CN113719539B - Magnetic suspension bearing displacement sensor fault-tolerant control system and control method - Google Patents
Magnetic suspension bearing displacement sensor fault-tolerant control system and control method Download PDFInfo
- Publication number
- CN113719539B CN113719539B CN202110980689.9A CN202110980689A CN113719539B CN 113719539 B CN113719539 B CN 113719539B CN 202110980689 A CN202110980689 A CN 202110980689A CN 113719539 B CN113719539 B CN 113719539B
- Authority
- CN
- China
- Prior art keywords
- sensor
- displacement
- radial
- fault
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 227
- 239000000725 suspension Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000002131 composite material Substances 0.000 claims abstract description 56
- 238000005259 measurement Methods 0.000 claims abstract description 33
- 238000003745 diagnosis Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 13
- 238000001914 filtration Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000007257 malfunction Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
- F16C32/0451—Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
技术领域technical field
本发明涉及传感器容错控制技术领域,尤其涉及一种磁悬浮轴承位移传感器容错控制系统及控制方法。The invention relates to the technical field of sensor fault-tolerant control, in particular to a fault-tolerant control system and control method for a magnetic suspension bearing displacement sensor.
背景技术Background technique
磁悬浮轴承具有低损耗、无需润滑和无接触等优点,近年来得到了越来越广泛的应用。Magnetic suspension bearings have the advantages of low loss, no lubrication and no contact, and have been more and more widely used in recent years.
磁悬浮轴承转子系统由转子、位移传感器、控制器、功率放大器和磁轴承本体组成。位移传感器将转子位移值传递给控制器,控制器计算得到控制电流信号后驱动功率放大器产生控制电流,控制电流通入电磁铁线圈产生的电磁力作用在转子上维持转子悬浮在预设位置。The magnetic suspension bearing rotor system consists of a rotor, a displacement sensor, a controller, a power amplifier and a magnetic bearing body. The displacement sensor transmits the rotor displacement value to the controller. After the controller calculates the control current signal, it drives the power amplifier to generate the control current. The electromagnetic force generated by the control current passing through the electromagnet coil acts on the rotor to keep the rotor suspended at the preset position.
在一般的主动磁轴承系统中为了实现系统的闭环反馈控制,必须在电磁轴承的每个自由度上至少装配一个位移传感器进行转子位移信号的实时检测。为了避免位移传感器故障引起的电磁轴承失效问题,提高系统的可靠性,已有的容错控制方法主要包括在各个自由度上配置冗余数量的传感器,或者通过自传感的方法从电磁轴承线圈电压和电流信号中提取转子位移估计信号。In order to realize the closed-loop feedback control of the system in a general active magnetic bearing system, at least one displacement sensor must be installed on each degree of freedom of the magnetic bearing to detect the rotor displacement signal in real time. In order to avoid the failure of the electromagnetic bearing caused by the failure of the displacement sensor and improve the reliability of the system, the existing fault-tolerant control methods mainly include configuring redundant sensors on each degree of freedom, or using the self-sensing method to obtain the electromagnetic bearing coil voltage The rotor displacement estimation signal is extracted from the current and current signals.
已有的传感器容错控制方法中冗余的传感器在正常情况下均处于备用状态,未能实现功能复用,性价比较低,自传感方法位移计算精度低,磁轴承稳定性差,亟需提出解决方案。In the existing sensor fault-tolerant control method, the redundant sensors are in the standby state under normal circumstances, and the function reuse cannot be realized, the cost performance is low, the displacement calculation accuracy of the self-sensing method is low, and the stability of the magnetic bearing is poor, so it is urgent to propose a solution plan.
申请号为CN202010376226.7的发明专利公开了一种主动径向磁轴承用位移传感器容错控制系统及控制方法。该控制系统与主动径向磁悬浮轴承相适配,系统包括位移反馈部分、故障诊断电路、容错控制模块以及反馈执行部分;位移反馈部分以非对称的形式固定设置于主动径向磁悬浮轴承转子外围,位移反馈部分的输出分别与故障诊断电路及容错控制模块二者的输入电性连接,故障诊断电路的输出与容错控制模块的输入电性连接,容错控制模块的输出与反馈执行部分的输入电性连接,反馈执行部分的输出与主动径向磁悬浮轴承中的电磁线圈电性连接。The invention patent with application number CN202010376226.7 discloses a fault-tolerant control system and control method for displacement sensors used in active radial magnetic bearings. The control system is compatible with the active radial magnetic suspension bearing, and the system includes a displacement feedback part, a fault diagnosis circuit, a fault-tolerant control module and a feedback execution part; the displacement feedback part is fixedly arranged on the periphery of the active radial magnetic suspension bearing rotor in an asymmetric form The output of the displacement feedback part is electrically connected to the input of the fault diagnosis circuit and the fault-tolerant control module, the output of the fault diagnosis circuit is electrically connected to the input of the fault-tolerant control module, and the output of the fault-tolerant control module is electrically connected to the input of the feedback execution part. Connection, the output of the feedback execution part is electrically connected with the electromagnetic coil in the active radial magnetic suspension bearing.
但是,上述传感器容错控制系统存在因采用非对称的传感器布置方式而无法消除各自由度位移中的共模噪声的缺点,所增加的2个冗余的位移传感器在没有故障发生时没有起到额外作用,性价比较低。However, the above-mentioned sensor fault-tolerant control system has the disadvantage of being unable to eliminate the common-mode noise in the displacement of each degree of freedom due to the asymmetric sensor arrangement, and the added two redundant displacement sensors do not play an additional role when no fault occurs. effect, low cost performance.
有鉴于此,有必要设计一种改进的磁悬浮轴承位移传感器容错控制系统及控制方法,以解决上述问题。In view of this, it is necessary to design an improved magnetic suspension bearing displacement sensor fault-tolerant control system and control method to solve the above problems.
发明内容Contents of the invention
本发明的目的在于提供一种磁悬浮轴承位移传感器容错控制系统及控制方法。The purpose of the present invention is to provide a fault-tolerant control system and control method for a magnetic suspension bearing displacement sensor.
为实现上述发明目的,本发明提供了一种磁悬浮轴承位移传感器容错控制系统,包括磁悬浮轴承转子装置、控制器和功率放大器,其还包括与所述磁悬浮轴承转子装置中的转子连接并且同步运动的推力盘、传感器组件、故障诊断模块以及容错控制模块;In order to achieve the purpose of the above invention, the present invention provides a fault-tolerant control system for a magnetic suspension bearing displacement sensor, which includes a magnetic suspension bearing rotor device, a controller and a power amplifier, and also includes a motor that is connected to the rotor in the magnetic suspension bearing rotor device and moves synchronously. Thrust disc, sensor assembly, fault diagnosis module and fault-tolerant control module;
所述传感器组件包括若干个用于测量转子位移数据的径向位移传感器和用于测量推力盘位移数据的复合位移传感器;所述复合位移传感器和所述径向位移传感器相互不共平面设置。The sensor assembly includes several radial displacement sensors for measuring rotor displacement data and a composite displacement sensor for measuring thrust disk displacement data; the composite displacement sensors and the radial displacement sensors are not coplanar with each other.
作为本发明的进一步改进,若干个所述径向位移传感器共平面设置,以所述磁悬浮轴承转子装置中转子圆心为原点、在垂直于转子中轴线的平面上建立平面直角坐标系,所述径向位移传感器包括设置于X轴正负方向上且相互对称设置的第一径向位移传感器、设置于Y轴正负方向上且相互对称设置的第二径向位移传感器,以及第三径向位移传感器。As a further improvement of the present invention, several radial displacement sensors are coplanarly arranged, and a plane Cartesian coordinate system is established on a plane perpendicular to the central axis of the rotor with the center of the rotor in the magnetic suspension bearing rotor device as the origin. The displacement sensor includes a first radial displacement sensor arranged in the positive and negative directions of the X axis and arranged symmetrically with each other, a second radial displacement sensor arranged in the positive and negative directions of the Y axis and arranged symmetrically with each other, and a third radial displacement sensor sensor.
作为本发明的进一步改进,所述第三径向位移传感器与转子圆心所形成的第一连接线与X轴或Y轴均不重合。As a further improvement of the present invention, the first connecting line formed by the third radial displacement sensor and the center of the rotor does not coincide with the X axis or the Y axis.
作为本发明的进一步改进,所述推力盘外圆边沿等间距设置有若干个凹槽,所述复合位移传感器设置于所述推力盘径向方向的外侧,用于测量其与推力盘之间的表面距离,能够同时得到转子径向位移信息与转子旋转位置角信息。As a further improvement of the present invention, several grooves are arranged at equal intervals on the outer circumference of the thrust disk, and the composite displacement sensor is arranged on the outer side of the thrust disk in the radial direction for measuring the distance between it and the thrust disk. The surface distance can simultaneously obtain the rotor radial displacement information and the rotor rotational position angle information.
作为本发明的进一步改进,所述复合位移传感器与推力盘圆心之间所形成的第二连接线和所述第三径向位移传感器与转子圆心之间所形成的第一连接线异面设置,不平行也不相交;所述第二连接线与X轴和Y轴均不平行也不相交。As a further improvement of the present invention, the second connecting line formed between the composite displacement sensor and the center of the thrust disc and the first connecting line formed between the third radial displacement sensor and the center of the rotor are arranged on different planes, Neither parallel nor intersecting; the second connection line is neither parallel nor intersecting with the X-axis and the Y-axis.
作为本发明的进一步改进,所述容错控制模块包括滤波模块和位移计算模块;所述滤波模块对复合位移传感器的测量值进行滤波处理,得到推力盘边沿非凹槽部分的有效位移;所述位移计算模块根据传感器故障形式得到各自由度位移计算值。As a further improvement of the present invention, the fault-tolerant control module includes a filtering module and a displacement calculation module; the filtering module performs filtering processing on the measured value of the composite displacement sensor to obtain the effective displacement of the non-groove portion of the edge of the thrust plate; the displacement The calculation module obtains the calculated value of the displacement of each degree of freedom according to the fault form of the sensor.
作为本发明的进一步改进,所述故障诊断模块对所述复合位移传感器、所述径向位移传感器的测量值进行综合采样分析,判断传感器是否发生故障。As a further improvement of the present invention, the fault diagnosis module performs comprehensive sampling and analysis on the measured values of the composite displacement sensor and the radial displacement sensor to determine whether the sensor is faulty.
作为本发明的进一步改进,所述磁悬浮轴承转子装置为永磁偏置混合磁轴承转子装置、纯电励磁磁轴承转子装置中的一种。As a further improvement of the present invention, the magnetic suspension bearing rotor device is one of a permanent magnet bias hybrid magnetic bearing rotor device and a pure electric excitation magnetic bearing rotor device.
为实现上述发明目的,本发明还提供了一种磁悬浮轴承位移传感器容错控制方法,采用上述磁悬浮轴承位移传感器容错控制系统进行容错控制,包括如下步骤:In order to achieve the purpose of the above invention, the present invention also provides a fault-tolerant control method for a magnetic suspension bearing displacement sensor, using the above-mentioned fault-tolerant control system for a magnetic suspension bearing displacement sensor to perform fault-tolerant control, including the following steps:
S1,启动磁悬浮轴承转子装置,转子与推力盘进行同步旋转作业,传感器组件实时进行位移数据测量,获得在正常情况下径向位移传感器测得的径向位移测量值与复合位移传感器测得的推力盘边沿非凹槽部分的有效位移测量值的关系;S1, start the magnetic suspension bearing rotor device, the rotor and the thrust plate rotate synchronously, the sensor components measure the displacement data in real time, and obtain the radial displacement measurement value measured by the radial displacement sensor and the thrust measured by the composite displacement sensor under normal conditions The relationship between the effective displacement measurements of the non-groove portion of the disk edge;
S2,所述容错控制模块对复合位移传感器的位移测量值进行截取滤波,根据上述关系,对复合位移传感器实时采样测量值进行判断,以非凹槽部分的有效测量值的波动范围作为有效范围,若处在前述有效范围内,输出该值,否则将上一次采样测量值作为当前测量值输出,最后对上述截取后的位移值进行低通滤波处理,得到转子径向位移;S2, the fault-tolerant control module intercepts and filters the displacement measurement value of the composite displacement sensor, and judges the real-time sampling measurement value of the composite displacement sensor according to the above relationship, taking the fluctuation range of the effective measurement value of the non-groove part as the effective range, If it is within the aforementioned effective range, output this value, otherwise, output the last sampled measurement value as the current measurement value, and finally perform low-pass filtering on the above-mentioned intercepted displacement value to obtain the radial displacement of the rotor;
当各传感器均正常工作时,第一径向传感器测量值记为s1和s3、第二径向传感器测量值记为s2和s4、第三径向传感器测量值记为s5、与处理后的复合位移传感器测量值记为s6,上述测量值与X轴,Y轴方向位移值x,y的关系如下:When all the sensors are working normally, the measured values of the first radial sensor are marked as s 1 and s 3 , the measured values of the second radial sensor are marked as s 2 and s 4 , the measured values of the third radial sensor are marked as s 5 , The measured value of the processed composite displacement sensor is denoted as s 6 , and the relationship between the above measured value and the displacement values x and y in the X-axis and Y-axis directions is as follows:
s1=x;s2=-y;s3=-x;s4=y; s 1 =x; s 2 =-y; s 3 =-x; s 4 =y;
S3,针对上述传感器故障形式进行分类,并进行上述分类故障形式对应的自由度位移计算;S3, classify the above-mentioned sensor fault forms, and calculate the degree of freedom displacement corresponding to the above-mentioned classified fault forms;
S4,控制器根据上述容错控制模块得到的位移计算值得到控制电流信号,驱动功率放大模块得到控制电流,并通入磁悬浮轴承转子装置中的电磁线圈中,对转子进行控制。S4, the controller obtains a control current signal according to the displacement calculation value obtained by the fault-tolerant control module, drives the power amplification module to obtain the control current, and passes it into the electromagnetic coil in the magnetic suspension bearing rotor device to control the rotor.
作为本发明的进一步改进,步骤S3中的传感器故障形式分类及位移计算的具体过程为:As a further improvement of the present invention, the specific process of sensor fault form classification and displacement calculation in step S3 is:
故障状态一,Fault state one,
第一径向传感器和第二径向传感器中的一个传感器故障,或非差动的两个传感器故障,第三径向传感器和复合位移传感器状态任意,以第一径向传感器S1、第二径向传感器S2故障为例,位移如下:One of the first radial sensor and the second radial sensor fails, or the two non-differential sensors fail, the third radial sensor and the compound displacement sensor are in any state, and the first radial sensor S 1 and the second Take the fault of radial sensor S2 as an example, the displacement is as follows:
x=-s3;y=s4;x=-s 3 ; y=s 4 ;
故障状态二,Fault state two,
第一径向传感器和第二径向传感器中差动的两个传感器故障,或三个传感器故障,第三径向传感器和复合位移传感器中至少一个正常,以第一径向传感器S1、第二径向传感器S2、第一径向传感器S3、第三径向传感器S5故障为例,位移如下:Two differential sensors of the first radial sensor and the second radial sensor are faulty, or three sensors are faulty, at least one of the third radial sensor and the composite displacement sensor is normal, and the first radial sensor S 1 , the second radial sensor Take the failure of the second radial sensor S 2 , the first radial sensor S 3 , and the third radial sensor S 5 as an example, and the displacements are as follows:
y=s4; y=s 4 ;
故障状态三,Fault state three,
第一径向传感器和第二径向传感器均故障,第三径向传感器和复合位移传感器正常,位移如下:Both the first radial sensor and the second radial sensor are faulty, the third radial sensor and the composite displacement sensor are normal, and the displacement is as follows:
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明提供的磁悬浮轴承位移传感器容错控制系统,通过复用复合位移传感器,将其作为一个冗余位移传感器,节省了硬件成本,且容错控制算法易于实现;通过增设复合位移传感器以及传感器组件之间的功能复用,实现多重冗余,提高系统可靠性。其传感器组件之间的功能复用机理在于:对非差动的两个传感器的位移测量值进行坐标变换可得到径向两个自由度的位移值,由此实现传感器容错控制,提高系统可靠性。1. The fault-tolerant control system of the magnetic suspension bearing displacement sensor provided by the present invention, by multiplexing the composite displacement sensor, uses it as a redundant displacement sensor, which saves hardware costs, and the fault-tolerant control algorithm is easy to implement; by adding a composite displacement sensor and sensor components Multiplexing between functions, realizing multiple redundancy, and improving system reliability. The function multiplexing mechanism between the sensor components is that the coordinate transformation of the displacement measurement values of the two non-differential sensors can obtain the displacement values of the two degrees of freedom in the radial direction, thereby realizing sensor fault-tolerant control and improving system reliability. .
2、本发明提供的磁悬浮轴承位移传感器容错控制系统,采用由径向位移传感器和复合位移传感器组成的传感器组件,通过设置第一/第二/第三径向位移传感器三者之间对称或者非对称的传感器排布方式,使得径向位移传感器能够得到多自由度的位移测量值,并与复合位移传感器的有效测量值进行综合,能够实现不同传感器故障形式下的容错控制和位移计算,保证了传感器故障前后均能够拥有高的测量精度。2. The fault-tolerant control system of the magnetic suspension bearing displacement sensor provided by the present invention adopts a sensor assembly composed of a radial displacement sensor and a composite displacement sensor, and sets the first/second/third radial displacement sensors to be symmetrical or non-symmetrical. The symmetrical sensor arrangement enables the radial displacement sensor to obtain multi-degree-of-freedom displacement measurement values, which are integrated with the effective measurement values of the composite displacement sensor, enabling fault-tolerant control and displacement calculation under different sensor failure forms, ensuring High measurement accuracy before and after sensor failure.
3、本发明提供的磁悬浮轴承位移传感器容错控制方法,通过容错控制模块根据传感器故障形式对正常传感器测量采样值进行计算,得到各自由度位移计算值并由此计算控制电流信号,提高故障后系统可靠性。3. In the fault-tolerant control method of the magnetic suspension bearing displacement sensor provided by the present invention, the fault-tolerant control module calculates the normal sensor measurement sampling value according to the sensor fault form, obtains the displacement calculation value of each degree of freedom and thus calculates the control current signal, and improves the system after the fault. reliability.
4、本发明提供的磁悬浮轴承位移传感器容错控制系统,推力盘上的凹槽结构会使复合位移传感器位移采样值不能直接反应转子的实际位移,本发明通过对复合传感器位移采样值进行数据处理,得到其中有效位移信息,准确计算各自由度位移值。数据处理的机理是:推力盘其中有一个凹槽的深度或宽度与其他凹槽不同,作为指示转子位置角的凹槽,由此得到的测量波形在推力盘位移与叠加了凹槽深度的类似方波的波形,根据转子转角所对凹槽深度对传感器正对凹槽处的测量数据进行补偿就能够得到较为准确的推力盘位移;复合位移传感器测量到的有效位移值能够精确反应转子位移的机理在于转子位移变化速度较慢,通过复合传感器位移测量值的突变能够判断出所对位置为推力盘外表面或凹槽,结合前期试验得到的不同转子位置角处的凹槽的精确深度的数据修正能反应精确的推力盘位移,而推力盘与径向传感器所在平面距离很近,其位移就精确反应了径向传感器处的转子位移。4. In the fault-tolerant control system of the magnetic suspension bearing displacement sensor provided by the present invention, the groove structure on the thrust plate will make the displacement sampling value of the composite displacement sensor unable to directly reflect the actual displacement of the rotor. The present invention performs data processing on the displacement sampling value of the composite sensor. The effective displacement information is obtained, and the displacement value of each degree of freedom is accurately calculated. The mechanism of data processing is: the depth or width of a groove in the thrust disk is different from other grooves, as a groove indicating the position angle of the rotor. Square wave waveform, according to the groove depth of the rotor angle, the sensor can compensate the measurement data at the groove to get a more accurate thrust plate displacement; the effective displacement value measured by the composite displacement sensor can accurately reflect the rotor displacement. The mechanism is that the rotor displacement changes at a slow rate. Through the sudden change of the displacement measurement value of the composite sensor, it can be judged that the corresponding position is the outer surface of the thrust disc or a groove, combined with the data correction of the precise depth of the groove at different rotor position angles obtained in the previous test. It can reflect the precise displacement of the thrust disc, and the distance between the thrust disc and the plane where the radial sensor is located is very close, and its displacement accurately reflects the rotor displacement at the radial sensor.
附图说明Description of drawings
图1为本发明提供的磁悬浮轴承位移传感器容错控制系统的框架图。Fig. 1 is a frame diagram of a fault-tolerant control system for a magnetic suspension bearing displacement sensor provided by the present invention.
图2为本发明提供的磁悬浮轴承位移传感器容错控制系统的结构图。Fig. 2 is a structural diagram of the fault-tolerant control system of the magnetic suspension bearing displacement sensor provided by the present invention.
图3为本发明提供的传感器组件的排布图(图3中a为正视图,图3中b为侧视图)。Fig. 3 is an arrangement diagram of the sensor assembly provided by the present invention (a in Fig. 3 is a front view, and b in Fig. 3 is a side view).
附图标记reference sign
1-第一径向传感器S1;2-第一径向传感器S3;3-第二径向传感器S2;4-第二径向传感器S4;5-第三径向传感器S5;6-复合传感器S6。1-first radial sensor S 1 ; 2-first radial sensor S 3 ; 3-second radial sensor S 2 ; 4-second radial sensor S 4 ; 5-third radial sensor S 5 ; 6 - Composite sensor S 6 .
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。Here, it should also be noted that, in order to avoid obscuring the present invention due to unnecessary details, only the structures and/or processing steps closely related to the solution of the present invention are shown in the drawings, and the steps related to the present invention are omitted. Invent other details that don't really matter.
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。Additionally, it should be noted that the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, but also Other elements not expressly listed, or inherent to the process, method, article, or apparatus are also included.
请参阅图1-2所示,本发明提供了一种磁悬浮轴承位移传感器容错控制系统,包括磁悬浮轴承转子装置、控制器和功率放大器、与所述磁悬浮轴承转子装置中的转子连接并且同步运动的推力盘、传感器组件、故障诊断模块以及容错控制模块。Please refer to Figs. 1-2, the present invention provides a fault-tolerant control system for a magnetic suspension bearing displacement sensor, which includes a magnetic suspension bearing rotor device, a controller and a power amplifier, and is connected with the rotor in the magnetic suspension bearing rotor device and moves synchronously Thrust discs, sensor assemblies, fault diagnosis modules, and fault-tolerant control modules.
在本实施方式中,所述磁悬浮轴承转子装置包括一个轴向磁轴承、两个径向磁轴承和转子。其中,所述磁悬浮轴承转子装置可以为永磁偏置混合磁轴承转子装置、纯电励磁磁轴承转子装置中的一种。In this embodiment, the magnetic suspension bearing rotor device includes one axial magnetic bearing, two radial magnetic bearings and a rotor. Wherein, the magnetic suspension bearing rotor device may be one of a permanent magnet bias hybrid magnetic bearing rotor device and a pure electric excitation magnetic bearing rotor device.
请参阅图2-3所示,所述传感器组件包括若干个用于测量转子位移数据的径向位移传感器和用于测量推力盘位移数据的复合位移传感器;所述复合位移传感器和所述径向位移传感器相互不共平面设置。Please refer to Figure 2-3, the sensor assembly includes several radial displacement sensors for measuring rotor displacement data and composite displacement sensors for measuring thrust disc displacement data; the composite displacement sensor and the radial The displacement sensors are arranged not in the same plane as each other.
在本实施方式中,若干个所述径向位移传感器共平面设置,以所述磁悬浮轴承转子装置中转子圆心为原点、在垂直于转子中轴线的平面上建立平面直角坐标系,所述径向位移传感器包括设置于X轴正负方向上且相互对称设置的第一径向位移传感器、设置于Y轴正负方向上且相互对称设置的第二径向位移传感器,以及第三径向位移传感器。所述第三径向位移传感器与转子圆心形成的第一连接线分别与X轴和Y轴呈预定角度的夹角设置,所述夹角的角度均大于0°且小于90°,即,第一连接线与X轴或Y轴均不重合。In this embodiment, several radial displacement sensors are coplanarly arranged, and a plane Cartesian coordinate system is established on a plane perpendicular to the central axis of the rotor with the center of the rotor in the magnetic suspension bearing rotor device as the origin. The displacement sensor includes a first radial displacement sensor arranged in the positive and negative directions of the X axis and arranged symmetrically to each other, a second radial displacement sensor arranged in the positive and negative directions of the Y axis and arranged symmetrically to each other, and a third radial displacement sensor . The first connecting line formed by the third radial displacement sensor and the center of the rotor circle is set at an included angle with the X-axis and the Y-axis respectively, and the angles of the included angles are all greater than 0° and less than 90°, that is, the first A connecting line does not coincide with either the X-axis or the Y-axis.
在本实施方式中,所述推力盘外圆边沿等间距设置有若干个凹槽,所述复合位移传感器设置于所述推力盘径向方向的外侧,用于测量其与推力盘之间的表面距离,能够同时得到推力盘径向位移信息与转子旋转位置角信息。所述复合位移传感器与推力盘圆心之间所形成的第二连接线和所述第三径向位移传感器与转子圆心之间所形成的第一连接线之间的夹角大于0°且小于90°;所述第一连接线和第二连接线异面设置,不相交且不平行;所述第二连接线与X轴和Y轴之间的夹角均大于0°且小于90°,即,所述第二连接线分别与X轴和Y轴不相交且不平行设置。In this embodiment, several grooves are arranged at equal intervals on the outer circumference of the thrust plate, and the composite displacement sensor is set on the outer side of the thrust plate in the radial direction for measuring the surface between it and the thrust plate. The radial displacement information of the thrust disc and the rotor rotational position angle information can be obtained at the same time. The angle between the second connecting line formed between the composite displacement sensor and the center of the thrust disc and the first connecting line formed between the third radial displacement sensor and the center of the rotor is greater than 0° and less than 90° °; the first connecting line and the second connecting line are arranged on different planes, do not intersect and are not parallel; the angles between the second connecting line and the X axis and the Y axis are both greater than 0° and less than 90°, that is , the second connecting line is not intersected with the X-axis and the Y-axis respectively and is not arranged in parallel.
在本实施方式中,所述容错控制模块包括滤波模块和位移计算模块;所述滤波模块对复合位移传感器的测量值进行滤波处理,得到推力盘边沿非凹槽部分的有效位移;所述位移计算模块根据传感器故障形式得到各自由度位移计算值。In this embodiment, the fault-tolerant control module includes a filtering module and a displacement calculation module; the filtering module performs filtering processing on the measured value of the composite displacement sensor to obtain the effective displacement of the non-groove portion of the edge of the thrust plate; the displacement calculation The module obtains the displacement calculation value of each degree of freedom according to the sensor fault form.
具体来讲,推力盘上设置有若干条凹槽结构,其中有一个凹槽的深度或宽度与其他凹槽不同,作为指示转子位置角的凹槽,由此得到的测量波形为推力盘位移与叠加了凹槽深度的类似方波的波形,根据转子转角所对凹槽深度对传感器正对凹槽处的测量数据进行补偿就能够得到较为准确的推力盘位移。Specifically, the thrust plate is provided with several groove structures, one of which is different in depth or width from the other grooves, and serves as a groove indicating the position angle of the rotor. The resulting measurement waveform is the displacement of the thrust plate and The square-wave-like waveform with the depth of the groove is superimposed, and the measurement data at the position where the sensor is facing the groove is compensated according to the depth of the groove opposed by the rotor rotation angle, so that a more accurate displacement of the thrust disc can be obtained.
所述故障诊断模块对所述复合位移传感器、所述径向位移传感器的测量值进行综合采样分析,判断传感器是否发生故障。The fault diagnosis module performs comprehensive sampling and analysis on the measured values of the composite displacement sensor and the radial displacement sensor to determine whether the sensor is faulty.
所述控制器根据所述容错控制模块输出位移值计算控制电流信号。The controller calculates the control current signal according to the output displacement value of the fault-tolerant control module.
所述功率放大模块在所述控制电流信号的驱动下产生控制电流,控制转子的运动。Driven by the control current signal, the power amplifying module generates a control current to control the movement of the rotor.
实施例1Example 1
本发明实施例1提供了一种采用上述磁悬浮轴承位移传感器容错控制系统进行容错控制的方法,首先根据正常情况下径向位移传感器测得的转子在不同位置的测量值,以及其对应的复合位移传感器有效测量采样值,建立起转子位移与复合位移传感器有效采样值的对应关系;然后,在故障发生后,根据上述对应关系以及正常传感器位移测量值对复合位移传感器进行滤波处理得到有效采样值,最后根据不同的故障形式计算各自由度位移并通过控制器产生控制电流信号,控制电流信号驱动功率放大模块产生控制电流,控制电流通过磁轴承电磁线圈产生电磁力对转子进行控制。
具体包括如下步骤:Specifically include the following steps:
S1,启动磁悬浮轴承转子装置,转子与推力盘进行同步旋转作业,传感器组件实时进行位移数据测量,获得在正常情况下径向位移传感器测得的径向位移测量值与复合位移传感器测得的推力盘边沿非凹槽部分的有效位移测量值的关系。S1, start the magnetic suspension bearing rotor device, the rotor and the thrust plate rotate synchronously, the sensor components measure the displacement data in real time, and obtain the radial displacement measurement value measured by the radial displacement sensor and the thrust measured by the composite displacement sensor under normal conditions The relationship between effective displacement measurements for the non-groove portion of the disk rim.
S2,所述容错控制模块对复合位移传感器的位移测量值进行截取滤波,根据上述关系,对复合位移传感器实时采样测量值进行判断,以非凹槽部分的有效测量值的波动范围作为有效范围(根据正常传感器测得转子位移变化范围得到对应的复合位移传感器测量输出电压采样值的有效范围,该有效范围指复合位移传感器探头正对推力盘非凹槽部分时的测量值范围),若处在前述有效范围内,输出该值,否则将上一次采样测量值作为当前测量值输出,最后对上述截取后的位移值进行低通滤波处理,得到转子径向位移;S2, the fault-tolerant control module intercepts and filters the displacement measurement value of the composite displacement sensor, according to the above relationship, judges the real-time sampling measurement value of the composite displacement sensor, and uses the fluctuation range of the effective measurement value of the non-groove part as the effective range ( According to the range of rotor displacement measured by the normal sensor, the effective range of the output voltage sampling value measured by the corresponding composite displacement sensor is obtained. Within the aforementioned effective range, output this value, otherwise, output the last sampled measurement value as the current measurement value, and finally perform low-pass filtering on the above-mentioned intercepted displacement value to obtain the radial displacement of the rotor;
当各传感器均正常工作时,第一径向传感器测量值记为s1和s3、第二径向传感器测量值记为s2和s4、第三径向传感器测量值记为s5、与处理后的复合位移传感器测量值记为s6,上述测量值与X轴,Y轴方向位移值x,y的关系如下:When all the sensors are working normally, the measured values of the first radial sensor are marked as s 1 and s 3 , the measured values of the second radial sensor are marked as s 2 and s 4 , the measured values of the third radial sensor are marked as s 5 , The measured value of the processed composite displacement sensor is denoted as s 6 , and the relationship between the above measured value and the displacement values x and y in the X-axis and Y-axis directions is as follows:
s1=x;s2=-y;s3=-x;s4=y; s 1 =x; s 2 =-y; s 3 =-x; s 4 =y;
S3,针对上述传感器故障形式进行分类,并进行上述分类故障形式对应的自由度位移计算:S3, classify the above-mentioned sensor fault forms, and calculate the degree of freedom displacement corresponding to the above-mentioned classified fault forms:
注:本实施例中,将第一径向传感器标记为第一径向传感器S1和第一径向传感器S3;将第二径向传感器标记为第二径向传感器S2和S4;将第三径向传感器标记为第三径向传感器S5;将复合传感器标记为复合传感器S6。Note: In this embodiment, the first radial sensor is marked as the first radial sensor S 1 and the first radial sensor S 3 ; the second radial sensor is marked as the second radial sensor S 2 and S 4 ; The third radial sensor is denoted as third radial sensor S 5 ; the composite sensor is denoted composite sensor S 6 .
故障状态一,Fault state one,
第一径向传感器和第二径向传感器中的一个传感器故障,或非差动的两个传感器故障,第三径向传感器和复合位移传感器状态任意,以第一径向传感器S1、第二径向传感器S2故障为例,位移如下:One of the first radial sensor and the second radial sensor fails, or the two non-differential sensors fail, the third radial sensor and the compound displacement sensor are in any state, and the first radial sensor S 1 and the second Take the fault of radial sensor S2 as an example, the displacement is as follows:
x=-s3;y=s4;x=-s 3 ; y=s 4 ;
故障状态二,Fault state two,
第一径向传感器和第二径向传感器中差动的两个传感器故障,或三个传感器故障,第三径向传感器和复合位移传感器中至少一个正常,以第一径向传感器S1、第二径向传感器S2、第一径向传感器S3、第三径向传感器S5故障为例,位移如下:Two differential sensors of the first radial sensor and the second radial sensor are faulty, or three sensors are faulty, at least one of the third radial sensor and the composite displacement sensor is normal, and the first radial sensor S 1 , the second radial sensor Take the failure of the second radial sensor S 2 , the first radial sensor S 3 , and the third radial sensor S 5 as an example, and the displacements are as follows:
y=s4; y=s 4 ;
故障状态三,Fault state three,
第一径向传感器和第二径向传感器均故障,第三径向传感器和复合位移传感器正常,位移如下:Both the first radial sensor and the second radial sensor are faulty, the third radial sensor and the composite displacement sensor are normal, and the displacement is as follows:
S4,控制器模块根据上述容错控制模块得到的位移计算值得到控制电流信号,驱动功率放大模块得到控制电流,并通入磁悬浮轴承转子装置中的电磁线圈中,对转子进行控制。S4. The controller module obtains a control current signal according to the displacement calculation value obtained by the above-mentioned fault-tolerant control module, drives the power amplification module to obtain a control current, and passes it into the electromagnetic coil in the magnetic suspension bearing rotor device to control the rotor.
综上所述,本发明提供了一种磁悬浮轴承位移传感器容错控制系统及控制方法。该系统包括磁悬浮轴承转子装置、控制器和功率放大器、与所述磁悬浮轴承转子装置中的转子连接并且同步运动的推力盘、传感器组件、故障诊断模块以及容错控制模块。所述传感器组件包括若干个用于测量转子位移数据的径向位移传感器和用于测量推力盘位移数据的复合位移传感器;所述复合位移传感器和所述径向位移传感器相互不共平面设置。本发明通过复用复合位移传感器,将其作为一个冗余位移传感器,节省了硬件成本,且容错控制算法易于实现;通过增设复合位移传感器以及传感器组件之间的功能复用,实现多重冗余,提高系统可靠性。对非差动的两个传感器的位移测量值进行坐标变换可得到径向两个自由度的位移值,由此实现传感器容错控制,提高系统可靠性。To sum up, the present invention provides a fault-tolerant control system and control method for a magnetic suspension bearing displacement sensor. The system includes a magnetic suspension bearing rotor device, a controller and a power amplifier, a thrust plate connected with the rotor in the magnetic suspension bearing rotor device and moves synchronously, a sensor assembly, a fault diagnosis module and a fault-tolerant control module. The sensor assembly includes several radial displacement sensors for measuring rotor displacement data and a composite displacement sensor for measuring thrust disk displacement data; the composite displacement sensors and the radial displacement sensors are not coplanar with each other. In the present invention, the compound displacement sensor is used as a redundant displacement sensor by multiplexing, which saves the hardware cost, and the fault-tolerant control algorithm is easy to realize; by adding the compound displacement sensor and the function multiplexing between the sensor components, multiple redundancy is realized, Improve system reliability. By performing coordinate transformation on the displacement measurement values of two non-differential sensors, the displacement values of two radial degrees of freedom can be obtained, thereby realizing sensor fault-tolerant control and improving system reliability.
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced. Without departing from the spirit and scope of the technical solution of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110980689.9A CN113719539B (en) | 2021-08-25 | 2021-08-25 | Magnetic suspension bearing displacement sensor fault-tolerant control system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110980689.9A CN113719539B (en) | 2021-08-25 | 2021-08-25 | Magnetic suspension bearing displacement sensor fault-tolerant control system and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113719539A CN113719539A (en) | 2021-11-30 |
CN113719539B true CN113719539B (en) | 2023-02-03 |
Family
ID=78677760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110980689.9A Active CN113719539B (en) | 2021-08-25 | 2021-08-25 | Magnetic suspension bearing displacement sensor fault-tolerant control system and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113719539B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114427571B (en) * | 2022-01-06 | 2023-11-03 | 广东美的暖通设备有限公司 | Magnetic bearing assembly and control method, control device, compressor and air conditioner |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0716241A1 (en) * | 1994-12-05 | 1996-06-12 | Seiko Seiki Kabushiki Kaisha | Magnetic bearing apparatus |
US5925957A (en) * | 1997-05-30 | 1999-07-20 | Electric Boat Corporation | Fault-tolerant magnetic bearing control system architecture |
EP0974763A1 (en) * | 1998-07-20 | 2000-01-26 | Sulzer Electronics AG | Method for controlling the position of a magnetically supported rotor and device comprising a magnetically supported rotor |
JP2006316960A (en) * | 2005-05-16 | 2006-11-24 | Matsushita Electric Ind Co Ltd | Magnetic bearing device and variable weight part replacing method for magnetic bearing device |
JP2007138892A (en) * | 2005-11-22 | 2007-06-07 | Jtekt Corp | Magnetic bearing type turbo-molecular pump |
CN101173851A (en) * | 2007-11-01 | 2008-05-07 | 北京航空航天大学 | A Magnetic Bearing Sensor Control System with Fault Tolerance |
CN110145541A (en) * | 2019-05-16 | 2019-08-20 | 哈尔滨工程大学 | A phase-stabilized method for unbalanced motion control of magnetic suspension bearing rotors |
CN110594294A (en) * | 2019-08-28 | 2019-12-20 | 中国人民解放军海军工程大学 | A magnetic suspension bearing system with detachable thrust plate |
CN111442029A (en) * | 2020-05-07 | 2020-07-24 | 南京邮电大学 | Displacement sensor fault-tolerant control system and method for active radial magnetic bearing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7471022B2 (en) * | 2006-09-22 | 2008-12-30 | Sortore Christopher K | Magnetic bearing |
CZ2013209A3 (en) * | 2013-03-22 | 2014-08-27 | Rieter Cz S.R.O. | Method of determining changes in position of open-end spinning machine spinning rotor within a cavity of an active magnetic bearing and spinning unit of the a rotor spinning machine with active magnetic bearing for mounting spindleless spinning rotor |
CN105136170B (en) * | 2015-09-08 | 2018-01-12 | 中国人民解放军装备学院 | A kind of suspension rotor class gyroscopic drift error high accuracy online compensation method |
KR102047876B1 (en) * | 2017-10-24 | 2019-12-02 | 엘지전자 주식회사 | Magnetic bearing control apparatus, control method and high speed rotating motor using the same |
CN109681527B (en) * | 2019-01-14 | 2020-05-19 | 南京航空航天大学 | A Radial Magnetic Bearing Control Method with Redundant Function |
-
2021
- 2021-08-25 CN CN202110980689.9A patent/CN113719539B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0716241A1 (en) * | 1994-12-05 | 1996-06-12 | Seiko Seiki Kabushiki Kaisha | Magnetic bearing apparatus |
US5925957A (en) * | 1997-05-30 | 1999-07-20 | Electric Boat Corporation | Fault-tolerant magnetic bearing control system architecture |
EP0974763A1 (en) * | 1998-07-20 | 2000-01-26 | Sulzer Electronics AG | Method for controlling the position of a magnetically supported rotor and device comprising a magnetically supported rotor |
JP2006316960A (en) * | 2005-05-16 | 2006-11-24 | Matsushita Electric Ind Co Ltd | Magnetic bearing device and variable weight part replacing method for magnetic bearing device |
JP2007138892A (en) * | 2005-11-22 | 2007-06-07 | Jtekt Corp | Magnetic bearing type turbo-molecular pump |
CN101173851A (en) * | 2007-11-01 | 2008-05-07 | 北京航空航天大学 | A Magnetic Bearing Sensor Control System with Fault Tolerance |
CN110145541A (en) * | 2019-05-16 | 2019-08-20 | 哈尔滨工程大学 | A phase-stabilized method for unbalanced motion control of magnetic suspension bearing rotors |
CN110594294A (en) * | 2019-08-28 | 2019-12-20 | 中国人民解放军海军工程大学 | A magnetic suspension bearing system with detachable thrust plate |
CN111442029A (en) * | 2020-05-07 | 2020-07-24 | 南京邮电大学 | Displacement sensor fault-tolerant control system and method for active radial magnetic bearing |
Non-Patent Citations (2)
Title |
---|
基于定子振动的转子碰摩故障诊断方法研究;孙云岭等;《振动工程学报》;20090815(第04期);全文 * |
基于小波变换的磁悬浮轴承冗余位移传感器故障诊断方法;胡俊等;《制造业自动化》;20170425(第04期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113719539A (en) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111442029B (en) | Displacement sensor fault-tolerant control system and method for active radial magnetic bearing | |
CN100516768C (en) | A Magnetic Bearing Sensor Control System with Fault Tolerance | |
CN203414278U (en) | System for detecting abnormal condition of vibration of hydroelectric generating set in real time | |
CN1330955C (en) | High-precise uniaxial magnetic-levitation revolving table | |
CN113719539B (en) | Magnetic suspension bearing displacement sensor fault-tolerant control system and control method | |
CN111633451A (en) | Three-axis fast tool servo mechanism and its three-dimensional force online detection system | |
CN1800773A (en) | Radial/axial six-position integrated electric eddy transducer | |
CN103939485B (en) | Magnetic suspension bearing digital controller with displacement sensor automatic calibration function | |
JP2019518299A (en) | High speed transmission sealed electrical connector for hard disk drive | |
CN102175412A (en) | Rotor torsion oscillation testing device and testing method thereof | |
CN109239599A (en) | A kind of permanent magnet synchronous motor demagnetization method for diagnosing faults | |
JP2019105457A (en) | Bearing inspection device | |
CN102818545B (en) | Bearing ring bore is full-parameter measuring system for ultrahigh and the method for conical bore | |
Cheng et al. | Design and implementation of a fault-tolerant magnetic bearing control system combined with a novel fault-diagnosis of actuators | |
CN104792482A (en) | Accurate magnetic levitation bearing dynamic stiffness testing method | |
CN111458531A (en) | A rotational speed monitoring system for magnetic levitation spindle based on rotor displacement | |
CN103673862A (en) | Three-floater gyroscope magnetic suspension centering assembly detection device | |
JP2012251858A (en) | Bearing self-diagnostic structure of angle detector and angle detector with bearing diagnosis sensor | |
KR20090070178A (en) | Cylindrical Radial Displacement Measurement System of Magnetic Bearing Using Capacitance and Its Determination Method | |
CN113607402B (en) | A plunger pump plunger auxiliary oil film testing device, method and system | |
CN110146290B (en) | A method for locating and diagnosing defects of rolling bearing outer ring based on the universal law of locating | |
CN113093068A (en) | Magnetic field direction detection method and system | |
CN105588507B (en) | Magnetic suspension bearing errors in position measurement computational methods under a kind of coordinate transform | |
CN212905310U (en) | Novel rotating machinery fault diagnosis device | |
CN1988127A (en) | Silicon sheet pre-positioning system based on multiple sensor data fusing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |