CN113532648B - Interference spectrometer moving mirror scanning system based on symmetrical flexible supporting mechanism - Google Patents
Interference spectrometer moving mirror scanning system based on symmetrical flexible supporting mechanism Download PDFInfo
- Publication number
- CN113532648B CN113532648B CN202010300281.8A CN202010300281A CN113532648B CN 113532648 B CN113532648 B CN 113532648B CN 202010300281 A CN202010300281 A CN 202010300281A CN 113532648 B CN113532648 B CN 113532648B
- Authority
- CN
- China
- Prior art keywords
- boom
- moving mirror
- moving
- compensating
- support mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 55
- 230000033001 locomotion Effects 0.000 claims abstract description 55
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 10
- 229910000906 Bronze Inorganic materials 0.000 claims description 9
- 239000010974 bronze Substances 0.000 claims description 9
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000639 Spring steel Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000003701 mechanical milling Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 7
- 238000000701 chemical imaging Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000005339 levitation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0202—Mechanical elements; Supports for optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/06—Scanning arrangements arrangements for order-selection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/06—Scanning arrangements arrangements for order-selection
- G01J2003/061—Mechanisms, e.g. sine bar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/06—Scanning arrangements arrangements for order-selection
- G01J2003/062—Scanning arrangements arrangements for order-selection motor-driven
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
为克服传统动镜扫描系统精度低、成本高、质量体积大的缺点,本发明提供了一种基于对称式柔性支撑机构的干涉光谱仪动镜扫描系统,包括动镜、定镜、激光器、分束器、动镜运动驱动单元、动镜运动控制单元、动镜运动反馈单元、用于支撑动镜的支撑机构;支撑机构为对称式柔性支撑机构,包括四个动臂、两个固定体和一个运动体;四个动臂结构尺寸相同,均通过其上两个连接体和补偿体分别与运动体和两个固定体相连;单个动臂上的连接体和补偿体均为柔性铰链,利用柔性铰链实现运动传递,无隙传动、无摩擦,保证了机构的运动精度;单个动臂内形成双平行四边形嵌套结构,有效增大动镜运动的行程。
In order to overcome the shortcomings of low precision, high cost and large volume of the traditional moving mirror scanning system, the present invention provides an interference spectrometer moving mirror scanning system based on a symmetrical flexible support mechanism, including a moving mirror, a fixed mirror, a laser, a beam splitter, and a moving mirror. device, moving mirror motion drive unit, moving mirror motion control unit, moving mirror motion feedback unit, support mechanism for supporting the moving mirror; the support mechanism is a symmetrical flexible support mechanism, including four moving arms, two fixed bodies and one The moving body; the four booms have the same structure and size, and are connected to the moving body and the two fixed bodies respectively through the two connecting bodies and the compensating body on them; The hinge realizes motion transmission, no gap transmission and no friction, which ensures the motion accuracy of the mechanism; a double parallelogram nesting structure is formed in a single boom, which effectively increases the travel of the moving mirror.
Description
技术领域technical field
本发明涉及光谱成像技术领域,具体涉及一种基于对称式柔性支撑机构的干涉光谱仪动镜扫描系统。The invention relates to the technical field of spectral imaging, in particular to a moving mirror scanning system of an interference spectrometer based on a symmetrical flexible support mechanism.
背景技术Background technique
光谱成像技术是一种集光学、精密机械、电子技术、计算机技术和光谱学等于一体的新型探测技术,在获取目标几何形状信息的同时,可获得目标的光谱信息。干涉光谱成像技术基于光波干涉原理,通过测量目标的干涉图,利用目标光谱信息与干涉图的傅里叶变换对应关系,对干涉图进行傅里叶逆变换复原出目标的光谱信息。干涉光谱成像技术在物质定量定性方面有明显的优势,广泛应用于环境监测、医疗分析、空间探测及气象探测等领域。Spectral imaging technology is a new detection technology that integrates optics, precision machinery, electronic technology, computer technology and spectroscopy. It can obtain the spectral information of the target while obtaining the geometric shape information of the target. Interferometric spectral imaging technology is based on the principle of light wave interference. By measuring the interferogram of the target, using the corresponding relationship between the target spectral information and the Fourier transform of the interferogram, the inverse Fourier transform of the interferogram is used to restore the spectral information of the target. Interferometric spectral imaging technology has obvious advantages in the quantitative and qualitative aspects of substances, and is widely used in environmental monitoring, medical analysis, space detection and meteorological detection and other fields.
时间调制型干涉光谱仪基于迈克尔逊干涉仪实现,具体工作原理如下(参照图1):目标辐射经前置镜组成像于干涉仪物面,经准直后到达分束器;入射光束被分束器分为透射部分和反射部分,透射部分到达干涉仪动镜,反射部分到达干涉仪定镜;两部分光束经反射后分别原路返回,来自动镜的反射光束和来自定镜的透射光束经会聚镜成像于焦面处,同时产生干涉信号,探测器记录下该干涉信号。时间调制型干涉光谱仪通过系统内部动镜运动产生物面像元辐射的时间序列干涉图,通过对时间序列干涉图进行傅里叶变换,便可得到相应物面像元辐射的光谱图。The time-modulated interferometric spectrometer is based on the Michelson interferometer. The specific working principle is as follows (refer to Figure 1): the target radiation is imaged on the object surface of the interferometer by the front mirror, and then reaches the beam splitter after collimation; the incident beam is split The device is divided into a transmission part and a reflection part, the transmission part reaches the moving mirror of the interferometer, and the reflection part reaches the fixed mirror of the interferometer; the two parts of the beams are reflected and return to the original way respectively, the reflected beam from the moving mirror and the transmitted beam from the fixed mirror pass through. The converging lens is imaged at the focal plane, and at the same time, an interference signal is generated, and the detector records the interference signal. The time-modulated interferometric spectrometer generates the time-series interferogram of the radiation of the object surface pixel through the movement of the moving mirror inside the system.
时间调制型干涉光谱仪的核心是高精度的动镜扫描系统。动镜动镜扫描系统的主要技术指标有:方向准确性、速度均匀性和最大运动行程。若动镜运动过程中发生倾斜或者横移,将会导致干涉效率退化,甚至不能发生干涉,在可见光波段对方向准确性性要求尤为苛刻;若动镜运动过程中速度不均匀,有可能导致光谱中出现“鬼线”,严重影响后期数据处理;动镜最大运动行程决定光谱仪所能达到的最大光程差,最大光程差与干涉光谱仪光谱分辨率密切相关。The core of the time-modulated interferometric spectrometer is a high-precision moving mirror scanning system. The main technical indicators of the moving mirror moving mirror scanning system are: direction accuracy, speed uniformity and maximum movement stroke. If the moving mirror tilts or traverses during the movement, the interference efficiency will be degraded, or even no interference will occur. The requirements for directional accuracy are particularly stringent in the visible light band; if the speed of the moving mirror is uneven during the movement, it may lead to spectral There is a "ghost line" in the middle, which seriously affects the later data processing; the maximum motion of the moving mirror determines the maximum optical path difference that the spectrometer can achieve, and the maximum optical path difference is closely related to the spectral resolution of the interference spectrometer.
传统的动镜扫描系统主要有三种,具体为基于直线轴承支撑的动镜扫描系统、基于面弹簧支撑的动镜扫描系统和基于磁悬浮支撑的动镜扫描系统。There are mainly three kinds of traditional moving mirror scanning systems, specifically the moving mirror scanning system based on linear bearing support, the moving mirror scanning system based on surface spring support and the moving mirror scanning system based on magnetic suspension support.
基于直线轴承支撑的动镜扫描系统的关键部件直线轴承加工精度要求高、维护保养困难,并且随着磨损增加,轴承精度降低,动镜扫描系统的扫描精度也会降低,直接影响干涉光谱仪的测量精度。The key components of the moving mirror scanning system based on linear bearing support Linear bearings require high machining accuracy and are difficult to maintain. With the increase of wear and tear, the bearing accuracy decreases, and the scanning accuracy of the moving mirror scanning system also decreases, which directly affects the measurement of the interferometric spectrometer. precision.
基于面弹簧支撑的动镜扫描系统通常采用平行四边形结构保证动镜与光轴垂直,随着动镜运动行程的增大,动镜耦合位移会增大,耦合位移过大会导致干涉效率退化。The moving mirror scanning system based on the surface spring usually adopts a parallelogram structure to ensure that the moving mirror is perpendicular to the optical axis. With the increase of the moving stroke of the moving mirror, the coupling displacement of the moving mirror will increase. If the coupling displacement is too large, the interference efficiency will be degraded.
基于磁悬浮支撑的动镜扫描系统具有无摩擦、无磨损、可靠性高的优点,但存在磁悬浮技术路线复杂,研制成本高,系统质量体积大的缺点。The moving mirror scanning system based on magnetic levitation support has the advantages of no friction, no wear and high reliability, but it has the disadvantages of complex magnetic levitation technology route, high development cost and large system mass.
发明内容SUMMARY OF THE INVENTION
基于上述背景,为了克服传统动镜扫描系统精度低、成本高、质量体积大的缺点,本发明提供了一种基于对称式柔性支撑机构的干涉光谱仪动镜扫描系统。Based on the above background, in order to overcome the disadvantages of low precision, high cost, and large mass and volume of the traditional moving mirror scanning system, the present invention provides a moving mirror scanning system for an interference spectrometer based on a symmetrical flexible support mechanism.
本发明的技术方案是:The technical scheme of the present invention is:
一种基于对称式柔性支撑机构的干涉光谱仪动镜扫描系统,其特殊之处在于:包括动镜、定镜、激光器、分束器、动镜运动驱动单元、动镜运动控制单元、动镜运动反馈单元、用于支撑动镜的支撑机构和扫描系统底座;A moving mirror scanning system of an interference spectrometer based on a symmetrical flexible support mechanism is special in that it includes a moving mirror, a fixed mirror, a laser, a beam splitter, a moving mirror motion drive unit, a moving mirror motion control unit, and a moving mirror motion Feedback unit, supporting mechanism for supporting the moving mirror and scanning system base;
所述支撑机构为对称式柔性支撑机构,安装在所述扫描系统底座上;对称式柔性支撑机构包括第一动臂、第二动臂、第三动臂、第四动臂、第一固定体、第二固定体和运动体;The support mechanism is a symmetrical flexible support mechanism, which is installed on the base of the scanning system; the symmetrical flexible support mechanism includes a first boom, a second boom, a third boom, a fourth boom, and a first fixed body , the second fixed body and the moving body;
第一固定体、运动体和第二固定体沿光轴依次分布,且三者的几何中心均位于所述光轴上;第一固定体与第二固定体关于运动体对称;The first fixed body, the moving body and the second fixed body are sequentially distributed along the optical axis, and the geometric centers of the three are located on the optical axis; the first fixed body and the second fixed body are symmetrical with respect to the moving body;
第一动臂、第二动臂、第三动臂、第四动臂结构、尺寸均相同;The structure and size of the first boom, the second boom, the third boom and the fourth boom are the same;
第一动臂包括第一中间体以及依次设置在第一中间体上的、相互平行的第一补偿体、第一连接体、第二连接体和第二补偿体;第一动臂通过所述第一连接体和第二连接体与所述运动体相连,通过所述第一补偿体与所述第一固定体相连,通过所述第二补偿体与所述第二固定体相连;The first boom includes a first intermediate body and a first compensating body, a first connecting body, a second connecting body and a second compensating body which are sequentially arranged on the first intermediate body and are parallel to each other; the first boom passes through the The first connecting body and the second connecting body are connected with the moving body, connected with the first fixed body through the first compensation body, and connected with the second fixed body through the second compensation body;
初始状态下,第一补偿体、第一连接体、第二连接体、第二补偿体均与第一中间体保持垂直;In the initial state, the first compensating body, the first connecting body, the second connecting body and the second compensating body are all kept perpendicular to the first intermediate body;
第一补偿体和第一连接体之间的间距与第二连接体和第二补偿体之间的间距相等;第一补偿体与第二补偿体的长度相等;第一连接体与第二连接体的长度相等;The spacing between the first compensating body and the first connecting body is equal to the spacing between the second connecting body and the second compensating body; the lengths of the first compensating body and the second compensating body are equal; the first connecting body and the second connecting body are equal the length of the body is equal;
第二动臂包括第二中间体以及依次设置在第二中间体上的、相互平行的第三补偿体、第三连接体、第四连接体和第四补偿体;第二动臂通过所述第三连接体、第四连接体与所述运动体相连,通过所述第三补偿体与所述第一固定体相连,通过所述第四补偿体与所述第二固定体相连;The second boom includes a second intermediate body and a third compensating body, a third connecting body, a fourth connecting body and a fourth compensating body which are arranged on the second intermediate body in sequence and parallel to each other; the second boom passes through the The third connecting body and the fourth connecting body are connected with the moving body, connected with the first fixed body through the third compensation body, and connected with the second fixed body through the fourth compensation body;
第三动臂包括第三中间体以及依次设置在第三中间体上的、相互平行的第五补偿体、第五连接体、第六连接体和第六补偿体;第三动臂通过所述第五连接体和第六连接体与所述运动体相连,通过所述第五补偿体与所述第一固定体相连,通过所述第六补偿体与所述第二固定体相连;The third boom includes a third intermediate body and a fifth compensating body, a fifth connecting body, a sixth connecting body and a sixth compensating body which are arranged on the third intermediate body in sequence and are parallel to each other; the third boom passes through the The fifth connecting body and the sixth connecting body are connected with the moving body, connected with the first fixed body through the fifth compensation body, and connected with the second fixed body through the sixth compensation body;
第四动臂包括第四中间体以及依次设置在第四中间体上的、相互平行的第七补偿体、第七连接体、第八连接体和第八补偿体;第四动臂通过所述第七连接体和第八连接体与所述运动体相连,通过所述第七补偿体与所述第一固定体相连,通过所述第八补偿体与所述第二固定体相连;The fourth boom includes a fourth intermediate body and a seventh compensating body, a seventh connecting body, an eighth connecting body and an eighth compensating body that are arranged on the fourth intermediate body in sequence and are parallel to each other; the fourth boom passes through the The seventh connecting body and the eighth connecting body are connected with the moving body, connected with the first fixed body through the seventh compensation body, and connected with the second fixed body through the eighth compensation body;
第一动臂、第二动臂、第三动臂、第四动臂在空间内关于运动体中心对称,其中,第一动臂与第三动臂呈180度分布,第二动臂与第四动臂呈180度分布;The first boom, the second boom, the third boom, and the fourth boom are symmetrical about the center of the moving body in space, wherein the first boom and the third boom are distributed at 180 degrees, and the second boom and the The four booms are distributed 180 degrees;
所有连接体、补偿体均为柔性铰链;All connecting bodies and compensating bodies are flexible hinges;
所述动镜与对称式柔性支撑机构中运动体的位移输出端连接;The moving mirror is connected with the displacement output end of the moving body in the symmetrical flexible support mechanism;
动镜运动驱动单元的输出端与所述对称式柔性支撑机构中运动体的位移输入端连接;The output end of the moving mirror motion driving unit is connected with the displacement input end of the moving body in the symmetrical flexible support mechanism;
所述动镜运动驱动单元的输出端与所述对称式柔性支撑机构中运动体的位移输入端连接。The output end of the moving mirror motion driving unit is connected with the displacement input end of the moving body in the symmetrical flexible support mechanism.
进一步地,所述柔性铰链为倒圆角直梁型柔性铰链。Further, the flexible hinge is a rounded straight beam type flexible hinge.
进一步地,所述对称式柔性支撑机构为整体式结构,是用整块弹性性能良好的金属材料加工而成;非柔性铰链部分采用机械铣削加工工艺加工,加工完成后去应力;柔性铰链部分采用电火花切割工艺加工或慢走丝线切割加工工艺。Further, the symmetrical flexible support mechanism is an integral structure, which is made of a whole piece of metal material with good elastic properties; the non-flexible hinge part is processed by mechanical milling processing technology, and the stress is relieved after processing; the flexible hinge part is made of EDM or WEDM.
进一步地,所述金属材料为铍青铜、锡青铜、硅青铜或碳素弹簧钢。Further, the metal material is beryllium bronze, tin bronze, silicon bronze or carbon spring steel.
进一步地,激光器输出的激光经分束器分为两束光线,分别到达动镜和定镜,两束光线经动镜和定镜反射原路返回,经分束器后发生干涉,得到检测干涉信号;Further, the laser output from the laser is divided into two beams of light by the beam splitter, which reach the moving mirror and the fixed mirror respectively. The two beams of light are reflected by the moving mirror and the fixed mirror and return to the original path. Signal;
动镜运动反馈单元,包括传感器和传感电路;传感器用于检测和收集所述检测干涉信号并对其进行光电转换,输出电信号;传感电路对所述电信号处理后产生干涉脉冲,所述干涉脉冲作为动镜位置反馈信号输入至动镜运动控制单元;The moving mirror motion feedback unit includes a sensor and a sensing circuit; the sensor is used to detect and collect the detection interference signal, perform photoelectric conversion on it, and output an electrical signal; the sensing circuit generates an interference pulse after processing the electrical signal, so the The interference pulse is input to the moving mirror motion control unit as the moving mirror position feedback signal;
动镜运动控制单元,包括反馈信号捕捉模块和反馈信号计算模块;反馈信号捕捉模块用于捕捉动镜运动反馈单元产生的动镜位置反馈信号;反馈信号计算模块用于对所述动镜位置反馈信号进行控制处理,产生用于控制动镜运动驱动单元产生的驱动力的大小和方向的控制信号,实现动镜的闭环控制;The moving mirror motion control unit includes a feedback signal capture module and a feedback signal calculation module; the feedback signal capture module is used to capture the moving mirror position feedback signal generated by the moving mirror motion feedback unit; the feedback signal calculation module is used to feedback the position of the moving mirror The signal is controlled and processed to generate a control signal for controlling the magnitude and direction of the driving force generated by the moving mirror motion drive unit, so as to realize the closed-loop control of the moving mirror;
动镜运动驱动单元根据所述控制信号,驱动所述运动体沿光路方向作往复运动。The moving mirror movement driving unit drives the moving body to reciprocate along the direction of the optical path according to the control signal.
进一步地,动镜运动驱动单元包括直线电机和直线电机底座,直线电机通过直线电机底座固定安装在扫描系统底座上部;直线电机包括定子和动子;定子固定在直线电机底座上;动子的永磁体与对称式柔性支撑机构中运动体的位移输入端连接。Further, the moving mirror motion drive unit includes a linear motor and a linear motor base, and the linear motor is fixedly installed on the upper part of the scanning system base through the linear motor base; the linear motor includes a stator and a mover; the stator is fixed on the linear motor base; The magnet is connected with the displacement input end of the moving body in the symmetrical flexible support mechanism.
本发明的有益效果:Beneficial effects of the present invention:
1.本发明适用于时间调制型干涉光谱仪,通过为动镜扫描系统中的动镜设计特殊结构的对称式柔性支撑机构,采用柔性铰链实现运动传递,具有无隙传动、无摩擦等优点,有效保证了机构的运动精度。1. The present invention is suitable for time-modulated interference spectrometers. By designing a symmetrical flexible support mechanism with a special structure for the moving mirror in the moving mirror scanning system, the flexible hinge is used to realize motion transmission, which has the advantages of gapless transmission and frictionless, and is effective. The movement accuracy of the mechanism is guaranteed.
2.本发明中对称式柔性支撑机构单个动臂内形成双平行四边形嵌套结构,可有效增大动镜运动的行程,并且具有补偿功能,有利于提高成像光谱仪的光谱分辨率。2. In the present invention, a single movable arm of the symmetrical flexible support mechanism forms a double parallelogram nested structure, which can effectively increase the travel of the movable mirror, and has a compensation function, which is beneficial to improve the spectral resolution of the imaging spectrometer.
3.本发明中对称式柔性支撑机构采用对称式设计,包括各个平行四边形和各单元的对称,增加了运动的可靠性,可保证动镜运动的方向准确性。3. The symmetrical flexible support mechanism in the present invention adopts a symmetrical design, including the symmetry of each parallelogram and each unit, which increases the reliability of movement and ensures the directional accuracy of the movement of the moving mirror.
4.本发明中对称式柔性支撑机构第一动臂、第二动臂、第三动臂、第四动臂在空间内关于运动体呈中心对称,能够极大程度降低动镜镜面的倾斜量和横移量,提升成像光谱仪的调制效率,增大干涉区域。4. In the present invention, the first movable arm, the second movable arm, the third movable arm and the fourth movable arm of the symmetrical flexible support mechanism are centrally symmetric with respect to the moving body in space, which can greatly reduce the inclination of the mirror surface of the moving mirror. and transverse shift, improve the modulation efficiency of the imaging spectrometer and increase the interference area.
5.本发明中动镜驱动单元采用定线圈、动磁的驱动方式,避免了线圈引线的频繁拉扯导致的引线断裂故障,确保了整个系统的运动可靠性。5. In the present invention, the moving mirror drive unit adopts a fixed coil and moving magnet drive mode, which avoids the lead wire breakage caused by frequent pulling of the coil lead wire, and ensures the movement reliability of the entire system.
6.本发明对动镜进行闭环控制,保证了动镜运动的速度均匀性。6. The present invention performs closed-loop control on the moving mirror to ensure the speed uniformity of the moving mirror.
7.本发明具有运动方向准确、运动速度均匀、运动行程大的优势,适用于精细光谱探测。7. The present invention has the advantages of accurate movement direction, uniform movement speed and large movement stroke, and is suitable for fine spectral detection.
8.本发明中的对称式柔性支撑机构为整体结构,避免了装配带来的误差。8. The symmetrical flexible support mechanism in the present invention is an integral structure, which avoids errors caused by assembly.
9.本发明结构简单紧凑、成本低、寿命长。9. The present invention has simple and compact structure, low cost and long service life.
附图说明Description of drawings
图1是时间调制型干涉光谱仪工作原理图。Figure 1 is a working principle diagram of a time-modulated interference spectrometer.
图2是本发明干涉光谱仪动镜扫描系统的系统总体示意图。FIG. 2 is a schematic diagram of the overall system of the moving mirror scanning system of the interference spectrometer according to the present invention.
图3是本发明干涉光谱仪动镜扫描系统的结构总体示意图。FIG. 3 is a schematic diagram of the overall structure of the moving mirror scanning system of the interference spectrometer according to the present invention.
图4是本发明中对称式柔性支撑机构的结构示意图。FIG. 4 is a schematic structural diagram of the symmetrical flexible support mechanism in the present invention.
图5是本发明中扫描系统底座的结构示意图。FIG. 5 is a schematic structural diagram of the base of the scanning system in the present invention.
图6a-图6d分别是本发明中第一动臂、第二动臂、第三动臂、第四动臂的结构示意图。6a-6d are respectively schematic structural diagrams of the first boom, the second boom, the third boom and the fourth boom in the present invention.
图7是本发明中倒圆角直梁型柔性铰链的结构示意图。FIG. 7 is a schematic structural diagram of the rounded straight beam type flexible hinge in the present invention.
图8是本发明中动镜驱动单元的结构示意图。FIG. 8 is a schematic structural diagram of a moving mirror driving unit in the present invention.
图9是本发明中对称式柔性支撑机构的运动原理示意图。FIG. 9 is a schematic diagram of the movement principle of the symmetrical flexible support mechanism in the present invention.
附图标记说明:Description of reference numbers:
1-动镜;1 - moving mirror;
2-对称式柔性支撑机构;2- Symmetrical flexible support mechanism;
21-第一动臂;211-第一连接体;212-第二连接体;213-第一补偿体;214-第二补偿体;215-第一中间体;21-first boom; 211-first connecting body; 212-second connecting body; 213-first compensating body; 214-second compensating body; 215-first intermediate body;
22-第二动臂;221-第三连接体;222-第四连接体;223-第三补偿体;224-第四补偿体;225-第二中间体;22- the second boom; 221- the third connecting body; 222- the fourth connecting body; 223- the third compensating body; 224- the fourth compensating body; 225- the second intermediate body;
23-第三动臂;231-第五连接体;232-第六连接体;233-第五补偿体;234-第六补偿体;235-第三中间体;23 - the third boom; 231 - the fifth connecting body; 232 - the sixth connecting body; 233 - the fifth compensating body; 234 - the sixth compensating body; 235 - the third intermediate body;
24-第四动臂;241-第七连接体;242-第八连接体;243-第七补偿体;244-第八补偿体;245-第四中间体;24- the fourth boom; 241- the seventh connecting body; 242- the eighth connecting body; 243- the seventh compensating body; 244- the eighth compensating body; 245- the fourth intermediate body;
25-第一固定体;26-第二固定体;27-运动体;25-first fixed body; 26-second fixed body; 27-movement body;
3-直线电机底座;3-Linear motor base;
4-扫描系统底座;41-连接孔;42-连接孔;4-scanning system base; 41-connection hole; 42-connection hole;
5-直线电机;51-定子;52-动子。5-Linear motor; 51-Stator; 52-Motor.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
如图2、3所示,本发明所提供的干涉光谱仪动镜扫描系统,包括动镜1、定镜、激光器、分束器、动镜运动反馈单元、动镜运动控制单元、对称式柔性支撑机构、动镜运动驱动单元、扫描系统底座4。As shown in Figures 2 and 3, the interferometric spectrometer moving mirror scanning system provided by the present invention includes a moving mirror 1, a fixed mirror, a laser, a beam splitter, a moving mirror motion feedback unit, a moving mirror motion control unit, and a symmetrical flexible support Mechanism, moving mirror motion drive unit, scanning system base 4.
激光器用于提供稳定光源,为扫描系统产生位置检测干涉信号。激光器输出的激光经分束器分为两束光线,分别到达动镜和定镜,两束光线经动镜和定镜反射原路返回,经分束器后发生干涉,得到位置检测干涉信号;The laser is used to provide a stable light source and generate a position detection interference signal for the scanning system. The laser output from the laser is divided into two beams of light by the beam splitter, which reach the moving mirror and the fixed mirror respectively. The two beams of light are reflected by the moving mirror and the fixed mirror and return to the original path. After the beam splitter, interference occurs, and the position detection interference signal is obtained;
动镜运动反馈单元,包括传感器和传感电路;传感器用于检测和收集位置检测干涉信号;传感电路用于对传感器检测和收集到的位置检测干涉信号进行光电转换和信号处理产生干涉脉冲,该干涉脉冲作为动镜位置反馈信号;The moving mirror motion feedback unit includes a sensor and a sensing circuit; the sensor is used to detect and collect position detection interference signals; the sensing circuit is used to perform photoelectric conversion and signal processing on the position detection interference signals detected and collected by the sensor to generate interference pulses, The interference pulse is used as the moving mirror position feedback signal;
动镜运动控制单元,包括反馈信号捕捉模块和反馈信号计算模块。反馈信号捕捉模块用于捕捉动镜运动反馈单元产生的动镜位置反馈信号,反馈信号计算模块利用上位机对动镜位置反馈信号进行控制处理(可采用传统的PID控制、鲁棒控制、自适应控制或者最新的智能控制等),实现动镜1的闭环控制,产生用于控制动镜驱动单元产生的驱动力的大小和方向的控制信号,以保证动镜的速度稳定。The moving mirror motion control unit includes a feedback signal capture module and a feedback signal calculation module. The feedback signal capture module is used to capture the moving mirror position feedback signal generated by the moving mirror motion feedback unit, and the feedback signal calculation module uses the host computer to control and process the moving mirror position feedback signal (traditional PID control, robust control, adaptive Control or the latest intelligent control, etc.), realize the closed-loop control of the moving mirror 1, and generate a control signal for controlling the magnitude and direction of the driving force generated by the moving mirror drive unit, so as to ensure the speed of the moving mirror is stable.
对称式柔性支撑机构2用于支撑动镜1。The symmetrical
动镜运动驱动单元,包括直线电机5和直线电机底座3。直线电机底座3用于支撑直线电机5,直线电机5根据动镜运动控制单元输出的控制信号,驱动动镜1沿光路方向作往复运动;扫描系统底座4用于将整个干涉光谱仪动镜扫描系统固定于干涉仪底板上,以及用于固定支撑对称式柔性支撑机构2和动镜驱动单元;扫描系统底座4上部设置有第一连接孔41,下部设置有第二连接孔42;第一连接孔41用于连接固定对称式柔性支撑机构2和动镜驱动单元;第二连接孔42用于实现与干涉仪的连接。The moving mirror motion drive unit includes a
如图3、4、5所示,对称式柔性支撑机构2通过连接孔41安装在扫描系统底座4上,对称式柔性支撑机构2包括第一动臂21、第二动臂22、第三动臂23、第四动臂24、第一固定体25、第二固定体26和运动体27;As shown in FIGS. 3 , 4 and 5 , the symmetrical
第一固定体25、运动体27和第二固定体26沿光轴依次分布,且三者的几何中心均位于所述光轴上;第一固定体25与第二固定体26关于运动体27对称;The first
第一动臂21、第二动臂22、第三动臂23、第四动臂24在空间内关于运动体27呈中心对称设置,其中,第一动臂21与第三动臂23呈180度分布,第二动臂22与第四动臂24呈180度分布;The first boom 21 , the
第一动臂21、第二动臂22、第三动臂23、第四动臂24结构、尺寸完全相同。The first boom 21 , the
如图6a所示,第一动臂21包括第一连接体211、第二连接体212、第一补偿体213、第二补偿体214和第一中间体215;第一中间体215为长条状,第一连接体211和第二连接体212对称设置在第一中间体215的中部,第一补偿体213和第二补偿体214对称设置在第一中间体215的两端部;第一补偿体(213)和第一连接体(211)之间的间距与第二连接体(212)和第二补偿体(214)之间的间距相等,具体间距可根据实际需求进行设计;第一补偿体(213)与第二补偿体(214)的长度相等,具体间距可根据实际需求进行设计;第一连接体(211)与第二连接体(212)的长度相等,具体间距可根据实际需求进行设计。As shown in FIG. 6a, the first boom 21 includes a first connecting
如图6b所示,第二动臂22包括第三连接体221、第四连接体222、第三补偿体223、第四补偿体224和第二中间体225;第二中间体225为长条状,第三连接体221和第四连接体222对称设置在第二中间体225的中部,第三补偿体223和第四补偿体224对称设置在第二中间体225的两端部。As shown in FIG. 6b, the
如图6c所示,第三动臂23包括第五连接体231、第六连接体232、第五补偿体233、第六补偿体234和第三中间体235;第三中间体235为长条状,第五连接体231和第六连接体232对称设置在第三中间体235的中部,第五补偿体233和第六补偿体234对称设置在第三中间体235的两端部。As shown in FIG. 6c, the
如图6d所示,第四动臂24包括第七连接体241、第八连接体242、第七补偿体243、第八补偿体244和第四中间体245;第四中间体245为长条状,第七连接体241、第八连接体242对称设置在第四中间体245的中部,第七补偿体243、第八补偿体244对称设置在第四中间体245的两端部。As shown in FIG. 6d, the
运动体27通过第一连接体211、第二连接体212,第三连接体221、第四连接体222,第五连接体231、第六连接体232,第七连接体241、第八连接体242分别与第一动臂21、第二动臂22、第三动臂23、第四动臂24连接;The moving
第一固定体25通过第一补偿体213、第三补偿体223、第五补偿体233、第七补偿体243分别与第一动臂21、第二动臂22、第三动臂23、第四动臂24连接;The first
第二固定体26通过第二补偿体214、第四补偿体224、第六补偿体234、第八补偿体244分别与第一动臂21、第二动臂22、第三动臂23、第四动臂24连接;The second
第一动臂21上的第一连接体211、第二连接体212和第一中间体215构成第一平行四边形,第一补偿体213、第二补偿体214和第一中间体215构成第二平行四边形;第一平行四边形与第二平行四边形相互嵌套。第二动臂22-第四动臂24与第一动臂21结构相同,在此不再赘述。The first connecting
第一动臂21、第二动臂22、第三动臂23、第四动臂24上的所有连接体和补偿体均为柔性铰链,如图7所示,第一动臂21包含的第一连接体211、第二连接体212、第一补偿体213、第二补偿体214均采用倒圆角直梁型柔性铰链。第二动臂22、第三动臂23、第四动臂24包含的所有连接体、补偿体均采用倒圆角直梁型柔性铰链。All connecting bodies and compensating bodies on the first boom 21 , the
上述的对称式柔性支撑机构2为整体式结构,包括柔性铰链在内的整个机构是用整块弹性较好的金属材料(例如铍青铜、锡青铜、硅青铜或碳素弹簧钢)加工而成。非柔性铰链部分采用传统机械铣削加工工艺加工,这样有利于节约加工成本,加工完成后去应力,可以有效地降低残余应力对结构精度的影响;柔性铰链部分采用电火花切割工艺加工或其他高精度加工工艺加工(例如慢走丝线切割加工工艺),柔性铰链均为倒圆角直梁型柔性铰链;在驱动力相同的情况下,倒圆角直梁型柔性铰链更易产生更大的转角偏移量,同时可以较好改善应力集中,提高机构寿命。The above-mentioned symmetrical
如图8所示,动镜驱动单元包括直线电机5和直线电机底座3,直线电机5通过直线电机底座3固定安装在扫描系统底座4的连接孔41处;直线电机5包括定子51和动子52。定子51由外轭铁和线圈组成,定子51固定在直线电机底座3上;动子52由永磁体和内轭铁组成,永磁体与对称式柔性支撑机构2中运动体27的位移输入端连接;动镜1与支撑机构运动体27位移输出端连接。将驱动电压施加于定子51的线圈,会产生磁场,磁场的方向会随流过线圈的电流方向改变而改变,磁场强度会随流过线圈的电流大小改变而改变,线圈所产生的磁场会与动子52的永磁体产生的磁场相互作用(吸引或排斥力)。当动子52的永磁体与定子51的线圈产生磁力时,会推动动镜1沿光路方向作往复运动。As shown in FIG. 8 , the moving mirror drive unit includes a
如图9所示,以对称式柔性支撑机构2的1/4部分为例,说明对称式柔性支撑机构2的工作原理。As shown in FIG. 9 , the working principle of the symmetrical
初始状态下,各动臂上的补偿体和连接体均与相应的中间体保持垂直;In the initial state, the compensating body and the connecting body on each boom are vertical to the corresponding intermediate body;
干涉光谱仪动镜扫描系统中动镜驱动单元的直线电机5根据动镜运动控制单元的输出指令,驱动对称式柔性支撑机构2的运动体27运动,运动体27的运动传至第一动臂21的第一连接体211和第二连接体212,第一动臂21的第一连接体211和第二连接体212均产生角度为β的旋转;The
然后,第一动臂21的第一连接体211和第二连接体212的运动传至第一动臂21的中间体215,此时第一动臂21的中间体215会沿平行于光轴方向产生位移dz,同时也会向运动体27侧移,产生侧移位移dx;Then, the movement of the first connecting
第一动臂21的中间体215的运动再传至第一动臂21的第一补偿体213和第二补偿体214,第一动臂1的第一补偿体213和第二补偿体214均产生角度为α的旋转,此运动过程中动镜1沿光路方向运动了距离L。The motion of the
对于对称式柔性支撑机构2整体结构而言,由于第一动臂21、第二动臂22、第三动臂23、第四动臂24在结构上具有一致性,并且第一动臂21、第二动臂22、第三动臂23、第四动臂24在空间位置上具有对称性,因此可以有效地保证动镜1运动方向的准确性。For the overall structure of the symmetric
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010300281.8A CN113532648B (en) | 2020-04-16 | 2020-04-16 | Interference spectrometer moving mirror scanning system based on symmetrical flexible supporting mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010300281.8A CN113532648B (en) | 2020-04-16 | 2020-04-16 | Interference spectrometer moving mirror scanning system based on symmetrical flexible supporting mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113532648A CN113532648A (en) | 2021-10-22 |
CN113532648B true CN113532648B (en) | 2022-10-04 |
Family
ID=78088401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010300281.8A Active CN113532648B (en) | 2020-04-16 | 2020-04-16 | Interference spectrometer moving mirror scanning system based on symmetrical flexible supporting mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113532648B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114397017B (en) * | 2021-12-17 | 2024-05-03 | 光子集成(温州)创新研究院 | Moving mirror scanning device, michelson interferometer and Fourier infrared spectrometer |
CN114967115B (en) * | 2022-04-27 | 2023-05-02 | 中国科学院西安光学精密机械研究所 | A large-stroke phase-shifting scanning device driven by a voice coil motor |
CN115615550B (en) * | 2022-10-21 | 2024-03-19 | 中船重工安谱(湖北)仪器有限公司 | Linear type movable mirror mechanism |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088649A (en) * | 1998-09-17 | 2000-03-31 | Nippon Telegr & Teleph Corp <Ntt> | Interferometer for fourier transform spectroscopy |
CN101745915A (en) * | 2008-12-19 | 2010-06-23 | 中国科学院沈阳自动化研究所 | Rectilinear translation planar nine-bar mechanism and method for constructing a rectilinear translation motion mechanism |
CN102623070A (en) * | 2012-03-30 | 2012-08-01 | 中国科学院长春光学精密机械与物理研究所 | A two-degree-of-freedom micro-displacement precision positioning device |
CN109669253A (en) * | 2019-01-31 | 2019-04-23 | 中国科学院西安光学精密机械研究所 | Large caliber reflecting mirror vibration damping flexible support structure and mirror assembly |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE527274C2 (en) * | 2004-06-01 | 2006-01-31 | Cellavision Ab | Microscope system including arrangements for positioning a platform |
-
2020
- 2020-04-16 CN CN202010300281.8A patent/CN113532648B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000088649A (en) * | 1998-09-17 | 2000-03-31 | Nippon Telegr & Teleph Corp <Ntt> | Interferometer for fourier transform spectroscopy |
CN101745915A (en) * | 2008-12-19 | 2010-06-23 | 中国科学院沈阳自动化研究所 | Rectilinear translation planar nine-bar mechanism and method for constructing a rectilinear translation motion mechanism |
CN102623070A (en) * | 2012-03-30 | 2012-08-01 | 中国科学院长春光学精密机械与物理研究所 | A two-degree-of-freedom micro-displacement precision positioning device |
CN109669253A (en) * | 2019-01-31 | 2019-04-23 | 中国科学院西安光学精密机械研究所 | Large caliber reflecting mirror vibration damping flexible support structure and mirror assembly |
Non-Patent Citations (3)
Title |
---|
一种低耦合位移动镜支撑机构静动态性能分析;肖前进等;《红外与激光工程》;20130425(第04期);全文 * |
基于大位移柔性结构的动镜支撑机构设计及研究;张明月等;《红外与激光工程》;20140831;第43卷(第8期);全文 * |
柔性双补偿杆式动镜支撑机构的设计;柳华等;《光学精密工程》;20110630(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113532648A (en) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113532648B (en) | Interference spectrometer moving mirror scanning system based on symmetrical flexible supporting mechanism | |
US5172002A (en) | Optical position sensor for scanning probe microscopes | |
US7068377B2 (en) | System and method for surface profiling a target object | |
US6229607B1 (en) | Fine movement mechanism unit and scanning probe microscope | |
CN108873320B (en) | Two-dimensional rapid control reflector | |
CN108646374B (en) | High-precision compact focusing mechanism for aviation optical remote sensor and assembly method | |
CN116400476A (en) | Moving coil type quick reflector based on flexible support | |
CN112902826B (en) | Lever type surface profile measuring sensor | |
CN116295105B (en) | Optical interference type micro-machined wafer surface morphology measuring device and measuring method | |
CN113532642B (en) | Symmetrical flexible supporting mechanism | |
CN212363429U (en) | A symmetrical flexible support mechanism | |
CN208795907U (en) | High-precision compact focusing mechanism for aerial optical remote sensor | |
CN119238180A (en) | Long-stroke quick cutter servo system integrated with axial cutting force detection executing mechanism | |
CN114719754B (en) | High-speed rail simple beam expansion joint micrometer displacement low-coherence optical monitoring system and method | |
CN217404627U (en) | Rapid reflector system based on transmission type application of eddy current sensor | |
CN114396893B (en) | Optical fiber transmission type passive angular displacement measuring device based on graded index lens | |
CN115388772A (en) | Ultra-precise shape and position error measuring instrument with cross motion surface and dynamics conforming to Abbe's principle | |
CN111474734B (en) | A large-range high-response optical confocal probe | |
CN114839762A (en) | Rapid reflector system based on transmissive application of eddy current sensor | |
CN114967115B (en) | A large-stroke phase-shifting scanning device driven by a voice coil motor | |
CN116719145B (en) | Two-dimensional non-frame large-angle quick reflector | |
Gabor | Actuators for a segmented mirror control system | |
CN112525080A (en) | Suspension contact pin displacement sensor based on differential polarization interference and detection method | |
CN111474733B (en) | A large-range high-response double-objective optical independent confocal measuring head | |
CN117781851B (en) | A multi-level correction method for closed-loop piezoelectric driven phase shifter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |