CN113571886B - Low-profile phase mode antenna and three-dimensional space scanning array formed by same - Google Patents
Low-profile phase mode antenna and three-dimensional space scanning array formed by same Download PDFInfo
- Publication number
- CN113571886B CN113571886B CN202110872072.5A CN202110872072A CN113571886B CN 113571886 B CN113571886 B CN 113571886B CN 202110872072 A CN202110872072 A CN 202110872072A CN 113571886 B CN113571886 B CN 113571886B
- Authority
- CN
- China
- Prior art keywords
- antenna
- sspps
- frame body
- low
- antenna structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003071 parasitic effect Effects 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 230000001105 regulatory effect Effects 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims description 5
- 230000010363 phase shift Effects 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 21
- 230000005855 radiation Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000012840 feeding operation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/104—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/04—Multimode antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信技术领域,具体地,涉及一种低剖面相模天线及其组成的三维空间扫描阵列,尤其是一种基于SSPPs技术的低剖面相模天线及其组成的空间扫描阵列。The invention relates to the field of communication technologies, in particular to a low-profile sigma antenna and a three-dimensional spatial scanning array composed thereof, in particular a low-profile sigma antenna based on SSPPs technology and a spatial scanning array composed thereof.
背景技术Background technique
无线通信技术的快速迭代和不断发展,使灵活多变的多波束切换应用场景更加广泛,多波束切换以及大角度扫描的阵列天线技术越来越成为研究热点。The rapid iteration and continuous development of wireless communication technology make flexible and changeable multi-beam switching application scenarios more extensive.
阵列天线的大角度波束扫描主要以相控阵技术为主,大角度波束扫描基于经典的方向图乘积原理,以此实现灵活的波束切换和覆盖更宽的扫描范围。但是在三维空间上的波束扫描仅仅依赖一维线阵是无法实现的,必须要多个天线阵元组阵才能实现Φ和θ两个维度的波束扫描覆盖,而多个天线阵元二维组阵必然增加阵列面积,占用更多空间。故采用SSPPs(Spoof Surface Plasmon Polariton,简称SSPPs)技术构建低剖面相模天线单元,基于SSPPs天线的奇模工作模式和偶模工作模式分别获得端射与侧射辐射特性,通过相模调控进一步获得混合工作模式,使天线单元自身就能够具备宽波束扫描特性。依据该天线单元再进一步构建一维线阵,就能够实现在三维空间的大角度波束扫描,有很好的应用潜力和研究价值。The large-angle beam scanning of the array antenna is mainly based on the phased array technology. The large-angle beam scanning is based on the classic pattern product principle, so as to achieve flexible beam switching and cover a wider scanning range. However, beam scanning in three-dimensional space cannot be achieved only by relying on one-dimensional linear arrays. Multiple antenna array elements must be formed to achieve beam scanning coverage in two dimensions of Φ and θ. The array will inevitably increase the array area and take up more space. Therefore, the SSPPs (Spoof Surface Plasmon Polariton, referred to as SSPPs) technology is used to construct a low-profile phase mode antenna unit. Based on the odd-mode and even-mode operation modes of the SSPPs antenna, the end-fire and side-fire radiation characteristics are obtained respectively, and the hybrid operation is further obtained through phase mode control. mode, so that the antenna unit itself can have wide beam scanning characteristics. Further constructing a one-dimensional linear array based on the antenna unit can realize large-angle beam scanning in three-dimensional space, which has good application potential and research value.
传统相控阵天线实现大角度波束扫描主要依赖于阵因子函数,实现三维空间波束扫描一般需要N×N(N≥2)元阵列单元组阵才能覆盖两个方向的波束覆盖,并且存在阵列系统复杂,单元数目非常多,扫描角受限,一维阵列只能实现一维方向的波束扫描等问题,使相控阵天线的应用和发展都存在局限性。The realization of large-angle beam scanning by traditional phased array antennas mainly depends on the array factor function. To achieve three-dimensional beam scanning, N×N (N≥2) element array units are generally required to cover the beam coverage in two directions, and there are array systems. It is complex, the number of elements is very large, the scanning angle is limited, and the one-dimensional array can only achieve beam scanning in one-dimensional direction, which makes the application and development of phased array antennas limited.
公开号为CN103050788A的专利文献公开了一种天线阵列单元、阵列天线、多频天线单元和多频阵列天线,该天线阵列单元包括:两个天线单元对,呈十字交叉设置,其中,每个天线单元对包括两个天线单元,两个天线单元通过馈电网络相互电连接,并且两个天线单元对分别独立馈电。但是该专利文献仍然存在占用空间大、只能实现一维方向的波束扫描的缺陷。The patent document with publication number CN103050788A discloses an antenna array unit, an array antenna, a multi-frequency antenna unit and a multi-frequency array antenna. The antenna array unit includes: two pairs of antenna units arranged in a crisscross pattern, wherein each antenna The unit pair includes two antenna units, the two antenna units are electrically connected to each other through a feeding network, and the two antenna unit pairs are fed independently respectively. However, this patent document still has the defect that it occupies a large space and can only realize beam scanning in one-dimensional direction.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的是提供一种低剖面相模天线及其组成的三维空间扫描阵列。In view of the defects in the prior art, the purpose of the present invention is to provide a low-profile sagami antenna and a three-dimensional space scanning array composed thereof.
根据本发明提供的一种低剖面相模天线,包括介质基板、反射地板、SSPPs天线结构、寄生贴片及多个馈电SMA连接器;A low-profile phase mode antenna provided according to the present invention includes a dielectric substrate, a reflective floor, an SSPPs antenna structure, a parasitic patch and a plurality of feeding SMA connectors;
所述介质基板设置在所述反射底板上,所述SSPPs天线结构设置在所述介质基板上;The dielectric substrate is arranged on the reflective bottom plate, and the SSPPs antenna structure is arranged on the dielectric substrate;
多个所述馈电SMA连接器设置在所述SSPPs天线结构的两侧,所述馈电SMA连接器用于对SSPPs天线结构进行馈电;A plurality of the feeding SMA connectors are arranged on both sides of the SSPPs antenna structure, and the feeding SMA connectors are used for feeding the SSPPs antenna structure;
所述寄生贴片设置在所述SSPPs天线结构上。The parasitic patch is disposed on the SSPPs antenna structure.
优选的,所述SSPPs天线结构包括第一架体、第二架体及第三架体;Preferably, the SSPPs antenna structure includes a first frame body, a second frame body and a third frame body;
所述第一架体和所述第二架体分别设置在所述第三架体的两端,所述第一架体远离所述第三架体的一端设置在所述介质基板上,所述第二架体远离所述第三架体的一端设置在所述介质基板上;The first frame body and the second frame body are respectively arranged at two ends of the third frame body, and the end of the first frame body away from the third frame body is arranged on the dielectric substrate, so One end of the second frame away from the third frame is disposed on the dielectric substrate;
所述寄生贴片设置在所述第三架体上。The parasitic patch is arranged on the third frame.
优选的,所述第一架体和所述第二架体垂直设置在所述第三架体上。Preferably, the first frame body and the second frame body are vertically arranged on the third frame body.
优选的,第一架体、第二架体及第三架体均为金属架体。Preferably, the first frame body, the second frame body and the third frame body are all metal frame bodies.
优选的,所述馈电SMA连接器为两个,两个所述馈电SMA连接器分别对称设置在所述SSPPs天线结构的两侧。Preferably, there are two feeding SMA connectors, and the two feeding SMA connectors are symmetrically arranged on both sides of the SSPPs antenna structure, respectively.
优选的,两个所述馈电SMA连接器之间的相位差为0°~180°。Preferably, the phase difference between the two feeding SMA connectors is 0°˜180°.
优选的,两个所述馈电SMA连接器之间的相位差可通过在模拟移相器模块或数字移相器模块实现调控。Preferably, the phase difference between the two feeding SMA connectors can be regulated by an analog phase shifter module or a digital phase shifter module.
优选的,所述SSPPs天线结构的剖面高度小于中心频点对应的十分之一波长。Preferably, the sectional height of the SSPPs antenna structure is less than one tenth of the wavelength corresponding to the center frequency point.
优选的,所述寄生贴片为菱形寄生贴片。Preferably, the parasitic patch is a diamond parasitic patch.
本发明还提供一种三维空间扫描阵列,包括四个上述的低剖面相模天线,四个低剖面相模天线呈1×4阵列设置。The present invention also provides a three-dimensional space scanning array, comprising four of the above-mentioned low-profile phase mode antennas, and the four low-profile phase mode antennas are arranged in a 1×4 array.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明通过激励双端口U形折叠SSPPs天线,调控移相模块改变天线的端口相位差值,激励U形折叠SSPPs天线的各种混合工作模式,使天线实现主波束±63°的宽波束大角度扫描范围;1. The present invention excites the dual-port U-shaped folded SSPPs antenna, adjusts the phase shift module to change the port phase difference value of the antenna, and stimulates various mixed working modes of the U-shaped folded SSPPs antenna, so that the antenna can achieve a wide beam of ±63° of the main beam. Large angle scanning range;
2、本发明基于天线完成1×4元一维线阵,调控八个馈电端口之间的相位差使一维线阵实现二维方向(XZ平面和YZ平面)的大角度波束扫描;2. The present invention completes a 1×4-element one-dimensional linear array based on the antenna, and adjusts the phase difference between the eight feed ports so that the one-dimensional linear array realizes large-angle beam scanning in two-dimensional directions (XZ plane and YZ plane);
3、本发明基于SSPPs天线技术使天线其具备奇模工作模式和偶模工作模式两种基本模式,并通过调控天线的两个馈电端口之间的相位差使两个基本模式混合构造新的混合工作模式,从而实现天线主波束大角度宽波束扫描特性;3. Based on the SSPPs antenna technology, the present invention enables the antenna to have two basic modes, an odd-mode operating mode and an even-mode operating mode, and the two basic modes are mixed to construct a new hybrid by adjusting the phase difference between the two feed ports of the antenna. Working mode, so as to realize the wide-angle and wide-beam scanning characteristics of the main beam of the antenna;
4、本发明以0.5λ阵元间距构建的一维线阵能够实现在Phi=0°面(XZ平面)以及Phi=90°面(YZ平面)的二维波束扫描特性,具有仅0.08λ的低剖面高度、相差任意调控的大角度宽波束扫描天线以及一维线阵实现三维空间的大角度宽波束扫描的特性。4. The one-dimensional linear array constructed with the 0.5λ array element spacing of the present invention can realize the two-dimensional beam scanning characteristics on the Phi=0° plane (XZ plane) and the Phi=90° plane (YZ plane), with only 0.08λ. Low profile height, large-angle wide-beam scanning antenna with arbitrary phase difference adjustment, and one-dimensional linear array realize the characteristics of large-angle wide-beam scanning in three-dimensional space.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本发明的整体结构图;Fig. 1 is the overall structure diagram of the present invention;
图2为本发明的尺寸结构图;Fig. 2 is the dimension structure diagram of the present invention;
图3为本发明突出显示SSPPs天线的尺寸结构图;Fig. 3 is the dimensional structure diagram that highlights the SSPPs antenna of the present invention;
图4为本发明的工作原理图;Fig. 4 is the working principle diagram of the present invention;
图5为本发明的端口1的S参数图;Fig. 5 is the S parameter diagram of
图6为本发明的端口2的S参数图;Fig. 6 is the S parameter diagram of
图7为本发明的端口1与端口2的隔离度|S12|;Fig. 7 is the isolation degree |S 12 | of
图8为本发明的端口1与端口2的隔离度|S21|;Fig. 8 is the isolation degree |S 21 | of
图9为本发明的两个馈电端口的相位差0°的有源S参数图;9 is an active S-parameter diagram with a phase difference of 0° between two feed ports of the present invention;
图10为本发明的两个馈电端口的相位差30°的有源S参数图;10 is an active S-parameter diagram with a phase difference of 30° between two feed ports of the present invention;
图11为本发明的两个馈电端口的相位差60°的有源S参数图;11 is an active S-parameter diagram with a phase difference of 60° between two feed ports of the present invention;
图12为本发明的两个馈电端口的相位差90°的有源S参数图;12 is an active S-parameter diagram with a phase difference of 90° between two feed ports of the present invention;
图13为本发明的两个馈电端口的相位差120°的有源S参数图;13 is an active S-parameter diagram with a phase difference of 120° between two feed ports of the present invention;
图14为本发明的两个馈电端口的相位差150°的有源S参数图;14 is an active S-parameter diagram with a phase difference of 150° between two feed ports of the present invention;
图15为本发明的两个馈电端口的相位差为180°的有源S参数图;15 is an active S-parameter diagram with a phase difference of 180° between two feed ports of the present invention;
图16为本发明两个馈电端口同时激励时,天线的主波束指向分别为0°、20°、40°、69°的辐射方向图;16 is a radiation pattern with the main beam directions of the antenna being 0°, 20°, 40°, and 69°, respectively, when two feed ports are excited at the same time in the present invention;
图17为本发明的1×4元线阵的结构示意图;17 is a schematic structural diagram of a 1×4-element linear array of the present invention;
图18为本发明的1×4元天线阵列的馈电工作原理图;FIG. 18 is a schematic diagram of the feeding operation of the 1×4 element antenna array of the present invention;
图19为本发明的1×4元天线阵列的有源S参数仿真数据;19 is the active S-parameter simulation data of the 1×4 element antenna array of the present invention;
图20为本发明的1×4元天线阵列的端口隔离度仿真数据;Fig. 20 is the port isolation simulation data of the 1×4 element antenna array of the present invention;
图21为本发明的阵元间距为0.5λ的1×4元天线阵列天线在XZ平面的波束扫描;FIG. 21 is the beam scanning of the 1×4-element antenna array antenna with the array element spacing of 0.5λ in the XZ plane of the present invention;
图22为本发明的阵元间距为0.4λ的1×4元天线阵列天线在XZ平面的波束扫描;FIG. 22 is the beam scanning of the 1×4-element antenna array antenna with the array element spacing of 0.4λ in the XZ plane of the present invention;
图23为本发明的1×4元天线阵列天线在YZ平面的波束扫描;FIG. 23 is the beam scanning of the 1×4 element antenna array antenna in the YZ plane of the present invention;
图24为本发明的1×4元线阵的结构示意图;24 is a schematic structural diagram of a 1×4-element linear array of the present invention;
图25为本发明的1×4元天线阵列的馈电工作原理图;FIG. 25 is a schematic diagram of the feeding working principle of the 1×4 element antenna array of the present invention;
图26为基于图23的天线阵列分布方式的1×4元天线阵列天线在XZ平面的波束扫描;FIG. 26 is the beam scanning of the 1×4-element antenna array antenna in the XZ plane based on the antenna array distribution method of FIG. 23;
如图27为基于图23的天线阵列分布方式的1×4元天线阵列天线在YZ平面的波束扫描。FIG. 27 shows the beam scanning of the 1×4-element antenna array antenna in the YZ plane based on the antenna array distribution method of FIG. 23 .
图中示出:The figure shows:
介质基板1 第二架体302
反射地板2 第三架体303
SSPPs天线结构3 寄生贴片4
第一架体301 馈电SMA连接器5The
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several changes and improvements can be made without departing from the inventive concept. These all belong to the protection scope of the present invention.
如图1~3所示,本发明提供的一种低剖面相模天线,包括介质基板1、反射地板2、SSPPs天线结构3、寄生贴片4及多个馈电SMA连接器5,介质基板1设置在反射底板上,SSPPs天线结构3设置在介质基板1上,多个馈电SMA连接器5设置在SSPPs天线结构3的两侧,馈电SMA连接器5用于对SSPPs天线结构3进行馈电,寄生贴片4设置在SSPPs天线结构3上。寄生贴片4为菱形寄生贴片。As shown in FIGS. 1 to 3 , a low-profile Sagami-mode antenna provided by the present invention includes a
馈电SMA连接器5为两个,两个馈电SMA连接器5分别对称设置在SSPPs天线结构3的两侧。两个馈电SMA连接器5之间的相位差为0°~180°。两个馈电SMA连接器5之间的相位差可通过在模拟移相器模块或数字移相器模块实现调控。There are two feeding
SSPPs天线结构3包括第一架体301、第二架体302及第三架体303,第一架体301和第二架体302分别设置在第三架体303的两端,第一架体301远离第三架体303的一端设置在介质基板1上,第二架体302远离第三架体303的一端设置在介质基板1上,寄生贴片4设置在第三架体303上。第一架体301和第二架体302垂直设置在第三架体303上。第一架体301、第二架体302及第三架体303均为金属架体。SSPPs天线结构3的剖面高度小于中心频点对应的十分之一波长。The
本发明还提供一种三维空间扫描阵列,包括四个上述的低剖面相模天线,四个低剖面相模天线呈1×4阵列设置。The present invention also provides a three-dimensional space scanning array, comprising four of the above-mentioned low-profile phase mode antennas, and the four low-profile phase mode antennas are arranged in a 1×4 array.
实施例1: Example 1 :
一种基于SSPPs技术的低剖面宽波束大角度扫描的相模天线单元,包括介质基板、金属反射地板、U形折叠SSPPs天线结构、两个馈电SMA连接器,两个馈电SMA连接器分别对称放置在U形折叠SSPPs天线的两侧,馈电SMA连接器对U形折叠SSPPs天线进行馈电,天线辐射主体采用U形折叠构造,显著降低了传统SSPPs天线的剖面高度,改善了SSPPs天线高剖面性能,使得SSPPs天线小型化。U形折叠SSPPs天线辐射主体采用金属架构,全空气介质。A phase mode antenna unit based on SSPPs technology with low profile wide beam and large angle scanning, including a dielectric substrate, a metal reflection floor, a U-shaped folded SSPPs antenna structure, two feeding SMA connectors, and the two feeding SMA connectors are symmetrical respectively Placed on both sides of the U-shaped folded SSPPs antenna, the feeding SMA connector feeds the U-shaped folded SSPPs antenna, and the antenna radiating body adopts a U-shaped folded structure, which significantly reduces the profile height of the traditional SSPPs antenna and improves the height of the SSPPs antenna. The profile performance enables the miniaturization of SSPPs antennas. The radiation body of the U-shaped folded SSPPs antenna adopts a metal structure and is all air medium.
馈电方式采用两个馈电SMA连接器分别置于U形折叠SSPPs天线的两侧,馈电的方式直接影响天线的工作模式、端口阻抗匹配性能以及辐射效率。该馈电方式对U形SSPPs天线进行激励有利于端口阻抗匹配及提高辐射效率,同时合理的馈电方式对SSPPs天线工作模式的选择有非常重要的影响。两个馈电端口的相位差可通过在模拟移相器模块或数字移相器模块实现调控。The feeding method uses two feeding SMA connectors placed on both sides of the U-shaped folded SSPPs antenna. The feeding method directly affects the antenna's working mode, port impedance matching performance and radiation efficiency. This feeding method excites the U-shaped SSPPs antenna, which is beneficial to the port impedance matching and improving the radiation efficiency. At the same time, a reasonable feeding method has a very important influence on the selection of the working mode of the SSPPs antenna. The phase difference between the two feed ports can be regulated in either the analog phase shifter module or the digital phase shifter module.
菱形寄生贴片主要作用是有助于SSPPs天线工作在偶模工作模式时辐射波束在XZ平面向自由空间传播以及菱形渐变的物理结构有效改善阻抗匹配性能。U形折叠SSPPs天线结构的剖面高度小于中心频点2.5GHz对应的十分之一波长,约0.08λ。The main function of the rhombus parasitic patch is to help the radiation beam propagate in the XZ plane to free space when the SSPPs antenna works in the even-mode working mode, and the physical structure of the rhombus gradient can effectively improve the impedance matching performance. The section height of the U-shaped folded SSPPs antenna structure is less than one-tenth of the wavelength corresponding to the center frequency of 2.5 GHz, about 0.08λ.
通过调控所述两个馈电SMA连接器之间的相位差,变化范围为0°~180°,因此在所述U形折叠SSPPs天线结构中根据不同的相位模式能够激励偶模工作模式、奇模工作模式以及混合工作模式,与此同时U形折叠SSPPs天线的枝节表面电流分布也随之连续发生变化。故U形折叠SSPPs天线的辐射方向图的主波束对应产生偶模工作模式下侧射辐射方向图、奇模工作模式下端射辐射方向图以及混合工作模式下XZ平面连续任意变换(Theta=0°~90°)的辐射方向图,从而实现波束在XZ平面方向上的大角度扫描特性。By adjusting the phase difference between the two feeding SMA connectors, the variation range is from 0° to 180°, so in the U-shaped folded SSPPs antenna structure, the even-mode working mode, odd-mode working mode, odd-mode working mode and odd-mode working mode can be excited according to different phase modes in the U-shaped folded SSPPs antenna structure. At the same time, the current distribution on the branch surface of the U-shaped folded SSPPs antenna also changes continuously. Therefore, the main beam of the radiation pattern of the U-shaped folded SSPPs antenna corresponds to the side-fire radiation pattern in the even-mode operating mode, the end-fire radiation pattern in the odd-mode operating mode, and the continuous arbitrary transformation of the XZ plane in the mixed operating mode (Theta=0°. ~90°) radiation pattern, so as to realize the large-angle scanning characteristics of the beam in the XZ plane direction.
基于该U形折叠SSPPs天线单元组成1×4元线阵,通过调控八个馈电端口之间的相位差,就能够激励不同的工作模式,使得1×4元线阵既能够在XZ平面进行大角度波束扫描,也能够在YZ平面实现大角度宽波束扫描。基于SSPPs技术的低剖面宽波束大角度扫描天线单元进行组阵,一维线阵就能够实现二维方向的大角度宽波束扫描,拓展了天线的扫描范围,丰富了一维线阵的扫描功能,且阵列规模可以任意扩充。Based on the U-shaped folded SSPPs antenna unit to form a 1×4-element linear array, by adjusting the phase difference between the eight feed ports, different working modes can be excited, so that the 1×4-element linear array can be performed in the XZ plane. Large-angle beam scanning can also achieve large-angle wide beam scanning in the YZ plane. Based on SSPPs technology, the low-profile wide-beam wide-angle scanning antenna units are arrayed, and the one-dimensional linear array can realize large-angle wide-beam scanning in two-dimensional directions, which expands the scanning range of the antenna and enriches the scanning function of the one-dimensional linear array. , and the array size can be expanded arbitrarily.
如图2~3所示,天线单元的地板尺寸分别为a×b,SSPPs天线的整体尺寸为l×w,其剖面高度为h,SSPPs天线的菱形寄生贴片尺寸为m×n,每一个枝节的尺寸为w1,缝隙的尺寸为gap。As shown in Figures 2 to 3, the floor size of the antenna unit is a×b, the overall size of the SSPPs antenna is l×w, the section height is h, and the size of the rhombus parasitic patch of the SSPPs antenna is m×n. The size of the branch is w 1 , and the size of the gap is the gap.
如图4所示,天线工作原理图表明天线有两个馈电端口,两个馈电端口分别是移相模块1和移相模块2。通过相位调控模块调控移相模块1与移相模块2的相位差,使两个馈电端口间的相位差能够任意实现连续相位差,如0°~180°。故调控两个馈电端口的相位差使SSPPs天线激励不同的混合工作模式,实现主波束±69度大角度扫描。As shown in FIG. 4 , the working principle diagram of the antenna shows that the antenna has two feeding ports, and the two feeding ports are the phase-shifting
如图5所示,天线单元的无源S参数仿真数据,馈电端口1的10dB阻抗带宽是2.4-~2.59GHz,相对带宽约7.6%。As shown in Figure 5, the passive S-parameter simulation data of the antenna unit shows that the 10dB impedance bandwidth of
如图6所示,天线单元的无源S参数仿真数据,馈电端口2的10dB阻抗带宽是2.4-~2.59GHz,相对带宽约7.6%。由于天线结构是对称馈电,因此|S11|和|S22|阻抗匹配特性及工作带宽一致。As shown in Figure 6, the passive S-parameter simulation data of the antenna unit shows that the 10dB impedance bandwidth of
如图7~8所示,天线单元的两个馈电端口间的隔离度参数仿真数据,|S12|和|S21|的工作带宽均是2.33-~2.63GHz,在中心频点2.5GHz处的端口隔离度约-35dB。As shown in Figures 7-8, the isolation parameter simulation data between the two feed ports of the antenna unit shows that the operating bandwidths of |S 12 | and |S 21 | are both 2.33-2.63GHz, and the center frequency is 2.5GHz Port isolation at about -35dB.
如图9~15所示,天线的两个馈电端口的相位差分别是0°、30°、60°、90°、120°、150°、180°时有源S参数仿真数据,其|S11|和|S21|均小于-20dB。端口阻抗匹配与端口隔离度一致性良好。As shown in Figures 9 to 15, when the phase differences of the two feed ports of the antenna are 0°, 30°, 60°, 90°, 120°, 150°, and 180°, the active S-parameter simulation data, the | Both S 11 | and |S 21 | are less than -20 dB. The port impedance matching and port isolation are consistent.
如图16所示,两个馈电端口的相位差分别为180°、90°、30°、0°时,其辐射方向图的主波束指向分别对应为0°、19°、42°、69°的极坐标方向图。As shown in Figure 16, when the phase differences of the two feed ports are 180°, 90°, 30°, and 0°, respectively, the main beam directions of the radiation pattern correspond to 0°, 19°, 42°, and 69°, respectively. ° Polar coordinate pattern.
如表1所示,当两个馈电端口的相位差分别为180°、90°、30°、0°时,其辐射方向图的主波束指向分别对应为0°、19°、42°、69°。其3dB波束宽度分别为64.7°(Theta=0°)、67.4°(Theta=19°)、138.8°(Theta=42°)、122.7°(Theta=69°)。主波束的增益分别为8.02dBi(Theta=0°)、6.02dBi(Theta=19°)、2.69dBi(Theta=42°)、1.3dBi(Theta=69°)。As shown in Table 1, when the phase differences of the two feed ports are 180°, 90°, 30°, and 0°, respectively, the main beam directions of the radiation pattern correspond to 0°, 19°, 42°, 69°. The 3dB beam widths are 64.7° (Theta=0°), 67.4° (Theta=19°), 138.8° (Theta=42°), and 122.7° (Theta=69°). The gains of the main beam are 8.02dBi (Theta=0°), 6.02dBi (Theta=19°), 2.69dBi (Theta=42°), and 1.3dBi (Theta=69°).
表1天线单元仿真数据Table 1 Antenna unit simulation data
实施例2: Example 2 :
如图17所示,1×4元线阵的结构示意图,基于实施例1中的天线单元,将实施例1的天线单元组成1×4元阵列天线,沿YZ方向排列。As shown in FIG. 17 , a schematic structural diagram of a 1×4-element linear array, based on the antenna units in
如图18所示,1×4元天线阵列的馈电工作原理图,同时调控天线单元的馈电端口相位差(元因子)及阵元间的相位差(阵因子),一维线阵可以在XY平面及ZY平面两个维度分别实现大角度宽角度波束扫描。As shown in Figure 18, the feeding working principle diagram of the 1×4 element antenna array, while adjusting the phase difference (element factor) of the feed port of the antenna unit and the phase difference between the array elements (array factor), the one-dimensional linear array can Large-angle and wide-angle beam scanning is achieved in the two dimensions of the XY plane and the ZY plane, respectively.
如图19所示,1×4元天线阵列的有源S参数仿真数据。在中心频点2.5GHz处的S参数约-20dB。As shown in Figure 19, the active S-parameter simulation data of the 1×4 element antenna array. The S-parameter at the center frequency of 2.5GHz is about -20dB.
如图20所示,1×4元天线阵列的端口隔离度仿真数据。在中心频点2.5GHz处的端口隔离度均小于-20dB。As shown in Figure 20, the port isolation simulation data of the 1×4-element antenna array. The port isolation at the center frequency of 2.5GHz is less than -20dB.
如图21所示,1×4元天线阵列天线在XZ平面的波束扫描。当阵元间距为0.5λ时,阵列的主波束覆盖范围为0°~63°。As shown in Figure 21, the beam scanning of the 1×4 element antenna array antenna in the XZ plane. When the array element spacing is 0.5λ, the main beam coverage of the array is 0° to 63°.
如图22所示,1×4元天线阵列天线在XZ平面的波束扫描。当阵元间距为0.4λ时,阵列的主波束覆盖范围为0°~110°。As shown in Figure 22, the beam scanning of the 1×4 element antenna array antenna in the XZ plane. When the array element spacing is 0.4λ, the main beam coverage of the array is 0° to 110°.
如图23所示,1×4元天线阵列天线在YZ平面的波束扫描。阵列的主波束覆盖范围为0°~48°。As shown in Figure 23, the beam scanning of the 1×4-element antenna array antenna in the YZ plane. The main beam coverage of the array is 0° to 48°.
如表2所示,为本发明的1×4元天线阵列分别在YZ平面与XZ平面大角度扫描时,主波束指向,3dB波束宽度以及增益。As shown in Table 2, when the 1×4 element antenna array of the present invention scans at a large angle in the YZ plane and the XZ plane, the main beam pointing, the 3dB beam width and the gain are respectively.
表2 1×4元天线阵列仿真数据Table 2 Simulation data of 1×4 element antenna array
实施例3: Example 3 :
如图24所示,1×4元线阵的结构示意图,基于实施例1中的天线单元,将实施例1的天线单元旋转45度角,并平移组成1×4元阵列天线,沿YZ方向排列。As shown in Figure 24, a schematic diagram of the structure of a 1×4-element linear array, based on the antenna unit in
如图25所示,基于图22的天线阵列分布方式,1×4元天线阵列的馈电工作原理图,同时调控天线单元的馈电端口相位差(元因子)及阵元间的相位差(阵因子),一维线阵可以在XY平面及ZY平面两个维度分别实现大角度宽角度波束扫描。As shown in Figure 25, based on the distribution method of the antenna array in Figure 22, the working principle of the feeding of the 1×4-element antenna array, while adjusting the phase difference (element factor) of the feeding port of the antenna element and the phase difference between the array elements ( Array factor), one-dimensional linear array can achieve wide-angle beam scanning in two dimensions, XY plane and ZY plane, respectively.
如图26所示,基于图22的天线阵列分布方式,1×4元天线阵列天线在XZ平面的波束扫描。阵列的主波束覆盖范围为0°~66°。As shown in FIG. 26 , based on the antenna array distribution method in FIG. 22 , the beam scanning of the 1×4-element antenna array antenna in the XZ plane. The main beam coverage of the array is 0° to 66°.
如图27所示,基于图22的天线阵列分布方式,1×4元天线阵列天线在YZ平面的波束扫描。阵列的主波束覆盖范围为0°~58°。As shown in FIG. 27 , based on the antenna array distribution method in FIG. 22 , the beam scanning of the 1×4-element antenna array antenna in the YZ plane. The main beam coverage of the array is 0° to 58°.
如表3所示,为本发明的1×4元天线阵列(基于图22的天线阵列分布方式)分别在YZ平面与XZ平面大角度扫描时,主波束指向,3dB波束宽度以及增益。As shown in Table 3, the main beam pointing, 3dB beam width and gain of the 1×4 element antenna array of the present invention (based on the antenna array distribution method in FIG. 22 ) are respectively scanned in the YZ plane and the XZ plane at large angles.
表3 1×4元天线阵列仿真数据Table 3 Simulation data of 1×4 element antenna array
本发明基于SSPPs天线技术使天线单元其具备奇模工作模式和偶模工作模式两种基本模式,并通过调控天线的两个馈电端口之间的相位差使两个基本模式混合构造新的混合工作模式,从而实现天线单元主波束大角度宽波束扫描特性。同时以0.5λ阵元间距构建的一维线阵能够实现在Phi=0°面(XZ平面)以及Phi=90°面(YZ平面)的二维波束扫描特性。具有仅0.08λ的低剖面高度、相差任意调控的大角度宽波束扫描天线单元以及一维线阵实现三维空间的大角度宽波束扫描的特性。Based on the SSPPs antenna technology, the invention enables the antenna unit to have two basic modes, an odd-mode operation mode and an even-mode operation mode, and the two basic modes are mixed to construct a new mixed operation by adjusting the phase difference between the two feed ports of the antenna. mode, so as to realize the wide-angle and wide-beam scanning characteristics of the main beam of the antenna unit. At the same time, the one-dimensional linear array constructed with 0.5λ array element spacing can realize two-dimensional beam scanning characteristics on the Phi=0° plane (XZ plane) and the Phi=90° plane (YZ plane). It has the characteristics of a low profile height of only 0.08λ, a large-angle wide-beam scanning antenna unit with arbitrary phase difference adjustment, and a one-dimensional linear array to achieve large-angle wide-beam scanning in three-dimensional space.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying the indicated device. Or elements must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which do not affect the essential content of the present invention. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110872072.5A CN113571886B (en) | 2021-07-30 | 2021-07-30 | Low-profile phase mode antenna and three-dimensional space scanning array formed by same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110872072.5A CN113571886B (en) | 2021-07-30 | 2021-07-30 | Low-profile phase mode antenna and three-dimensional space scanning array formed by same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113571886A CN113571886A (en) | 2021-10-29 |
CN113571886B true CN113571886B (en) | 2022-09-20 |
Family
ID=78169567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110872072.5A Active CN113571886B (en) | 2021-07-30 | 2021-07-30 | Low-profile phase mode antenna and three-dimensional space scanning array formed by same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113571886B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114421164B (en) * | 2022-01-27 | 2022-11-29 | 上海交通大学 | Low-profile magnetoelectric dipole antenna unit based on artificial surface plasmon and frequency scanning array |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10516212B2 (en) * | 2016-07-01 | 2019-12-24 | Mee Jeong KIM | RF passive device and miniaturization method therefor |
CN108767451B (en) * | 2018-04-04 | 2020-07-14 | 上海交通大学 | Pattern Reconfigurable Wide-Angle Scanning Antenna Based on SSPP Structure |
CN109687155A (en) * | 2018-12-21 | 2019-04-26 | 杭州电子科技大学 | A kind of complementation artificial surface phasmon leaky wave frequency scanning antenna |
CN110401029B (en) * | 2019-07-08 | 2020-07-28 | 上海交通大学 | Wide-angle scanning antenna with reconfigurable radiation pattern |
CN110838618B (en) * | 2019-11-15 | 2021-10-08 | 上海交通大学 | Dual-mode antenna based on artificial surface plasmon structure |
CN111600131B (en) * | 2020-06-24 | 2021-08-06 | 上海交通大学 | Dual-port Multimode Common Aperture Spatial Scanning Antenna and Array Based on SSPP Structure |
-
2021
- 2021-07-30 CN CN202110872072.5A patent/CN113571886B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113571886A (en) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7310065B2 (en) | Undersampled microstrip array using multilevel and space-filling shaped elements | |
CN108023178B (en) | A Pattern Reconfigurable Antenna and Its Phased Array | |
CN109273836B (en) | Wide Bandwidth Angle Scanning Antenna Based on Tightly Coupled Dipole and Anisotropic Matching Layer | |
CN113506988B (en) | Millimeter wave wide-angle scanning phased-array antenna based on unit beam isomerism | |
CN112787098A (en) | Two-dimensional circularly polarized wide-angle scanning phased array antenna | |
CN109361073A (en) | Cavity-excited Dual-Polarized Electromagnetic Dipole Array Antenna | |
CN113851833B (en) | Grating lobe suppression wide-angle scanning phased array based on directional diagram reconfigurable subarray technology | |
CN110061353B (en) | A miniaturized Ku full-band satellite antenna array | |
CN108987915A (en) | One kind being based on close coupling technology ultra wideband dual polarization cylinder antenna battle array | |
CN114300857A (en) | A metamaterial-loaded wide-beam antenna and its array | |
CN104868234A (en) | Improved generation strong mutual coupling ultra wide band two dimension wave beam scanning phased array antenna | |
CN113871865A (en) | A Low Profile Wide Bandwidth Two-Dimensional Scanning Dual-Polarized Phased Array Antenna and Its Application | |
CN111525280A (en) | Circularly polarized scanning array antenna based on Rotman lens | |
CN106505310B (en) | Low section array antenna with broadband and wide angle scan characteristic | |
CN114784495A (en) | Millimeter wave wide bandwidth wave beam patch antenna | |
CN113708046A (en) | Miniaturized broadband circular polarization three-dimensional printing mixed dielectric resonator antenna | |
CN113571886B (en) | Low-profile phase mode antenna and three-dimensional space scanning array formed by same | |
CN112701471A (en) | All-dielectric integrated ultra-wideband low-profile polymorphic conformal phased array antenna | |
CN107546478B (en) | Wide-angle scanning phased array antenna using special directional pattern elements and design method | |
CN110504527B (en) | L and X wave band common-caliber antenna with novel structure | |
CN114156665B (en) | A Broadband Circularly Polarized Transmissive Array Antenna Based on Dielectric Structure | |
CN113097745B (en) | Wide-beam parasitic pixel layer antenna for one-dimensional large-angle scanning | |
CN109659673B (en) | Wide-beam high-gain dual-polarized directional antenna | |
CN113964489A (en) | Wide Angle Scanning Phased Array Antenna Based on Bend Slot | |
Rahman et al. | Design and Analysis of High Gain Microstrip Antenna Array for 5G Wireless Communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |