CN113604477B - Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof - Google Patents
Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof Download PDFInfo
- Publication number
- CN113604477B CN113604477B CN202110957485.3A CN202110957485A CN113604477B CN 113604477 B CN113604477 B CN 113604477B CN 202110957485 A CN202110957485 A CN 202110957485A CN 113604477 B CN113604477 B CN 113604477B
- Authority
- CN
- China
- Prior art keywords
- lrdef1
- gene
- tobacco
- fungal
- plants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种岷江百合defensin抗菌肽基因LrDef1,其核苷酸序列如SEQ ID NO:1所述,编码如SEQ ID NO:2所示氨基酸序列的蛋白质,本发明通过功能基因组学相关技术研究证实LrDef1基因具有提高植物抗真菌的功能,将本发明抗真菌的LrDef1基因构建到植物表达载体上并转入烟草中过量表达,转基因烟草植株具有很强的抗真菌侵染能力,实验结果显示过表达LrDef1的转基因烟草对尖孢镰刀菌、草茎点霉、木贼镰刀菌的侵染具有高水平的抗性。
The invention discloses a Minjiang lily defensin antimicrobial peptide gene LrDef1 , whose nucleotide sequence is as described in SEQ ID NO: 1, and encodes a protein with an amino acid sequence as shown in SEQ ID NO: 2. The present invention adopts functional genomics related technologies Studies have confirmed that the LrDef1 gene has the function of improving plant anti-fungal. The anti-fungal LrDef1 gene of the present invention is constructed on a plant expression vector and transferred to tobacco for overexpression. The transgenic tobacco plants have strong anti-fungal infection ability. The experimental results show that Transgenic tobacco overexpressing LrDef1 had a high level of resistance to infection by Fusarium oxysporum, Phomyces phloem, and Fusarium equisetia.
Description
技术领域technical field
本发明涉及分子生物学以及基因工程相关技术领域,特别是一种具有抗真菌侵染能力的岷江百合defensin抗菌肽基因LrDef1及应用。The invention relates to the technical fields of molecular biology and genetic engineering, in particular to a defensin antimicrobial peptide gene LrDef1 of Minjiang lily with antifungal infection ability and its application.
背景技术Background technique
病原菌是引起植物产量和品质损失的重要影响因素,由病原菌引起的植物病害,可使作物减产20%~40%;其中真菌病害是植物病害中数量最大的一类,约占病害总数的70%~80%。传统控制植物病害的方法主要是使用化学农药、改进栽培管理措施和培育抗性新品种。这些方法虽然取得了一定成效,但传统育种周期长,栽培措施效果差,农药易导致环境安全和食品安全等问题。随着生物技术的快速发展,利用基因工程的方法来培育抗病新品种不仅能克服上述防治方法的诸多弊端,还可最大限度地降低对土壤中有益微生物的伤害,实现农业的可持续发展。Pathogens are an important factor affecting plant yield and quality loss. Plant diseases caused by pathogens can reduce crop production by 20% to 40%. Among them, fungal diseases are the largest category of plant diseases, accounting for about 70% of the total number of diseases. ~80%. The traditional methods of controlling plant diseases are mainly the use of chemical pesticides, improvement of cultivation management measures and breeding of new resistant varieties. Although these methods have achieved certain results, the traditional breeding cycle is long, the effect of cultivation measures is poor, and pesticides are easy to cause problems such as environmental safety and food safety. With the rapid development of biotechnology, the use of genetic engineering to breed new disease-resistant varieties can not only overcome the many drawbacks of the above-mentioned control methods, but also minimize the damage to beneficial microorganisms in the soil and achieve sustainable agricultural development.
植物抗菌肽(antimicrobial protein, AMP)是一类小的、富含半胱氨酸的碱性阳离子肽,是植物免疫系统的一部分,对细菌、真菌和病毒等病原微生物都具有抑制或杀灭作用,在植物防卫反应中起至关重要的作用(Zasloff Michael. Antimicrobial peptidesof multicellular organisms. Nature, 2002, 415 (6870): 389-395)。植物防御素是一类的重要的AMP,当植物受到生物胁迫时,植物防御素可与真菌特异性质膜组分结合,导致病原菌细胞膜凹陷,嵌入细胞膜或转运到细胞膜内,进而发生一系列的生物化学变化。Plant antimicrobial peptides (antimicrobial protein, AMP) are a class of small, cysteine-rich, basic cationic peptides, which are part of the plant immune system and have inhibitory or killing effects on pathogenic microorganisms such as bacteria, fungi, and viruses. , plays a vital role in plant defense responses (Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415 (6870): 389-395). Plant defensins are an important class of AMPs. When plants are subjected to biological stress, plant defensins can bind to fungal-specific plasma membrane components, causing the cell membrane of pathogenic bacteria to sag, embed in the cell membrane or be transported into the cell membrane, and then a series of biological processes occur. Chemical changes.
目前已有多种防御素基因导入植物中用于增强植物的抗性。烟草(Nicotiana megalosiphon)防御素(NmDef02)是一种常见的具有抗菌活性的植物防御素,表达NmDef02的转基因大豆(Glycine max)植株对大豆锈菌(Phakopsora pachyrhizi)和炭疽病菌(Colletotrichum truncatum)表现出更高的抗性(Soto N , Y Hernández, Delgado C ,et al. Field resistance to Phakopsora pachyrhizi and Colletotrichum truncatumof transgenic soybean expressing the NmDef02 plant defensin gene. Frontiersin Plant Science, 2020, 11: 562)。在烟草(N. alata)的花芽中分离得到一个NaD1防御素,NaD1可与真菌细胞壁特异性结合并进入真菌细胞质中,进而引发胞内活性氧浓度迅速提高,使真菌的细胞质膜发生透化,最终导致真菌细胞死亡(Baxter AA , Poon IK ,Hulett MD. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process. Cell Death Discovery, 2017, 3(1): 402-410)。此外,NaD1蛋白对尖孢镰刀菌(Fusarium oxysporum)、灰霉菌(Botrytis cinerea)、念珠菌(Candida albicans)等多种致病真菌也具有良好的抗菌活性(罗显麟, 赵德刚, 赵懿琛.花烟草NaD1基因的原核表达及纯化.分子植物育种, 2020, 18(11): 3502-3508)。At present, a variety of defensin genes have been introduced into plants to enhance plant resistance. Tobacco ( Nicotiana megalosiphon ) defensin ( NmDef02 ) is a common plant defensin with antibacterial activity. Transgenic soybean ( Glycine max ) plants expressing NmDef02 exhibited antibacterial activity against soybean rust ( Phakopsora pachyrhizi ) and anthracnose pathogen ( Colletotrichum truncatum ) Higher resistance (Soto N , Y Hernández, Delgado C , et al. Field resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of transgenic soybean expressing the NmDef02 plant defensesin gene. Frontiersin Plant Science, 2020, 11: 562). A NaD1 defensin was isolated from the flower buds of tobacco ( N. alata ). NaD1 can specifically bind to the fungal cell wall and enter the fungal cytoplasm, thereby triggering a rapid increase in the concentration of intracellular reactive oxygen species and permeabilizing the fungal cytoplasmic membrane. Ultimately leads to fungal cell death (Baxter AA , Poon IK , Hulett MD. The plant defensesin NaD1 induces tumor cell death via a non-apoptotic, membranenolytic process. Cell Death Discovery, 2017, 3(1): 402-410). In addition, NaD1 protein also has good antibacterial activity against various pathogenic fungi such as Fusarium oxysporum , Botrytis cinerea , and Candida albicans (Luo Xianlin, Zhao Degang, Zhao Yichen. Tobacco NaD1 Gene Prokaryotic expression and purification of . Molecular Plant Breeding, 2020, 18(11): 3502-3508).
百合是百合科(Liliaceae)百合属(Lilium)植物的总称,属多年生球根类花卉。在种球繁殖及鲜切花生产过程中,百合易受到真菌、病毒、细菌等多种病原菌的危害。目前发现的百合病害达几十种之多,其中由镰刀属(Fusarium spp.)真菌引起的枯萎病(又称为基腐病、茎腐病)是百合生产中危害最严重的病害。镰刀菌侵染百合种球后引起基盘坏死、鳞片腐烂脱落,造成种球质量下降;植株感染镰刀菌后叶片变黄、萎蔫下垂,植株提早枯萎死亡,严重影响百合切花的产量和品质;其中尖孢镰刀菌致病性最强、分离频率最高,是百合枯萎病的主要致病菌。岷江百合(L. regale Wilson)为我国特有种,仅分布于岷江流域海拔800~2700m的河谷到山腰的岩石缝中,具有强的抗枯萎病性,是现代百合育种的重要种质资源。抗菌肽是植物防御系统的重要组成部分,因此对岷江百合中抗菌肽基因的发掘以及功能分析具有重要的研究及其应用价值。Lily is the general term for plants of the genus Lilium in the family Liliaceae , and is a perennial bulbous flower. During bulb propagation and fresh-cut flower production, lilies are vulnerable to various pathogenic bacteria such as fungi, viruses, and bacteria. Dozens of lily diseases have been discovered so far, among which Fusarium wilt (also known as base rot and stem rot) caused by fungi of the genus Fusarium ( Fusarium spp.) is the most serious disease in lily production. Fusarium infestation of lily bulbs causes basal necrosis and scale rot and falls off, resulting in a decline in bulb quality; leaves turn yellow, wilt and droop after plants are infected with Fusarium, and plants wither and die early, seriously affecting the yield and quality of cut lily flowers; Fusarium oxysporum has the strongest pathogenicity and the highest isolation frequency, and is the main pathogen of lily wilt. Minjiang lily ( L. regale Wilson) is a unique species in China. It is only distributed in the valleys of the Minjiang River Basin at an altitude of 800-2700m to the rock crevices on the mountainside. It has strong resistance to fusarium wilt and is an important germplasm resource for modern lily breeding. Antimicrobial peptides are an important part of plant defense system, so the discovery and functional analysis of antimicrobial peptide genes in Minjiang lily have important research and application value.
发明内容Contents of the invention
本发明的目的是提供一种岷江百合defensin抗菌肽基因LrDef1及其应用,即在提高烟草对尖孢镰刀菌(F. oxysporum)、草茎点霉(Phoma herbarum)、木贼镰刀菌(F. equiseti)抗性中的应用。The object of the present invention is to provide a Minjiang lily defensin antimicrobial peptide gene LrDef1 and its application, that is, in improving the resistance of tobacco to Fusarium oxysporum ( F. oxysporum ), Phoma herbarum ( Phoma herbarum ), Fusarium equisetum ( F. equiseti ) resistance applications.
本发明从岷江百合中克隆获得的具有抗真菌活性的defensin抗菌肽基因LrDef1,LrDef1核苷酸序列如SEQ ID NO:1所示,该基因cDNA全长序列为501bp,包含一个225bp的开放阅读框、37 bp的5’非翻译区、239 bp的3’非翻译区,编码如SEQ ID NO:2所示氨基酸序列的蛋白质。The present invention clones the defensin antimicrobial peptide gene LrDef1 with antifungal activity obtained from Lily of Minjiang River. The nucleotide sequence of LrDef1 is shown in SEQ ID NO: 1. The full-length cDNA sequence of the gene is 501bp, including an open reading frame of 225bp , a 5' untranslated region of 37 bp, and a 3' untranslated region of 239 bp, encoding a protein with the amino acid sequence shown in SEQ ID NO:2.
本发明中LrDef1基因的编码区是序列表SEQ ID NO:1中第38-262位所示的核苷酸序列。The coding region of the LrDef1 gene in the present invention is the nucleotide sequence shown at positions 38-262 in the sequence table SEQ ID NO:1.
本发明分离克隆岷江百合的一个抗真菌相关基因的完整cDNA片段,利用根癌农杆菌(Agrobacterium tumefaciens)介导将目的基因转入受体植物中并过量表达,通过进一步实验验证该基因是否具有抗真菌的活性,为后期利用该基因改良烟草及其他植物抵御真菌病害的能力奠定基础,发明人将这个基因命名为LrDef1。The present invention isolates and clones a complete cDNA fragment of an antifungal related gene of Lily Minjiang, uses Agrobacterium tumefaciens to transfer the target gene into recipient plants and overexpresses it, and further experiments verify whether the gene has antifungal properties. The activity of the fungus lays the foundation for the later use of the gene to improve the ability of tobacco and other plants to resist fungal diseases. The inventor named this gene LrDef1 .
上述LrDef1基因可以应用于提高烟草的抗真菌特性,具体操作如下:The above-mentioned LrDef1 gene can be applied to improve the antifungal properties of tobacco, and the specific operation is as follows:
(1)采用扩增LrDef1的特异引物,从接种尖孢镰刀菌后的岷江百合根中提取总RNA,通过逆转录-聚合酶链式反应(reverse transcription-polymerase chainreaction,RT-PCR)扩增出LrDef1的全长编码区,然后将其连接到pGEM-T载体上,经测序获得具有目的基因的克隆;(1) Using the specific primers for amplifying LrDef1 , total RNA was extracted from the roots of Lily of the Minjiang River inoculated with Fusarium oxysporum, and amplified by reverse transcription-polymerase chain reaction (RT-PCR). The full-length coding region of LrDef1 is then connected to the pGEM-T vector, and the clone with the target gene is obtained by sequencing;
(2)用限制性内切酶EcoRⅠ和BamHⅠ酶切pGEM-T-LrDef1载体,通过胶回收得到目的基因片段,用同样的内切酶酶切植物表达载体pCAMBIA2300s,胶回收获得所需载体大片段,再将所获得LrDef1基因片段与pCAMBIA2300s片段连接,构建植物超表达载体,之后将所构建的重组载体通过根癌农杆菌介导转入烟草中表达;(2) Digest the pGEM-T- LrDef1 vector with restriction endonucleases Eco RI and Bam HI, recover the target gene fragment by gel recovery, digest the plant expression vector pCAMBIA2300s with the same endonuclease, and recover the desired vector by gel recovery large fragment, and then the obtained LrDef1 gene fragment was connected with the pCAMBIA2300s fragment to construct a plant overexpression vector, and then the constructed recombinant vector was mediated by Agrobacterium tumefaciens and expressed in tobacco;
(3)以重组载体T-DNA上具有的抗性标记筛选转化子,并通过PCR以及RT-PCR检测得到真正的转基因植株,分析转基因植物叶片总蛋白对病原真菌生长的抑制能力,最后筛选出对真菌抗性明显增强的转基因植株。(3) Screen the transformants with the resistance markers on the T-DNA of the recombinant vector, and obtain the real transgenic plants through PCR and RT-PCR detection, analyze the ability of the total protein of the leaves of the transgenic plants to inhibit the growth of pathogenic fungi, and finally screen out Transgenic plants with significantly enhanced resistance to fungi.
本发明为提高植物对真菌病害的抗性提供了一种新的方法,通过基因工程手段培育抗病植物可以克服传统育种的不足,不仅育种周期缩短,而且操作简单,容易获得高抗材料。本发明来自岷江百合的LrDef1基因能增强植物对真菌的抗性,将该基因导入烟草中,可以产生具有真菌抗性的新品种和新材料;利用基因工程技术培育抗性植物品种和材料具有明显的优势和不可取代的重要性;它不仅可以为大规模生产农作物、药材、园艺植物等提供方便,大量减少化学农药的使用,还可以为农业生产节约成本、减小环境污染,因此本发明具有广阔的市场应用前景。The present invention provides a new method for improving the resistance of plants to fungal diseases. Breeding disease-resistant plants by means of genetic engineering can overcome the shortcomings of traditional breeding, not only shortens the breeding cycle, but also is simple to operate and easy to obtain high-resistant materials. The LrDef1 gene from Lilium Minjiang in the present invention can enhance the resistance of plants to fungi, and when the gene is introduced into tobacco, new varieties and materials with fungal resistance can be produced; the use of genetic engineering technology to cultivate resistant plant varieties and materials has obvious advantages and irreplaceable importance; it can not only provide convenience for large-scale production of crops, medicinal materials, horticultural plants, etc., greatly reduce the use of chemical pesticides, but also save costs for agricultural production and reduce environmental pollution. Therefore, the present invention has Broad market application prospects.
附图说明Description of drawings
图1是本发明LrDef1转基因烟草基因组DNA的PCR检测结果图,图中:Marker为DL2000 DNA Marker (大连宝生物);阳性对照为质粒pGEM-T-LrDef1为模板的PCR产物;WT为非转基因烟草(野生型)总DNA为模板PCR的产物;Fig. 1 is the PCR detection result figure of LrDef1 transgenic tobacco genome DNA of the present invention, among the figure: Marker is DL2000 DNA Marker (Dalian treasure biology); Positive control is the PCR product of plasmid pGEM-T- LrDef1 as template; WT is non-transgenic tobacco (wild type) total DNA is the product of template PCR;
图2是本发明阳性LrDef1转基因烟草中LrDef1转录水平的表达分析结果图;图中:Marker是DL2000 DNA Marker (大连宝生物);WT是非转基因烟草总RNA逆转录cDNA为模板的PCR产物;阳性对照是质粒pGEM-T-LrDef1为模板的PCR产物;Fig. 2 is the expression analysis result figure of LrDef1 transcript level in the positive LrDef1 transgenic tobacco of the present invention; Among the figure: Marker is DL2000 DNA Marker (Dalian treasure biological); WT is the PCR product of non-transgenic tobacco total RNA reverse transcription cDNA as template; Positive control It is the PCR product of plasmid pGEM-T- LrDef1 as a template;
图3是本发明LrDef1转基因烟草体外对病原真菌生长的抑菌效果图;图a、b、c中所示真菌分别是草茎点霉(P. herbarum)、木贼镰刀菌(F. equiseti)、尖孢镰刀菌(F. oxysporum);WT为野生型烟草总蛋白,Buffer为空白对照,即无蛋白对照(用于提取蛋白的缓冲液)。Figure 3 is a diagram of the antibacterial effect of LrDef1 transgenic tobacco of the present invention on the growth of pathogenic fungi in vitro; the fungi shown in Figures a, b, and c are P. herbarum and F. equiseti respectively , Fusarium oxysporum ( F. oxysporum ); WT is the total protein of wild-type tobacco, and Buffer is the blank control, that is, no protein control (buffer used for protein extraction).
具体实施方式Detailed ways
下面通过附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中方法如无特殊说明均为常规方法,使用的试剂如无特殊说明均为常规市售试剂或按常规方法配制的试剂。The present invention will be described in further detail below by accompanying drawing and embodiment, but protection scope of the present invention is not limited to described content, method in the embodiment is conventional method unless otherwise specified, and the reagent that uses is conventional market unless otherwise specified. Reagents sold or prepared by conventional methods.
实施例1:LrDef1基因克隆以及序列分析Example 1: LrDef1 Gene Cloning and Sequence Analysis
用尖孢镰刀菌接种岷江百合,用接种24 h后的根提取总RNA,用液氮将接种后的岷江百合根研磨成粉末,然后转入离心管中,采用异硫氰酸胍法提取总RNA,采用逆转录酶M-MLV (promega)以总RNA为模板合成cDNA第一链,反应体系和操作过程为:取5μg 总RNA,依次加入50ng oligo(dT)、2μL dNTP(2.5mM)、DEPC水加至反应体积为14.5μL;混匀后,70℃加热变性5min后迅速在冰上冷却5min,然后依次加入4μL 5×First-stand buffer、0.5μLRNasin(200U)、1μL M-MLV(200U),混匀并短时离心,42℃温浴1.5h,取出后70℃加热10min,终止反应;cDNA第一链合成后置于-20℃保存备用。Lilium Minjiang was inoculated with Fusarium oxysporum, and total RNA was extracted from the roots 24 hours after inoculation. The inoculated roots of Lily Minjiang were ground into powder with liquid nitrogen, then transferred to a centrifuge tube, and the total RNA was extracted by guanidine isothiocyanate method. For RNA, reverse transcriptase M-MLV (promega) was used to synthesize the first strand of cDNA using total RNA as a template. The reaction system and operation process were as follows: take 5 μg total RNA, add 50 ng oligo (dT), 2 μL dNTP (2.5 mM), Add DEPC water to a reaction volume of 14.5 μL; after mixing, heat and denature at 70°C for 5 minutes, then quickly cool on ice for 5 minutes, then add 4 μL 5×First-stand buffer, 0.5 μL RNasin (200 U), 1 μL M-MLV (200 U ), mix well and centrifuge for a short time, incubate at 42°C for 1.5h, take it out and heat at 70°C for 10min to terminate the reaction; after the first strand of cDNA is synthesized, store it at -20°C for later use.
以合成的第一链cDNA为模板,扩增目的基因LrDef1,所用上下游引物序列分别为5’ TCGTCGTCCCCATCTCAG 3’及5’ AAATACAAGAGAACTTACTCCA 3’。采用AdvantageTM 2 PCREnzyme(Clontech)扩增出目的基因;PCR反应条件:94℃ 5min;94℃ 30s,54℃ 30s,72℃30s,32个循环;72℃ 7min;反应体系(20μL)为0.5μL cDNA、2μL 10×Advantage 2 PCRBuffer、0.4μL 50×dNTP Mix(10mM each)、0.4μL 正向引物(10μM)、0.4μL 反向引物(10μM)、0.4μL Advantage 2 PCR Polymerase Mix、15.9μL PCR-Grade water;PCR结束后,取5μL用于琼脂糖凝胶电泳,以检测扩增产物的特异性以及大小。Using the synthesized first-strand cDNA as a template, the target gene LrDef1 was amplified, and the sequences of the upstream and downstream primers used were 5' TCGTCGTCCCCATCTCAG 3' and 5' AAATACAAGAGAACTTACTCCA 3' respectively. The target gene was amplified by Advantage TM 2 PCREnzyme (Clontech); PCR reaction conditions: 94°C 5min; 94°C 30s, 54°C 30s, 72°C 30s, 32 cycles; 72°C 7min; reaction system (20μL) 0.5μL cDNA, 2μL 10×Advantage 2 PCRBuffer, 0.4μL 50×dNTP Mix (10mM each), 0.4μL Forward Primer (10μM), 0.4μL Reverse Primer (10μM), 0.4μL Advantage 2 PCR Polymerase Mix, 15.9μL PCR- Grade water; After PCR, take 5 μL for agarose gel electrophoresis to detect the specificity and size of the amplified product.
对PCR产物进行TA克隆,使用的试剂盒为pGEM-T Vector SystemⅠ(Promega,USA),反应体系和操作过程为:取1.5μL PCR产物,依次加入1μL pGEM-T Vector(50ng/μL)和2.5μL 2×Ligation solutionⅠ,混匀后置于16 ℃过夜反应。采用热激转化法将连接产物转入大肠杆菌DH5α中。使用含有氨苄青霉素(ampicillin,Amp)的LB固体培养基筛选阳性克隆,挑选若干个单菌落,摇菌后用扩增LrDef1的特异引物鉴定出多克隆位点插入LrDef1的克隆,将所鉴定的克隆进行测序,最终获得的LrDef1全长cDNA为501bp,通过NCBI ORFfinder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html)分析发现其包含一个225bp的开放读码框(见序列表),LrDef1编码一个含74个氨基酸的蛋白质,其分子量约为8.06kDa,等电点约为8.22。借助生物信息学软件SignalP 5.0分析LrDef1编码的蛋白序列,检测其是否具有N端信号肽。结果显示在LrDef1的N端存在信号肽,因此推测该蛋白是分泌蛋白。For TA cloning of PCR products, the kit used was pGEM-T Vector System Ⅰ (Promega, USA). The reaction system and operation process were as follows: take 1.5 μL of PCR products, add 1 μL of pGEM-T Vector (50 ng/μL) and 2.5 μL 2×Ligation solutionⅠ, mix well and place at 16°C for overnight reaction. The ligation product was transformed into Escherichia coli DH5α by heat shock transformation method. Use LB solid medium containing ampicillin (Amp) to screen positive clones, select several single colonies, and after shaking the bacteria, use specific primers for amplifying LrDef1 to identify clones with multiple cloning sites inserted into LrDef1 . After sequencing, the final LrDef1 full-length cDNA was 501bp, which was found to contain a 225bp open reading frame (see Sequence Listing), LrDef1 encodes a protein containing 74 amino acids, its molecular weight is about 8.06kDa, and its isoelectric point is about 8.22. The protein sequence encoded by LrDef1 was analyzed with the help of bioinformatics software SignalP 5.0 to detect whether it had an N-terminal signal peptide. The results showed that there was a signal peptide at the N-terminus of LrDef1, so it was speculated that the protein was a secreted protein.
实施例2:植物超表达载体构建Embodiment 2: plant overexpression vector construction
采用SanPrep柱式质粒DNA小量抽提试剂盒(上海生工)提取插入LrDef1的大肠杆菌质粒pGEM-T-LrDef1以及植物表达载体pCAMBIA2300s的质粒,取1μL用于琼脂糖凝胶电泳以检测所提取质粒的完整性及浓度高低;用限制性内切酶EcoRI(TaKaRa)和BamHI(TaKaRa)分别对质粒pGEM-T-LrDef1和pCAMBIA2300s进行双酶切(100μL体系),反应体系和操作过程为:取20μL pGEM-T-LrDef1和pCAMBIA2300s质粒、依次加入10μL 10×K buffer、4μLEcoRI、6μL BamHI、60μL ddH2O,混匀后短时离心,置于37℃过夜反应;将所有酶切产物点于琼脂糖凝胶中进行电泳,然后对LrDef1片段和pCAMBIA2300s载体大片段分别进行胶回收,整个过程使用SanPrep柱式DNA胶回收试剂盒(上海生工);取1μL回收产物通过琼脂糖凝胶电泳检测回收片段的大小以及浓度,置于-20℃保存备用。The E. coli plasmid pGEM-T- LrDef1 inserted into LrDef1 and the plasmid of the plant expression vector pCAMBIA2300s were extracted using the SanPrep column plasmid DNA mini-extraction kit (Shanghai Sangong), and 1 μL was used for agarose gel electrophoresis to detect the extracted Integrity and concentration of the plasmid; use restriction endonucleases Eco RI (TaKaRa) and Bam HI (TaKaRa) to double digest the plasmids pGEM-T- LrDef1 and pCAMBIA2300s respectively (100 μL system), the reaction system and operation process are : Take 20 μL of pGEM-T- LrDef1 and pCAMBIA2300s plasmids, add 10 μL 10×K buffer, 4 μL Eco RI, 6 μL Bam HI, 60 μL ddH 2 O in turn, mix well, centrifuge for a short time, and place at 37°C for overnight reaction; The excised product was electrophoresed on agarose gel, and then the LrDef1 fragment and the large fragment of the pCAMBIA2300s vector were gel-recovered, and the SanPrep column DNA gel recovery kit (Shanghai Sangong) was used for the whole process; 1 μL of the recovered product was passed through the agarose The size and concentration of the recovered fragments were detected by gel electrophoresis, and stored at -20°C for future use.
利用T4 DNA Ligase(TaKaRa),将回收的LrDef1 DNA片段和pCAMBIA2300s载体片段连接起来,反应体系(20μL)和操作过程为:取10μL LrDef1 DNA片段依次加入2μLpCAMBIA2300s载体DNA、2μL 10×T4 DNA Ligase Buffer、1μL T4 DNA Ligase、5μL ddH2O,混匀后短时离心,然后16℃水浴过夜反应。接着采用热激转化法将连接产物转入大肠杆菌DH5α中,用含有50mg/L卡那霉素(kanamycin,Km)的固体培养基筛选阳性克隆,挑选单菌落摇菌,以菌液为模板用扩增LrDef1的特异引物进行PCR,挑选出LrDef1与pCAMBIA2300s成功连接的克隆,所检测的菌株若为阳性,加入甘油并置于-80℃保存备用。Use T4 DNA Ligase (TaKaRa) to connect the recovered LrDef1 DNA fragment and pCAMBIA2300s carrier fragment. The reaction system (20 μL) and the operation process are as follows: take 10 μL LrDef1 DNA fragment and add 2 μL pCAMBIA2300s carrier DNA, 2 μL 10×T4 DNA Ligase Buffer, 1 μL T4 DNA Ligase, 5 μL ddH 2 O, mix well and centrifuge for a short time, then react overnight in a water bath at 16°C. Then, transfer the ligation product into Escherichia coli DH5α by heat shock transformation method, screen positive clones with solid medium containing 50 mg/L kanamycin (Kanamycin, Km), select a single colony and shake, and use the bacterial solution as a template Amplify the specific primers of LrDef1 for PCR, and select the clones that successfully connect LrDef1 and pCAMBIA2300s. If the detected strain is positive, add glycerol and store at -80°C for future use.
提取并纯化上述大肠杆菌中的pCAMBIA2300s-LrDef1质粒,随后用液氮冻融法将上述构建的植物表达载体pCAMBIA2300s-LrDef1转入根癌农杆菌LBA4404感受态细胞中。操作步骤为:取2μg pCAMBIA2300s-LrDef1质粒加入含有200μL感受态细胞的离心管中,轻轻混匀后冰浴5min,随后转入液氮中冷冻1min,然后迅速置于37℃水浴5min,之后立即冰浴2min,加入800μL LB液体培养基于28℃振荡培养4h;将活化后的农杆菌涂于含有50mg/L Km的LB固体培养基上,28℃静止培养;挑选单菌落摇菌,再用扩增LrDef1的特异性引物进行PCR,检测pCAMBIA2300s-LrDef1是否转入农杆菌中,对于阳性克隆,加入甘油后置于-80℃保存备用。The pCAMBIA2300s- LrDef1 plasmid in the above-mentioned Escherichia coli was extracted and purified, and then the plant expression vector pCAMBIA2300s- LrDef1 constructed above was transformed into Agrobacterium tumefaciens LBA4404 competent cells by freezing and thawing with liquid nitrogen. The operation steps are as follows: take 2 μg pCAMBIA2300s- LrDef1 plasmid and add it to a centrifuge tube containing 200 μL competent cells, mix gently, and then put it in ice bath for 5 minutes, then transfer it to liquid nitrogen and freeze it for 1 minute, then quickly place it in a water bath at 37°C for 5 minutes, and then immediately Ice bath for 2 minutes, add 800 μL LB liquid culture and shake culture at 28°C for 4 hours; spread the activated Agrobacterium on the LB solid medium containing 50 mg/L Km, and culture at 28°C; select a single colony and shake it, and then expand LrDef1 -specific primers were added for PCR to detect whether pCAMBIA2300s- LrDef1 was transformed into Agrobacterium. For positive clones, add glycerol and store them at -80°C for later use.
实施例3:农杆菌介导的植物遗传转化以及转基因植物筛选Example 3: Plant genetic transformation mediated by Agrobacterium and screening of transgenic plants
本实验的转基因受体是烟草,将烟草种子用75%的酒精浸泡30s,用无菌水洗涤后用0.1%的HgCl2浸泡8min,然后再用无菌水洗涤若干次,播种于1/2 MS培养基上,28℃暗培养6d,发芽后转至光照培养箱(25℃,16 h/d光照),以后每月用1/2 MS培养基继代一次。The transgenic receptor in this experiment is tobacco. Soak the tobacco seeds in 75% alcohol for 30s, wash them with sterile water, soak them in 0.1% HgCl 2 for 8 minutes, wash them several times with sterile water, and sow them in 1/2 On MS medium, culture in dark at 28°C for 6 days, transfer to light incubator after germination (25°C, 16 h/d light), and subculture once a month with 1/2 MS medium.
从-80℃冰箱中取出保存的含有pCAMBIA2300s-LrDef1质粒的农杆菌LBA4404菌种,接种于5mL含有50mg/L Km和20mg/L利福平的LB液体培养基中,28℃培养至培养基浑浊。吸取1mL浑浊的菌液至含有50mg/L Km的LB固体培养基上,28℃培养48 h;随后将LB固体培养基上的农杆菌刮下适量接种于附加有20mg/L的乙酰丁香酮的MGL液体培养基中,28℃振荡培养2-3h以活化农杆菌。Take out the preserved Agrobacterium LBA4404 strain containing the pCAMBIA2300s- LrDef1 plasmid from the -80°C refrigerator, inoculate it in 5 mL of LB liquid medium containing 50 mg/L Km and 20 mg/L rifampicin, and culture it at 28°C until the medium is turbid . Pipette 1 mL of turbid bacterial solution onto LB solid medium containing 50 mg/L Km, and incubate at 28°C for 48 h; then scrape off an appropriate amount of Agrobacterium on the LB solid medium and inoculate it on the LB solid medium supplemented with 20 mg/L acetosyringone In the MGL liquid medium, shake culture at 28°C for 2-3h to activate Agrobacterium.
取烟草无菌苗叶片切成1 cm2左右的叶盘,完全浸泡于上述含有活化农杆菌的MGL液体培养基中,浸染时间为15min,用无菌滤纸吸干叶片表面的菌液,将叶盘置于共培养基上进行室温培养,烟草转化的共培养基为MS+0.02mg/L 6-BA+2.1mg/L NAA+30g/L sucrose+6g/L琼脂,22℃无光条件下共培养2天。Take leaves of sterile tobacco seedlings and cut them into leaf discs of about 1 cm2 , soak them completely in the above-mentioned MGL liquid medium containing activated Agrobacterium for 15 minutes, use sterile filter paper to absorb the bacterial liquid on the surface of the leaves, and dry the leaves Place the plate on the co-culture medium for room temperature culture. The co-culture medium for tobacco transformation is MS + 0.02mg/L 6-BA + 2.1mg/L NAA + 30g/L sucrose + 6g/L agar, at 22°C under dark conditions Co-cultivate for 2 days.
将共培养后的叶盘转到加有抗生素的MS筛选培养基中分化成苗,同时筛选转基因植株;烟草筛选培养基为MS+0.5mg/L 6-BA+0.1mg/L NAA+30g/L sucrose+6g/L琼脂+50mg/L Km+200 mg/L 头孢霉素(cefotaxime sodium salt,Cef);筛选培养时将培养瓶转移至光照培养箱培养(25℃,16 h/d光照,8 h/d黑暗),待烟草长出芽后用含有50mg/L Km和200mg/L Cef的MS培养基继代培养,因烟草愈伤分化率较高,故需要对再生植株进行进一步筛选,将烟草再生苗移至含有50mg/L Km的MS培养基上使其生根,最后选用生根较好的再生苗做进一步的检测。Transfer the co-cultured leaf discs to the MS screening medium added with antibiotics to differentiate into seedlings, and screen transgenic plants at the same time; the tobacco screening medium is MS+0.5mg/L 6-BA+0.1mg/L NAA+30g/ L sucrose+6g/L agar+50mg/L Km+200 mg/L cephalosporin (cefotaxime sodium salt, Cef); transfer the culture bottle to a light incubator for cultivation during screening (25°C, 16 h/d light, 8 h/d dark), after the tobacco sprouted, it was subcultured with MS medium containing 50mg/L Km and 200mg/L Cef. Because the callus differentiation rate of tobacco is high, it is necessary to further screen the regenerated plants. The regenerated tobacco seedlings were moved to the MS medium containing 50mg/L Km to make them root, and finally the regenerated seedlings with better rooting were selected for further testing.
采用CTAB法提取转基因烟草植株叶片的基因组DNA,将提取的基因组DNA取1μL通过琼脂糖凝胶电泳检测其完整性和浓度,以转基因植株的基因组DNA为模板用扩增LrDef1的特异引物进行PCR,PCR结束后,取8μL产物用于琼脂糖凝胶电泳以检测阳性转基因植株,部分转基因烟草的扩增结果如图1所示,共筛选到30株阳性转基因烟草植株。The genomic DNA of the leaves of transgenic tobacco plants was extracted by the CTAB method, and 1 μL of the extracted genomic DNA was detected by agarose gel electrophoresis for its integrity and concentration, and the genomic DNA of the transgenic plants was used as a template to perform PCR with specific primers for amplifying LrDef1 . After PCR, 8 μL of the product was used for agarose gel electrophoresis to detect positive transgenic plants. The amplification results of some transgenic tobacco plants were shown in Figure 1, and a total of 30 positive transgenic tobacco plants were screened.
实施例4:转基因烟草中LrDef1的表达分析以及转基因植株抗真菌侵染的功能分析Example 4: Expression Analysis of LrDef1 in Transgenic Tobacco and Functional Analysis of Anti-fungal Infection of Transgenic Plants
取阳性转基因单株以及非转基因烟草(野生型)的嫩叶提取总RNA,逆转录生成cDNA第一链,并以此为模板用扩增LrDef1的特异引物进行PCR,根据PCR结果分析各转基因单株中LrDef1转录水平的表达,总RNA提取以及RT-PCR的方法与实施例1中相同,PCR结束之后,取8μL用于琼脂糖凝胶电泳,部分单株的检测结果如图2所示,共检测到20个转基因单株中LrDef1在转录水平大量表达,这些单株的编号为L1~L20。Extract total RNA from young leaves of positive transgenic plants and non-transgenic tobacco (wild type), reverse transcribe to generate the first strand of cDNA, and use this as a template to perform PCR with specific primers for amplifying LrDef1 , and analyze each transgenic single according to the PCR results. The expression of LrDef1 transcription level in the strain, the method of total RNA extraction and RT-PCR are the same as in Example 1. After the PCR is completed, 8 μL is used for agarose gel electrophoresis. The detection results of some individual strains are shown in Figure 2. A total of 20 transgenic individual plants were detected to express a large amount of LrDef1 at the transcriptional level, and these individual plants were numbered L1-L20.
将实验室保存的几种病原真菌接种于PDA固体培养基(200g/L马铃薯、15g/L琼脂、20g/L葡萄糖)上,28℃暗培养待菌落生长至直径约为2-3cm时添加植物蛋白,分析转基因植株体外抗真菌活性。为了防止其他杂菌污染提取的蛋白,整个植物蛋白提取的过程均是无菌操作。首先取1g转基因烟草单株(编号分别为L-8、L-9、L-16)及野生型叶片放入研钵中,加入1mL蛋白提取液(1M NaCL、0.1M乙酸钠、1% PVP,pH6.0),充分研磨。转入1.5mL离心管中,混匀后4℃静置过夜。4℃离心30min (12,000g/min),取上清于新的1.5mL离心管中,并取适量用紫外分光光度仪测定总蛋白浓度。将转基因和野生型植株的总蛋白浓度调整至0.2μg/μL,然后分别取20μL滴于各真菌培养基的无菌滤纸上。在每个真菌的平板上除了添加不同转基因烟草植株的总蛋白,同时平行添加野生型烟草的总蛋白和空白对照(蛋白提取液)。28℃下培养几天后观察真菌的生长情况,并据此来评价LrDef1转基因烟草的体外抗真菌活性,结果如图3所示,LrDef1转基因烟草蛋白对尖孢镰刀菌、草茎点霉、木贼镰刀菌的生长具有明显的抑制作用。Inoculate several pathogenic fungi stored in the laboratory on PDA solid medium (200g/L potato, 15g/L agar, 20g/L glucose), culture in dark at 28°C, and add plants when the colony grows to a diameter of about 2-3cm Protein, analysis of antifungal activity of transgenic plants in vitro. In order to prevent other bacteria from contaminating the extracted protein, the entire plant protein extraction process is performed aseptically. First, 1 g of transgenic tobacco plants (numbered L-8, L-9, L-16) and wild-type leaves were put into a mortar, and 1 mL of protein extract (1M NaCL, 0.1M sodium acetate, 1% PVP , pH6.0), fully ground. Transfer to a 1.5mL centrifuge tube, mix well and let stand overnight at 4°C. Centrifuge at 4°C for 30min (12,000g/min), take the supernatant into a new 1.5mL centrifuge tube, and measure the total protein concentration with an ultraviolet spectrophotometer. Adjust the total protein concentration of the transgenic and wild-type plants to 0.2 μg/μL, and then take 20 μL and drop them on the sterile filter paper of each fungal culture medium. In addition to adding the total protein of different transgenic tobacco plants on each fungal plate, the total protein of wild-type tobacco and the blank control (protein extract) were added in parallel. After culturing at 28°C for several days, the growth of the fungi was observed, and the in vitro antifungal activity of LrDef1 transgenic tobacco was evaluated accordingly. The results are shown in Figure 3. The growth of Fusarium thieves has obvious inhibitory effect.
序列表sequence listing
<110> 昆明理工大学<110> Kunming University of Science and Technology
<120> 一种岷江百合defensin抗菌肽基因LrDef1及应用<120> A Minjiang lily defensin antimicrobial peptide gene LrDef1 and its application
<160> 4<160> 4
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 501<211> 501
<212> DNA<212>DNA
<213> 岷江百合(Lilium regale Wilson)<213> Lilium regale Wilson
<400> 1<400> 1
tcgtcgtccc catctcagtg gccgactatc tcttgcaatg gcgaagcttc ccaccatcct 60tcgtcgtccc catctcagtg gccgactatc tcttgcaatg gcgaagcttc ccaccatcct 60
gctgctcttg ttccttgtca tggccactga gatggggacg acgacggtgg aggcgaggac 120gctgctcttg ttccttgtca tggccactga gatggggacg acgacggtgg aggcgaggac 120
atgcctgtcg cagagccaca agttcaaggg gacctgtttg agggcggcca actgtgctag 180atgcctgtcg cagagccaca agttcaaggg gacctgtttg agggcggcca actgtgctag 180
tgtctgccag acggagggat tcaaaggagg ggtttgcgag ggcatccgcc gccgttgctt 240tgtctgccag acggagggat tcaaaggagg ggtttgcgag ggcatccgcc gccgttgctt 240
ctgcgaagcc gactgtcact gatgcctgag ttcttggctt taataagtaa tgtcggacta 300ctgcgaagcc gactgtcact gatgcctgag ttcttggctt taataagtaa tgtcggacta 300
tccgagaaga ataagatgga cctggtgttg ttggttttac agtctcttct tcggtgtggg 360tccgagaaga ataagatgga cctggtgttg ttggttttac agtctcttct tcggtgtggg 360
gactcggtac tttcatctag gtttctgata tgtagttgtt catgtctggg ttgagctgta 420gactcggtac tttcatctag gtttctgata tgtagttgtt catgtctggg ttgagctgta 420
gggctgtgtg ctgtagttgg atttgtagtg gagtaagttc tcttgtattt gatttgtagt 480gggctgtgtg ctgtagttgg atttgtagtg gagtaagttc tcttgtattt gatttgtagt 480
ggagtaagtt ctcttgtatt t 501ggagtaagtt ctcttgtatt t 501
<210> 2<210> 2
<211> 74<211> 74
<212> PRT<212> PRT
<213> 岷江百合(Lilium regale Wilson)<213> Lilium regale Wilson
<400> 2<400> 2
Met Ala Lys Leu Pro Thr Ile Leu Leu Leu Leu Phe Leu Val Met AlaMet Ala Lys Leu Pro Thr Ile Leu Leu Leu Leu Phe Leu Val Met Ala
1 5 10 151 5 10 15
Thr Glu Met Gly Thr Thr Thr Val Glu Ala Arg Thr Cys Leu Ser GlnThr Glu Met Gly Thr Thr Thr Val Glu Ala Arg Thr Cys Leu Ser Gln
20 25 30 20 25 30
Ser His Lys Phe Lys Gly Thr Cys Leu Arg Ala Ala Asn Cys Ala SerSer His Lys Phe Lys Gly Thr Cys Leu Arg Ala Ala Asn Cys Ala Ser
35 40 45 35 40 45
Val Cys Gln Thr Glu Gly Phe Lys Gly Gly Val Cys Glu Gly Ile ArgVal Cys Gln Thr Glu Gly Phe Lys Gly Gly Val Cys Glu Gly Ile Arg
50 55 60 50 55 60
Arg Arg Cys Phe Cys Glu Ala Asp Cys HisArg Arg Cys Phe Cys Glu Ala Asp Cys His
65 7065 70
<210> 3<210> 3
<211> 18<211> 18
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 3<400> 3
tcgtcgtccc catctcag 18tcgtcgtccc catctcag 18
<210> 4<210> 4
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)
<400> 4<400> 4
aaatacaaga gaacttactc ca 22aaatacaaga gaacttactc ca 22
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110957485.3A CN113604477B (en) | 2021-08-20 | 2021-08-20 | Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110957485.3A CN113604477B (en) | 2021-08-20 | 2021-08-20 | Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113604477A CN113604477A (en) | 2021-11-05 |
CN113604477B true CN113604477B (en) | 2023-03-24 |
Family
ID=78341409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110957485.3A Active CN113604477B (en) | 2021-08-20 | 2021-08-20 | Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113604477B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018488A1 (en) * | 2006-08-09 | 2008-02-14 | Takara Bio Inc. | Antibacterial agent |
CN103194456A (en) * | 2013-04-24 | 2013-07-10 | 昆明理工大学 | Lilium regale antifungal gene Lr14-3-3 and application thereof |
WO2014078900A1 (en) * | 2012-11-23 | 2014-05-30 | Hexima Limited | Anti-pathogenic methods |
CN103834665A (en) * | 2012-11-23 | 2014-06-04 | 赫希玛有限公司 | Use of anti-fungal defensins |
CN105861517A (en) * | 2016-04-20 | 2016-08-17 | 昆明理工大学 | Panax notoginseng antimicrobial peptide gene PnSN1 and application thereof |
CN105968177A (en) * | 2016-05-06 | 2016-09-28 | 广州大学 | Banana antibacterial peptide MaSN2 and novel application of gene thereof |
CN108707610A (en) * | 2018-05-04 | 2018-10-26 | 昆明理工大学 | Radix Notoginseng defensin antibacterial peptide genes PnDEFL1 and application |
CN110446721A (en) * | 2017-01-23 | 2019-11-12 | 因内特免疫有限公司 | For protecting host from the composition and method of pathogenic infection |
CN110734482A (en) * | 2019-11-13 | 2020-01-31 | 昆明理工大学 | Lilium regale WRKY transcription factor gene LrWRKY4 and application thereof |
CN110818782A (en) * | 2019-11-13 | 2020-02-21 | 昆明理工大学 | Lilium regale WRKY transcription factor gene LrWRKY3 and application thereof |
CN110818783A (en) * | 2019-11-13 | 2020-02-21 | 昆明理工大学 | A Minjiang Lily WRKY transcription factor gene LrWRKY2 and its application |
CN111235165A (en) * | 2020-04-02 | 2020-06-05 | 长江师范学院 | Lily susceptible fungal gene LrWRKY-S1 and application thereof |
CN112359049A (en) * | 2020-12-10 | 2021-02-12 | 昆明理工大学 | Lilium regale chitinase gene LrCHI2 and application thereof |
CN113603757A (en) * | 2021-08-20 | 2021-11-05 | 昆明理工大学 | Lilium regale Dirigent similar protein gene LrDI 1 and application |
-
2021
- 2021-08-20 CN CN202110957485.3A patent/CN113604477B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018488A1 (en) * | 2006-08-09 | 2008-02-14 | Takara Bio Inc. | Antibacterial agent |
WO2014078900A1 (en) * | 2012-11-23 | 2014-05-30 | Hexima Limited | Anti-pathogenic methods |
CN103834665A (en) * | 2012-11-23 | 2014-06-04 | 赫希玛有限公司 | Use of anti-fungal defensins |
CN103194456A (en) * | 2013-04-24 | 2013-07-10 | 昆明理工大学 | Lilium regale antifungal gene Lr14-3-3 and application thereof |
CN105861517A (en) * | 2016-04-20 | 2016-08-17 | 昆明理工大学 | Panax notoginseng antimicrobial peptide gene PnSN1 and application thereof |
CN105968177A (en) * | 2016-05-06 | 2016-09-28 | 广州大学 | Banana antibacterial peptide MaSN2 and novel application of gene thereof |
CN110446721A (en) * | 2017-01-23 | 2019-11-12 | 因内特免疫有限公司 | For protecting host from the composition and method of pathogenic infection |
CN108707610A (en) * | 2018-05-04 | 2018-10-26 | 昆明理工大学 | Radix Notoginseng defensin antibacterial peptide genes PnDEFL1 and application |
CN110734482A (en) * | 2019-11-13 | 2020-01-31 | 昆明理工大学 | Lilium regale WRKY transcription factor gene LrWRKY4 and application thereof |
CN110818782A (en) * | 2019-11-13 | 2020-02-21 | 昆明理工大学 | Lilium regale WRKY transcription factor gene LrWRKY3 and application thereof |
CN110818783A (en) * | 2019-11-13 | 2020-02-21 | 昆明理工大学 | A Minjiang Lily WRKY transcription factor gene LrWRKY2 and its application |
CN111235165A (en) * | 2020-04-02 | 2020-06-05 | 长江师范学院 | Lily susceptible fungal gene LrWRKY-S1 and application thereof |
CN112359049A (en) * | 2020-12-10 | 2021-02-12 | 昆明理工大学 | Lilium regale chitinase gene LrCHI2 and application thereof |
CN113603757A (en) * | 2021-08-20 | 2021-11-05 | 昆明理工大学 | Lilium regale Dirigent similar protein gene LrDI 1 and application |
Non-Patent Citations (5)
Title |
---|
Lilium regale defensin (Def1) mRNA, complete cds;Liu,D.等;《Genbank Database》;Accession No:MZ872924.1 * |
Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene, LrDef1,during response to Fusarium oxysporum;Zie Wang等;《BMC Plant Biology》;第1-17页 * |
PREDICTED: Brachypodium distachyon defensin Tm-AMP-D1.2 (LOC100844099), mRNA;NCBI;《Genbank Database》;Accession No:XM_003575364.4 * |
岷江百合WRKY转录因子基因的克隆与功能分析;王自娥等;《西北植物学报》;第41卷(第12期);第1983-1993页 * |
深绿木霉蛋白质TraT2A诱导兰州百合抗灰霉病的作用;梁巧兰等;《中国生物防治学报》;第33卷(第4期);第545-551页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113604477A (en) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110818783B (en) | Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof | |
CN105441460B (en) | A kind of Ming River lily WRKY transcription factor genes LrWRKY1 and application | |
CN110818782B (en) | A Minjiang Lily WRKY transcription factor gene LrWRKY3 and its application | |
CN110747202B (en) | Lilium regale WRKY transcription factor gene LrWRKY11 and application thereof | |
CN105861517B (en) | A kind of Radix Notoginseng antibacterial peptide gene PnSN1 and its application | |
CN110734482B (en) | A Minjiang lily WRKY transcription factor gene LrWRKY4 and its application | |
CN113603757B (en) | Lily regale Dirigent similar protein gene LrDIR1 and application thereof | |
CN106244599B (en) | A kind of Panax notoginseng disease course related protein 1 family gene PnPR1-2 and its application | |
CN101736024B (en) | Pyrus pyrifolia sweet protein gene PpTLP with antifungal activity and application | |
CN112831505B (en) | Pseudo-ginseng WRKY transcription factor gene PnWRKY15 and application thereof | |
CN104131015B (en) | The application of a kind of lilium regale wilson pathogenesis-related proteins 10 gene LrPR10-5 | |
CN108251432A (en) | Radix Notoginseng class PR gene PnPRlike and application | |
CN103194457B (en) | Germinoid Protein Gene LrGLP2 of Lily Minjiang River and Its Application | |
CN109912701B (en) | A method for improving the insect resistance of tomato | |
CN103194456A (en) | Lilium regale antifungal gene Lr14-3-3 and application thereof | |
CN101736015A (en) | Red skinned pear polygalacturonase-inhibiting protein gene (PpPGIP) and application | |
CN107365794A (en) | Pseudo-ginseng chitinase gene PnCHI1 application | |
CN112359049B (en) | A kind of Minjiang lily chitinase gene LrCHI2 and its application | |
CN109295068B (en) | A kind of Panax notoginseng sweet protein gene PnTLP2 and its application | |
CN103320448B (en) | Lilium regle bZIP transcription factor LrbZIP1 and application | |
CN104878027B (en) | Yangbi bulla walnut ribonuclease gene JsRNase and application | |
CN103937819B (en) | A kind of lilium regale wilson glutathione S-transferase gene LrGSTL1 and application thereof | |
CN113604477B (en) | Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof | |
CN107267525B (en) | Application of Panax notoginseng polygalacturonase inhibitory protein gene PnPGIP | |
CN107964547B (en) | A kind of Panax notoginseng disease course related protein 10 gene PnPR10-3 and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |