CN113428898B - 液态盐合成铌酸钠钾纳米管及其制备方法 - Google Patents
液态盐合成铌酸钠钾纳米管及其制备方法 Download PDFInfo
- Publication number
- CN113428898B CN113428898B CN202110700476.6A CN202110700476A CN113428898B CN 113428898 B CN113428898 B CN 113428898B CN 202110700476 A CN202110700476 A CN 202110700476A CN 113428898 B CN113428898 B CN 113428898B
- Authority
- CN
- China
- Prior art keywords
- sodium
- potassium
- preparation
- potassium niobate
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000003839 salts Chemical class 0.000 title claims abstract description 36
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000002071 nanotube Substances 0.000 title claims abstract description 23
- 239000007788 liquid Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims abstract description 24
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 17
- 235000010333 potassium nitrate Nutrition 0.000 claims abstract description 12
- 239000004323 potassium nitrate Substances 0.000 claims abstract description 12
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 12
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- 239000000376 reactant Substances 0.000 claims abstract description 6
- 239000012266 salt solution Substances 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 7
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- 229910001414 potassium ion Inorganic materials 0.000 abstract description 5
- 229910001415 sodium ion Inorganic materials 0.000 abstract description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 4
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052708 sodium Inorganic materials 0.000 abstract description 4
- 239000011734 sodium Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000003980 solgel method Methods 0.000 description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
- C01G33/006—Compounds containing niobium, with or without oxygen or hydrogen, and containing two or more other elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62665—Flame, plasma or melting treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明提供一种液态盐合成铌酸钠钾纳米管及其制备方法,所述制备方法包括:(1)将硝酸钠和硝酸钾按照一定的比例混合作为混合盐,将所述混合盐加热至形成液态盐溶液;(2)加入一定量的氯化铌粉末,并持续搅拌,反应5‑10分钟后,将上述反应物自然冷却至室温;(3)用去离子水清洗后,置于恒温烘箱中50~80℃干燥10~24小时,即得铌酸钠钾纳米管粉末。本发明不仅提供了液态的反应环境,能够使反应快速进行,同时还提供了钠离子和钾离子,能够在较低的温度和极短的时间内合成具有均一纳米管形貌的铌酸钠钾,其直径在10~20nm左右。
Description
技术领域
本发明涉及无机纳米材料领域,具体是一种液态盐合成铌酸钠钾纳米管及其制备方法。
背景技术
铌酸钠钾具有较高的居里温度,低的介电常数,广泛应用于无铅压电陶瓷材料,此外,由于铌酸钠钾中还含有一定量的钠离子和钾离子的插层,因此,能够应用于电化学储能电极材料。不管是在压电陶瓷还是在储能器件中的应用,铌酸钠钾的晶体结构、微观形貌、离子含量等后会极大的影响其性能。因此,对铌酸钠钾的形貌结构的调控显得尤为重要。
传统的合成铌酸钠钾的方法主要为固相合成法或溶胶凝胶法,其中,对于固相合成法,其制备工艺中往往存在预烧和高温烧结,因此,容易造成铌酸钠钾中钠离子和钾离子的挥发,从而影响其实际的组成;而溶胶凝胶法常采用昂贵的醇盐作为原料,成本较高;同时,不管是固相合成法还是溶胶凝胶法,其制备得到的铌酸钠钾通常为不规则的颗粒状,而无法实现特殊形貌的制备。
发明内容
针对以上现有技术的不足,本发明的目的在于提供一种液态盐合成铌酸钠钾纳米管及其制备方法。
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
(1)将硝酸钠和硝酸钾按照一定的比例混合作为混合盐,将所述混合盐加热至形成液态盐溶液;
(2)加入一定量的氯化铌粉末,并持续搅拌,反应5-10分钟后,将上述反应物自然冷却至室温;
(3)用去离子水清洗后,置于恒温烘箱中50~80℃干燥10~24小时,即得铌酸钠钾纳米管粉末。
进一步的,步骤(1)中混合盐加热的温度为300~350℃。
进一步的,混合盐中硝酸钠和硝酸钾的摩尔比为1:3~5。
进一步的,步骤(2)中氯化铌与混合盐的质量比为2~5:300~500。
进一步的,步骤(3)中所得铌酸钠钾纳米管粉末的直径为10~20nm。
一种如上述方法制备的液态盐合成铌酸钠钾纳米管。
本发明具有如下有益效果:
1、采用硝酸钠和硝酸钾作为混合盐,将其加热为液态时,一方面能够作为液态反应介质,有利于离子传输,从而能够在极短的时间内完成铌酸钠钾的合成,相比于固相合成法,该方法合成温度低,合成时间短,得到的产物更均匀,能够有效抑制钠离子和钾离子的挥发,相比于溶胶凝胶法,其制备工艺更加简单,成本更低;
2、硝酸钠和硝酸钾作为混合盐不仅提供了液态的反应环境,能够使反应快速进行,同时还提供了钠离子和钾离子(非水合钠离子或水合钾离子),此外,通过调整硝酸钠和硝酸钾混合盐中的比例能够形成具有不同熔点的混合物,因此,合成的温度能够根据硝酸钠和硝酸钾的比例进行调控;
3、本发明能够在较低的温度和极短的时间内合成具有均一纳米管形貌的铌酸钠钾,其直径在10~20nm左右。
附图说明
图1是本发明实施例中得到的铌酸钠钾纳米管的扫描电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
(1)将硝酸钠和硝酸钾按照1:3的摩尔比例混合作为混合盐,将所述混合盐在300℃加热至形成液态盐溶液,(2)加入20mg的氯化铌粉末(其中氯化铌和混合盐的质量比为20mg:3g),并持续搅拌,反应5分钟后,将上述反应物自然冷却至室温,(3)用去离子水清洗后,置于恒温烘箱中60℃干燥12小时,即得铌酸钠钾纳米管粉末。
将上述得到的铌酸钠钾粉末进行扫描电镜测试,如图1所示,所制备的铌酸钠钾粉末具有典型的纳米管结构,其直径约为10~20nm左右。
将上述得到的铌酸钠钾粉末进行X射线光电子能谱分析,得到的铌酸钠钾中各元素的含量比例,如表1所示。其中,元素C的信号来自测试过程中的基底以及引入的杂质。
表1
实施例2
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
(1)将硝酸钠和硝酸钾按照1:4的摩尔比例混合作为混合盐,将所述混合盐在320℃加热至形成液态盐溶液,(2)加入30mg的氯化铌粉末(其中氯化铌和混合盐的质量比为30mg:4g),并持续搅拌,反应8分钟后,将上述反应物自然冷却至室温,(3)用去离子水清洗后,置于恒温烘箱中60℃干燥12小时,即得铌酸钠钾纳米管粉末。
实施例3
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
将硝酸钠和硝酸钾按照1:5的摩尔比例混合作为混合盐,将所述混合盐在350℃加热至形成液态盐溶液,(2)加入50mg的氯化铌粉末(其中氯化铌和混合盐的质量比为50mg:5g),并持续搅拌,反应10分钟后,将上述反应物自然冷却至室温,(3)用去离子水清洗后,置于恒温烘箱中60℃干燥12小时,即得铌酸钠钾纳米管粉末。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
Claims (2)
1.一种液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:包括如下步骤:
(1)将硝酸钠和硝酸钾按照一定的比例混合作为混合盐,将所述混合盐加热至形成液态盐溶液;
(2)加入一定量的氯化铌粉末,并持续搅拌,反应5-10分钟后,将上述反应物自然冷却至室温;
(3)用去离子水清洗后,置于恒温烘箱中50~80℃干燥10~24小时,即得铌酸钠钾纳米管粉末;
步骤(1)中混合盐加热的温度为300~350℃,混合盐中硝酸钠和硝酸钾的摩尔比为1:3~5;
步骤(2)中氯化铌与混合盐的质量比为2~5:300~500。
2.如权利要求1所述的液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:步骤(3)中所得铌酸钠钾纳米管粉末的直径为10~20nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110700476.6A CN113428898B (zh) | 2021-06-23 | 2021-06-23 | 液态盐合成铌酸钠钾纳米管及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110700476.6A CN113428898B (zh) | 2021-06-23 | 2021-06-23 | 液态盐合成铌酸钠钾纳米管及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113428898A CN113428898A (zh) | 2021-09-24 |
CN113428898B true CN113428898B (zh) | 2022-04-22 |
Family
ID=77753599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110700476.6A Active CN113428898B (zh) | 2021-06-23 | 2021-06-23 | 液态盐合成铌酸钠钾纳米管及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113428898B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114572968B (zh) * | 2022-02-22 | 2023-09-08 | 金华职业技术学院 | 一种ZrNb2O6/ZrO2-CNTs复合粉末及制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106673062A (zh) * | 2016-12-20 | 2017-05-17 | 桂林电子科技大学 | 一种碱金属铌酸盐微纳米线材料及其制备方法 |
CN107879375A (zh) * | 2017-11-24 | 2018-04-06 | 安徽理工大学 | 一种可控管径的铌酸盐纳米管材料的制备方法 |
CN109534812A (zh) * | 2018-12-17 | 2019-03-29 | 太原理工大学 | 一种具有微米管的铌酸锶钾微晶粉体的制备方法 |
CN111792934A (zh) * | 2020-07-23 | 2020-10-20 | 淄博新维陶瓷科技有限公司 | 一种铌酸钾钠粉体的合成方法及应用 |
-
2021
- 2021-06-23 CN CN202110700476.6A patent/CN113428898B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106673062A (zh) * | 2016-12-20 | 2017-05-17 | 桂林电子科技大学 | 一种碱金属铌酸盐微纳米线材料及其制备方法 |
CN107879375A (zh) * | 2017-11-24 | 2018-04-06 | 安徽理工大学 | 一种可控管径的铌酸盐纳米管材料的制备方法 |
CN109534812A (zh) * | 2018-12-17 | 2019-03-29 | 太原理工大学 | 一种具有微米管的铌酸锶钾微晶粉体的制备方法 |
CN111792934A (zh) * | 2020-07-23 | 2020-10-20 | 淄博新维陶瓷科技有限公司 | 一种铌酸钾钠粉体的合成方法及应用 |
Non-Patent Citations (1)
Title |
---|
K0.5Na0.5NbO3纳米管阵列的制备及其电学性能研究;钱哲理 等;《湖北大学学报(自然科学版)》;20100925;第32卷(第3期);第290-293页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113428898A (zh) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106495133A (zh) | 高导热柔性石墨烯薄膜制备方法 | |
CN103708828B (zh) | 一种钛酸铋钠-钛酸钡无铅复合压电厚膜的制备方法 | |
CN113428898B (zh) | 液态盐合成铌酸钠钾纳米管及其制备方法 | |
CN112591752B (zh) | 利用熔盐化学反应快速制备V2AlC粉体的方法及其粉体应用 | |
CN106058190A (zh) | 一种锂离子电池用高容量负极材料的制备方法 | |
CN102515755B (zh) | 一种具有高储能密度的锆酸铅基反铁电厚膜及制备方法 | |
CN104030693B (zh) | 一种三元阳离子Ce:LuAG陶瓷荧光粉的制备方法 | |
WO2021016876A1 (zh) | 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法 | |
CN108242554A (zh) | 一种铈酸钡基电解质材料及其制备方法和应用 | |
CN102276254B (zh) | 溶胶凝胶技术掺杂改性钛酸锶钡材料的方法 | |
CN101428856A (zh) | 钽铌酸银纳米粉体的制备方法 | |
CN108946812A (zh) | 碱钨青铜纳米棒及其制备方法和应用 | |
Tadagana et al. | Preparation of AgI‐Al2 O 3 Composites with High Ionic Conductivity Using Al2 O 3 Aerogel and Xerogel | |
Yin et al. | Synergistic Effect of H+ and I− Oxidation Enables Long‐Term Stability of the Precursor Solutions and Enhanced Performance of FA‐Dominated Perovskite Solar Cells | |
CN115353145B (zh) | 一种利用真空等离子场辅助溶胶-凝胶技术制备Sn:(Ba,Ca)TiO3粉体的方法 | |
CN106747421A (zh) | 一种水热法合成晶界层陶瓷电容器用粉体的方法 | |
CN115483458B (zh) | 一种含ZnO的锌基熔盐电池电解质/隔膜材料及其制备方法 | |
CN107591553A (zh) | 一种铒掺杂铈酸锶‑盐酸盐共熔体复合物及其制备方法 | |
CN116571734A (zh) | 一种银颗粒及其制备方法与应用 | |
CN112624201B (zh) | 富锂基正极材料的制备方法 | |
CN108550641A (zh) | 一种碘化铅制备方法及以其为原料的钙钛矿太阳能电池 | |
CN103664168A (zh) | 一种BCTZ-xLa体系多功能电子陶瓷的制备方法 | |
CN108558401A (zh) | 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法 | |
WO2023092844A1 (zh) | 一种陶瓷氧化物固态电解质及其制备方法 | |
CN100457684C (zh) | 一种a1n陶瓷粉体的合成制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |