座111与CMOS测量电路系统101的电连接。另外,设置密闭释放隔绝层150与支撑底座111形成密闭结构,将CMOS测量电路系统101与牺牲层完全隔开,实现对CMOS测量电路系统101的保护。
图10为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图,CMOS测量电路系统101和CMOS红外传感结构102之间的界面设置有至少一层密闭释放隔绝层150,且CMOS红外传感结构102中设置有至少一层密闭释放隔绝层150,即反射层110和CMOS测量电路系统101之间设置有至少一层密闭释放隔绝层150,且反射层110上设置有至少一层密闭释放隔绝层150,效果同上,这里不再赘述。
另外,图5仅示例性说明了反射板112上设置有一层密闭释放隔绝层150,单层密闭释放隔绝层150所需的工艺制程的数量较少,利于节省工艺制程时间,从而提升红外探测器的生产效率。在其他实施方式中,反射板112上还可以如图11所示设置两层密闭释放隔绝层150,或者更多层的密闭释放隔绝层150,多层密闭释放隔绝层150中,每层密闭释放隔绝层150的厚度较小,工艺制程中比较容易控制膜层的厚度,减轻工艺难度。在实际应用中根据具体需求设定密闭释放隔绝层150的数量,本发明实施例对此不做具体限制。
图12为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图。如图12所示,在上述实施例的基础上,CMOS测量电路系统101的CMOS制作工艺同样可以包括金属互连工艺和通孔工艺,CMOS测量电路系统101包括间隔设置的金属互连层1011、介质层1012以及位于底部的硅衬底1013,上下金属互连层1011通过通孔1014实现电连接。
结合图1至图12,CMOS红外传感结构102包括由反射层110和热敏感介质层构成的谐振腔、控制热传递的悬空微桥结构以及具有电连接和支撑功能的柱状结构130,CMOS测量电路系统101用于测量和处理一个或多个CMOS红外传感结构102形成的阵列电阻值,并将红外信号转化为图像电信号。
具体地,谐振腔例如可以由反射层110和吸收板121之间的空腔形成,红外光透过吸收板121在谐振腔内发生来回反射,以提高红外探测器的探测灵敏度,又由于柱状结构130的设置,梁结构122和吸收板121构成控制热传递的悬空微桥结构,柱状结构130既电连接支撑底座111和对应的梁结构122,又用于支撑位于柱状结构130上的红外转换结构120。
可选地,可以在CMOS测量电路系统101的金属互连层上层或者同层制备CMOS红外传感结构102。
具体地,这里的CMOS测量电路系统101的金属互连层可以为CMOS测量电路系统101中的顶层金属,可以在CMOS测量电路系统101的金属互连层上层制备CMOS红外传感结构102,CMOS红外传感结构102通过位于CMOS测量电路系统101的金属互连层上层的支撑底座111与CMOS测量电路系统101电连接,实现将经由红外信号转换成的电信号传输至CMOS测量电路系统101,如图12所示。
图13为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的膜层结构示意图。如图13所示,也可以在CMOS测量电路系统101的金属互连层同层制备CMOS红外传感结构102,即CMOS测量电路系统101与CMOS红外传感结构102同层设置,设置CMOS红外传感结构102位于CMOS测量电路系统101的一侧,CMOS测量电路系统101的顶部同样可以设置有密闭释放隔绝层,以保护CMOS测量电路系统101。
可选地,图14为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的局部立体结构示意图,如图14所示,金属结构140与接地的柱状结构130电连接。
具体地,如图14所示,支撑底座111起到支撑作用的同时,还能够接地并将电荷释放至地。柱状结构130与接地的支撑底座111电连接,柱状结构130上累积的电荷能够通过接地的支撑底座111释放,从而通过将金属结构140与接地的柱状结构130电连接,能够将金属结构140上累积的依次通过柱状结构130和支撑底座111释放至地,防止电荷累积影响电路电学性能。
可选地,红外探测器镜像像元100可以设置包括一组或者两组对角设置的两个柱状结构130,如图1、图2、图6和图7所示,示例性地设置红外探测器镜像像元100包括两组对角设置的两个柱状结构130,即设置红外探测器镜像像元100包括柱状结构130,也可以设置红外探测器镜像像元100包括一组对角设置的两个柱状结构130,即设置红外探测器镜像像元100包括两个柱状结构130,如图14所示。
可选地,红外探测器镜像像元100中的柱状结构130可以如图1、图2、图6和图7所示所示是空心柱结构,柱状结构130也可以如图14所示是实心柱结构。
示例性的,如图1、图2、图6和图7,柱状结构130可以是空心柱结构,空心柱结构的导热小,能够降低整体结构的热导。柱状结构130也可以是实心柱结构,如图14所示,在柱状结构130内部不会有残留的牺牲层,从而能够提高红外探测器镜像像元100的真空度,避免对红外探测器镜像像元100的电学性能造成影响。同时,实心柱结构的机械强度较高,能够提高红外探测器镜像像元100的结构稳定性。示例性的,实心柱结构的材料可以是铝、铜、钨中的至少一种。
可选地,构成密闭释放隔绝层150的材料包括硅、锗、锗化硅、非晶硅、非晶锗、非晶硅锗、非晶碳、碳化硅、氧化铝或氮化硅中的至少一种。
具体地,硅、锗、锗化硅、非晶硅、非晶锗、非晶硅锗、非晶碳、碳化硅、氧化铝或氮化硅均为CMOS工艺抗腐蚀材料,即这些材料不会受牺牲层释放用试剂的腐蚀,因此密闭释放隔绝层150可以用于在进行腐蚀工艺释放牺牲层时保护CMOS测量电路系统101不受侵蚀。另外,密闭释放隔绝层150覆盖CMOS测量电路系统101设置,密闭释放隔绝层150还可以用于在制作CMOS红外传感结构102的刻蚀过程中,保护CMOS测量电路系统101不受工艺影响。
可选地,继续参见图11,柱状结构130包括多个独立柱状结构131,独立柱状结构131位于不同层,独立柱状结构131对应一层或多层密闭释放隔绝层150设置。
示例性地,如图11所示,反射板112上设置有两层密闭释放隔绝层150,相应地,支撑底座111上设置有三层密闭释放隔绝层150。柱状结构130包括三个独立柱状结构131,独立柱状结构131对应一层密闭释放隔绝层150。具体可以通过如下方式实现:每沉积一层密闭释放隔绝层150后,在该层密闭释放隔绝层150上刻蚀形成图案,再沉积一层独立柱状结构131的膜层结构,从而形成独立柱状结构131。通过这种密闭释放隔绝层150与独立柱状结构131交替形成的方式,在工艺制程中刻蚀深度较小,容易控制密闭释放隔绝层150的刻蚀工艺参数,有利于提高红外探测器的良率。
在其他实施方式中,还可以是一个独立柱状结构131对应多层密闭释放隔绝层150,如图5所示。具体可以通过如下方式实现:连续沉积多层密闭释放隔绝层150后,在多层密闭释放隔绝层150上刻蚀形成图案,再沉积一层独立柱状结构131的膜层结构,从而形成独立柱状结构131。如此能够减小工艺制程的数量,缩短工艺制程的时间,利于提高红外探测器的生产效率。
可选地,继续参见图1和图2,红外转换结构120包括吸收板121和多个梁结构122,吸收板121用于将红外信号转换为电信号并通过对应的梁结构122与对应的柱状结构130电连接。
吸收板121和梁结构122位于同一层或位于不同层。
具体地,如图1和图2所示,红外转换结构120包括多个梁结构122,每个梁结构122均与对应的柱状结构130电连接。吸收板121用于吸收目标物体的红外辐射能量,并将红外辐射能量转换为有效电信号,梁结构122通过柱状结构130将吸收板121产生的有效电信号传递至读出电路,同时梁结构122还是一种热传导的部件,用于散热。此外,吸收板121还用于吸收温度噪声辐射的能量,并将温度噪声辐射的能量转换为噪声信号,梁结构122通过柱状结构130将吸收板121产生的噪声电信号传递至读出电路,以实现红外探测器的噪声信号的检测。
需要说明的是,图1和图2仅示例性展示了红外转换结构120包括两个梁结构122,在实际应用中,对梁结构122的数量不作具体限制。
另外,吸收板121和梁结构122可以如图1所示位于同一层;吸收板121和梁结构122还可以如图2所示位于不同层,下面这两种方案进行详细说明。
可选地,继续参见图1所示,吸收板121和梁结构122可以位于同一层。
示例性地,图15为本发明实施例提供的一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图,结合图1和图15所示,梁结构122包括支撑层210、电极层220和钝化层230,吸收板121包括支撑层210、电极层220、钝化层230和热敏层240。电极层220位于支撑层210上,热敏层240位于电极层220上,钝化层230位于热敏层240和电极层220上。
具体地,支撑层210用于在释放掉牺牲层后支撑红外转换结构120中的上方膜层,热敏层240用于将红外温度检测信号转换为红外检测电信号,电极层220用于将热敏层240转换出来的红外检测电信号通过左右两侧的梁结构122传输至CMOS测量电路系统101,左右两侧的梁结构122分别传输红外检测电信号的正负信号,CMOS测量电路系统101中的读出电路通过对获取到的红外检测电信号的分析实现非接触式的红外温度检测,钝化层230用于保护电极层220不被氧化或者腐蚀。另外,热敏层240可以位于电极层220的上方,也可以位于电极层220的下方。可以设置对应吸收板121,热敏层240和电极层220位于支撑层210和钝化层230形成的密闭空间内,实现对吸收板121中热敏层240和电极层220的保护,对应梁结构122,电极层220位于支撑层210和钝化层230形成的密闭空间内,实现对梁结构122中电极层220的保护。
示例性地,可以设置构成热敏层240的材料可以包括非晶硅、非晶锗、非晶硅锗、氧化钛、氧化钒或氧化钛钒中的至少一种,构成支撑层210的材料可以包括非晶碳、氧化铝、非晶硅、非晶锗或非晶锗硅中的一种或多种,构成电极层220的材料可以包括钛、氮化钛、钽、氮化钽、钛钨合金、镍铬合金、镍硅合金、镍或铬中的一种或多种,构成钝化层230的材料可以包括非晶碳、氧化铝、非晶硅、非晶锗或非晶锗硅中的一种或多种。另外,设置吸收板121包括热敏层240,热敏层240材料为非晶硅、非晶碳、非晶锗或非晶硅锗时,梁结构122上的支撑层210和/或钝化层230可以由热敏层240来代替,因为非晶硅、非晶锗或非晶硅锗的热导率较小,有利于降低梁结构122的热导率,进一步提高红外探测器的红外响应率。
需要说明的是,图15仅示例性地可以设置电极层220位于热敏层240临近CMOS测量电路系统101的一侧。在其他实施方式中,也可以设置电极层220位于热敏层240临近钝化层230的一侧,电极层220与热敏层240之间还设置有间隔层250,如图16所示。
本发明实施例通过将吸收板121和梁结构122设置于同一层,无需对吸收板121和梁结构122分别制作掩膜板,减少了制程数量,能够节省红外探测器的生产成本,提高生产效率。
示例性地,以图15所示的红外探测器镜像像元100为例,红外探测器镜像像元100制备方法可以包括在CMOS测量电路系统101上依次形成反射层110、牺牲层(图中未示出)、柱状结构130、支撑层210、电极层220、热敏层240以及钝化层230,释放牺牲层,即去除掉牺牲层。
可选地,牺牲层用于使CMOS红外传感结构102形成镂空结构,构成牺牲层的材料是氧化硅,采用post-CMOS工艺腐蚀牺牲层,示例性地,post-CMOS工艺可以采用气相氟化氢、四氟化碳和三氟甲烷中的至少一种对牺牲层进行腐蚀。牺牲层可以由氧化硅制备而成,氧化硅是CMOS工艺中常用的一种材料,即氧化硅与CMOS工艺兼容,故利用CMOS工艺能够形成牺牲层。例如:在反射层110一侧形成沉积一层氧化硅层,再通过刻蚀形成带有特定图案的氧化硅层,即形成牺牲层。由此可知,CMOS测量电路系统101中的读出电路和牺牲层均可利用CMOS工艺来制备,有利于实现红外探测器的全CMOS工艺流片,即可以利用CMOS工艺实现红外探测器的一体化制作,有利于提高红外探测器的制作良率和产能,降低红外探测器的制作成本。
在其他实施方式中,还可以是在支撑层210上依次形成热敏层240、间隔层250、电极层220以及钝化层230,形成如图16所示的镜像像元100,实际应用中可以灵活调整热敏层240和电极层220的工艺顺序。
可选地,图17为本发明实施例提供的基于CMOS工艺的又一种红外探测器镜像像元的立体分解结构示意图,图18为本发明实施例提供的又一种基于CMOS工艺的红外探测器镜像像元的立体分解结构示意图,结合图2、图17和图18,吸收板121和梁结构122还可以位于不同层,梁结构122包括第一电极层221,吸收板121包括第二电极层222和热敏层240,第二电极层222通过第一电极层221电连接至柱状结构130。
示例性地,结合图2、图17和图18所示,梁结构122包括第一支撑层211、第一电极层221和第一钝化层231,第一电极层221位于第一支撑层211上,第一支撑层211临近CMOS测量电路系统101,第一钝化层231位于第一电极层221上,第一支撑层211起到结构支撑的作用。吸收板121位于梁结构122背离CMOS测量电路系统101的一侧,吸收板121包括:第二支撑层212、第二电极层222、第二钝化层232、和热敏层240,第二电极层222位于第二支撑层212上,第二支撑层212临近梁结构122一侧,第二钝化层232位于热敏层240上,第二支撑层212起到结构支撑的作用。第二支撑层212上设置有通孔260,第二电极层222与第一电极层221通过该通孔260实现电连接。
具体地,如图17和图18所示,第一电极层221包括第一电极221a和第二电极221b,第二电极层222包括第三电极222a和第四电极222b,第二支撑层212中间位置镂空以形成通孔260,第三电极222a通过通孔260与第一电极221a电连接,第四电极222b通过通孔260与第二电极221b电连接。第三电极222a将热敏层240的产生的正热敏信号传递至第一电极221a,第一电极221a通过对应柱状结构130将正热敏信号传递至读出电路,第四电极222b将热敏层240的产生的负热敏信号传递至第二电极221b,第二电极221b通过对应的柱状结构130将负热敏信号传输至读出电路,以实现噪声信号的检测功能。
此外,热敏层240的材料可以是非晶硅、非晶碳、非晶锗或非晶硅锗中的一种或几种,因此热敏层240可以充当吸收板121中的支撑结构,无需制作单独的支撑膜层,有利于进一步减小吸收板121的厚度,进而减小吸收板121的热容,降低红外探测器的热响应时间。
需要说明的是,图18仅示例性地可以设置第二电极层222位于热敏层240临近CMOS测量电路系统101的一侧。在其他实施方式中,也可以设置第二电极层222位于热敏层240临近第二钝化层232的一侧,第二电极层222与热敏层240之间还设置有间隔层250,间隔层250、热敏层240和第二支撑层212中间镂空以形成贯穿间隔层250、热敏层240和第二支撑层212的通孔260,如图19所示。还需要说明的是,通孔260可以是如图18和图19所示的一个贯穿孔,还可以是如图20所示的两个贯穿孔。
本发明实施例通过将吸收板121和梁结构122设置于不同层,梁结构122的面积不会对吸收板121的面积造成影响,有利于实现更大面积的吸收板121,从而能够提高吸收板121吸收的温度噪声的辐射量,即能够提高红外探测器的辐射吸收量,从而能够获取到更加准确的噪声信号,利于提高红外探测器的探测性能。此外,红外探测器镜像像元100的尺寸不再受制于吸收板121的面积和梁结构122的面积之和,能够减小红外探测器镜像像元100的尺寸,有利于红外探测器向小型化发展。
示例性地,以图17和图18所示的红外探测器镜像像元100为例,红外探测器镜像像元100制备方法可以包括在CMOS测量电路系统101上依次形成反射层110、第一牺牲层(图中未示出)、柱状结构130、第一支撑层211、第一电极层221、第一钝化层231、第二牺牲层(图中未示出)、第二支撑层212、第二电极层222、热敏层240以及第二钝化层232,释放第一牺牲层和第二牺牲层,即去除掉第一牺牲层和第二牺牲层。
可选地,第一牺牲层和第二牺牲层用于使CMOS红外传感结构102形成镂空结构,构成第一牺牲层和第二牺牲层的材料是氧化硅,采用post-CMOS工艺腐蚀第一牺牲层和第二牺牲层,示例性地,post-CMOS工艺可以采用气相氟化氢、四氟化碳和三氟甲烷中的至少一种对第一牺牲层和第二牺牲层进行腐蚀。第一牺牲层和第二牺牲层的均可以由氧化硅制备而成,氧化硅是CMOS工艺中常用的一种材料,即氧化硅与CMOS工艺兼容,因此,利用CMOS工艺能够形成第一牺牲层和第二牺牲层。例如:在反射层110一侧形成沉积一层氧化硅层,再通过刻蚀形成带有特定图案的氧化硅层,即形成第一牺牲层。由此可知,CMOS测量电路系统101中的读出电路和第一牺牲层均可利用CMOS工艺来制备,有利于实现红外探测器的全CMOS工艺流片,即可以利用CMOS工艺实现红外探测器的一体化制作,有利于提高红外探测器的制作良率和产能,降低红外探测器的制作成本。上述实施例仅以利用氧化硅制备第一牺牲层进行示例性说明,在实际应用中还可以利用氧化硅制备第二牺牲层,同样具备上述实施例的有益效果,这里不进行赘述。
在其他实施方式中,还可以是在第二支撑层212上依次形成热敏层240、间隔层250、第二电极层222以及第二钝化层232,形成如图19所示的镜像像元100,实际应用中可以灵活调整热敏层240和第二电极层222的工艺顺序。
可选地,支撑底座111的边长小于等于3微米且大于等于0.5微米。
具体地,可以设置构成基于CMOS工艺的红外探测器镜像像元反射层110的材料包括铝、铜、钨、钛、镍、铬、铂、银、钌或钴中的至少一种。另外,设置CMOS测量电路系统101和CMOS红外传感结构102均使用CMOS工艺制备,在CMOS测量电路系统101上直接制备CMOS红外传感结构102,能够实现支撑底座111的边长小于等于3微米且大于等于0.5微米,梁结构122的宽度,即梁结构122中单线条的宽度小于等于0.3um,谐振腔的高度大于等于1.5um,小于等于2.5um,单个像元的边长大于等于6um,小于等于17um。对于探测器全CMOS工艺而言,通过同一制程能够在有效像元和镜像像元中均形成反射层110,对有效像元来说,支撑底座111的边长越小,即支撑底座111的面积越小,反射板112的面积越大,传感器吸收的红外辐射能量越多,从而能够提高红外探测器的探测效率。
本发明实施例还提供了一种基于CMOS工艺的红外探测器,图21为本发明实施例提供的一种基于CMOS工艺的红外探测器的立体结构示意图。如图21所示,基于CMOS工艺的红外探测器200包括上述实施例中的任一种基于CMOS工艺的红外探测器镜像像元100,上述实施例所述的有益效果,这里不再赘述。示例性地,红外探测器例如可以是非制冷红外焦平面探测器。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

1.一种基于CMOS工艺的红外探测器镜像像元,其特征在于,包括:
CMOS测量电路系统和CMOS红外传感结构,所述CMOS测量电路系统和所述CMOS红外传感结构均使用CMOS工艺制备,在所述CMOS测量电路系统上直接制备所述CMOS红外传感结构;
所述CMOS红外传感结构的CMOS制作工艺包括金属互连工艺、通孔工艺以及RDL工艺,所述CMOS红外传感结构包括至少两层金属互连层、至少两层介质层和多个互连通孔;
所述CMOS红外传感结构包括位于所述CMOS测量电路系统读出电路衬底上的反射层、红外转换结构和多个柱状结构,所述柱状结构位于所述反射层和所述红外转换结构之间,所述反射层包括反射板和支撑底座,所述红外转换结构通过所述柱状结构和所述支撑底座与所述CMOS测量电路系统电连接;
所述CMOS红外传感结构还包括金属结构,所述金属结构位于所述红外转换结构和所述反射层之间,至少部分所述反射板位于所述金属结构的正投影区域内。
2.根据权利要求1所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述金属结构与所述反射板接触设置,或者所述金属结构和所述反射板之间设置有至少一层密闭释放隔绝层,所述密闭释放隔绝层用于在制作所述CMOS红外传感结构的刻蚀过程中,保护所述CMOS测量电路系统不受工艺影响。
3.根据权利要求2所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述反射板上设置有至少一层所述密闭释放隔绝层,所述密闭释放隔绝层包覆所述柱状结构。
4.根据权利要求2或3所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述金属结构与接地的所述柱状结构电连接。
5.根据权利要求2或3所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,构成所述密闭释放隔绝层的材料包括硅、锗、锗化硅、非晶硅、非晶锗、非晶硅锗、非晶碳、碳化硅、氧化铝或氮化硅中的至少一种。
6.根据权利要求2所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述柱状结构包括多个独立柱状结构,所述独立柱状结构位于不同层,所述独立柱状结构对应一层或多层所述密闭释放隔绝层设置。
7.根据权利要求1所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述红外转换结构包括吸收板和多个梁结构,所述吸收板用于将红外信号转换为电信号并通过对应的所述梁结构与对应的所述柱状结构电连接;
所述吸收板和所述梁结构位于同一层或位于不同层。
8.根据权利要求7所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述吸收板和所述梁结构位于不同层,所述梁结构包括第一电极层,所述吸收板包括第二电极层和热敏层,所述第二电极层通过所述第一电极层电连接至所述柱状结构。
9.根据权利要求1所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,牺牲层用于使所述CMOS红外传感结构形成镂空结构,构成所述牺牲层的材料是氧化硅,采用气相氟化氢、四氟化碳和三氟甲烷中的至少一种对所述牺牲层进行腐蚀。
10.根据权利要求1所述的基于CMOS工艺的红外探测器镜像像元,其特征在于,所述支撑底座的边长小于等于3微米且大于等于0.5微米。
11.一种基于CMOS工艺的红外探测器,其特征在于,包括如权利要求1-10任一项所述的基于CMOS工艺的红外探测器镜像像元。
CN202110324026.1A 2021-03-26 2021-03-26 基于cmos工艺的红外探测器镜像像元和红外探测器 Active CN113720474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110324026.1A CN113720474B (zh) 2021-03-26 2021-03-26 基于cmos工艺的红外探测器镜像像元和红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110324026.1A CN113720474B (zh) 2021-03-26 2021-03-26 基于cmos工艺的红外探测器镜像像元和红外探测器

Publications (2)

Publication Number Publication Date
CN113720474A true CN113720474A (zh) 2021-11-30
CN113720474B CN113720474B (zh) 2022-11-15

Family

ID=78672569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110324026.1A Active CN113720474B (zh) 2021-03-26 2021-03-26 基于cmos工艺的红外探测器镜像像元和红外探测器

Country Status (1)

Country Link
CN (1) CN113720474B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108388A1 (en) * 2005-01-26 2007-05-17 Analog Devices, Inc. Die temperature sensors
CN101927976A (zh) * 2009-09-30 2010-12-29 浙江大立科技股份有限公司 微桥结构红外探测器以及制造方法
CN106098846A (zh) * 2016-06-29 2016-11-09 烟台睿创微纳技术股份有限公司 一种用于非制冷红外探测器参考像元及其制造方法
CN106595876A (zh) * 2016-11-30 2017-04-26 武汉高芯科技有限公司 集成有效元与光学参考元的像素以及微测辐射热计
CN107253696A (zh) * 2017-06-09 2017-10-17 烟台睿创微纳技术股份有限公司 一种微测辐射热计的像元结构及其制备方法
CN207751597U (zh) * 2018-02-06 2018-08-21 无锡元创华芯微机电有限公司 一种红外光学盲元结构
US20200249084A1 (en) * 2017-08-10 2020-08-06 Hamamatsu Photonics K.K. Light detector
CN112362169A (zh) * 2020-09-09 2021-02-12 武汉鲲鹏微纳光电有限公司 一种非制冷红外探测器及其像元、参考元以及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070108388A1 (en) * 2005-01-26 2007-05-17 Analog Devices, Inc. Die temperature sensors
CN101927976A (zh) * 2009-09-30 2010-12-29 浙江大立科技股份有限公司 微桥结构红外探测器以及制造方法
CN106098846A (zh) * 2016-06-29 2016-11-09 烟台睿创微纳技术股份有限公司 一种用于非制冷红外探测器参考像元及其制造方法
CN106595876A (zh) * 2016-11-30 2017-04-26 武汉高芯科技有限公司 集成有效元与光学参考元的像素以及微测辐射热计
CN107253696A (zh) * 2017-06-09 2017-10-17 烟台睿创微纳技术股份有限公司 一种微测辐射热计的像元结构及其制备方法
US20200249084A1 (en) * 2017-08-10 2020-08-06 Hamamatsu Photonics K.K. Light detector
CN207751597U (zh) * 2018-02-06 2018-08-21 无锡元创华芯微机电有限公司 一种红外光学盲元结构
CN112362169A (zh) * 2020-09-09 2021-02-12 武汉鲲鹏微纳光电有限公司 一种非制冷红外探测器及其像元、参考元以及其制备方法

Also Published As

Publication number Publication date
CN113720474B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN113447148A (zh) 一种红外焦平面探测器
CN113720464B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720477B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720482A (zh) 基于cmos工艺的红外探测器像元和红外探测器
CN113720467B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720476B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720473B (zh) 一种基于cmos工艺的红外探测器
CN113720474B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720466B (zh) 一种基于cmos工艺的红外探测器
CN114112057B (zh) 基于cmos工艺的红外探测器像元和红外探测器
CN113720449B (zh) 一种基于cmos工艺的红外探测器
CN113720472B (zh) 一种基于cmos工艺的红外探测器
CN113865723B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720475B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720481B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113720480B (zh) 基于cmos工艺的红外探测器镜像像元和红外探测器
CN113447143A (zh) 一种热对称型红外探测器
CN113720451B (zh) 基于cmos工艺的红外探测器
CN113720471B (zh) 一种基于cmos工艺的红外探测器像元和红外探测器
CN113720478B (zh) 一种基于cmos工艺的红外探测器像元和红外探测器
CN113720454B (zh) 一种基于cmos工艺的红外探测器像元和红外探测器
CN113720470B (zh) 一种基于cmos工艺的红外探测器
CN113720469B (zh) 基于cmos工艺的红外探测器像元和红外探测器
CN113720455A (zh) 基于cmos工艺的红外探测器
CN113720450A (zh) 一种基于cmos工艺的红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant