Nothing Special   »   [go: up one dir, main page]

CN113326664B - 一种基于m5p算法预测玻璃介电常数的方法 - Google Patents

一种基于m5p算法预测玻璃介电常数的方法 Download PDF

Info

Publication number
CN113326664B
CN113326664B CN202110717315.8A CN202110717315A CN113326664B CN 113326664 B CN113326664 B CN 113326664B CN 202110717315 A CN202110717315 A CN 202110717315A CN 113326664 B CN113326664 B CN 113326664B
Authority
CN
China
Prior art keywords
cation
dielectric constant
cluster
model
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110717315.8A
Other languages
English (en)
Other versions
CN113326664A (zh
Inventor
赵谦
赵明
刘鑫
陈阳
匡宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Fiberglass Research and Design Institute Co Ltd
Original Assignee
Nanjing Fiberglass Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Fiberglass Research and Design Institute Co Ltd filed Critical Nanjing Fiberglass Research and Design Institute Co Ltd
Priority to CN202110717315.8A priority Critical patent/CN113326664B/zh
Publication of CN113326664A publication Critical patent/CN113326664A/zh
Application granted granted Critical
Publication of CN113326664B publication Critical patent/CN113326664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于M5P算法预测玻璃介电常数的方法,属于玻璃性能预测技术领域。所述方法通过提供一种新的具有不同对称性的氧化物团簇的原子结构模型的构造方法,并基于第一性原理考虑电子结构,只构造团簇而不构造晶体,从而既可以反映体系的状态,又不增加计算成本,同时保证了介电常数的预测准确度。而且本申请采用M5P模型树构造介电常数预测模型,不需要考虑全局线性回归,M5P模型树将样本特征划分为若干个分段线性回归,树的可解释性更强,而且该算法的训练模型时间短。

Description

一种基于M5P算法预测玻璃介电常数的方法
技术领域
本发明涉及一种基于M5P算法预测玻璃介电常数的方法,属于玻璃性能预测技术领域。
背景技术
介电常数又称电容率或相对电容率,是用于表征电介质或绝缘材料的电性能的重要参数,介电常数越小则信号的传播速率越快。随着电子技术的发展和5G通信的迅速崛起,电子设备小型化已经成为主流趋势,电子设备使用的电磁波频率已经达到GHz水平。这要求封接玻璃要具有较低的介电常数,只有这样才能在电子封装中起着保护电路、隔离绝缘和防止信号失真等作用。同时低介电常数玻璃还可以减少信号的弛豫和交叉干扰,因此低介电常数玻璃具有广阔的应用前景。
公开号为CN110648727A、发明名称为“一种特定物理性能的玻璃材料的制备方法”中公开了一种玻璃材料的制备方法,该方法以玻璃网络修饰体和网络中间体氧化物的阳离子元素性质与含量乘积作为输入层变量,玻璃性能作为输出变量,结合神经网络算法构建成分智能设计模型。但是该方法存在两个不足:一是目前的关于玻璃材料性能的数据量相对较少,使用神经网络等机器学习方法很容易造成模型的过拟合(overfitting);二是作为机器学习模型输入的描述符不能很好的反应玻璃材料的各种化学组分的基本物理性能,造成拟合好的机器学习模型只在有限的局部化学成分空间准确,比如与机器学习数据的训练数据集相同的化学成分空间。这样的机器学习模型只有内插(interpolation)预测能力,而不能在更广泛的成分空间寻找最优的组分,即不具有外推(extrapolation)预测能力。
公告号为CN110364231B、发明名称为“预测多元玻璃体系性质的方法”中公开了一种预测多元玻璃体系性质的方法,该方法基于第一性原理进行结构筛选并且根据多元玻璃体系杠杆模型计算目标玻璃的性质。但是该方法不能很好的反应玻璃材料的各种化学组分的基本物理性能,也没有采用机器学习的相关算法对玻璃的性能进行预测,更无法精准的预测出玻璃的介电常数。
发明内容
为了能够精准的预测出玻璃的介电常数并且不受化学成分组成的限制,本发明提供了一种基于M5P算法预测玻璃介电常数的方法,所述方法包括:所述方法包括:
步骤1,采集不同成分构成的玻璃材料的介电常数数据,构建介电常数数据库,该库中包括一一映射的玻璃成分和其对应的介电常数;
步骤2,基于第一性原理构造氧化物玻璃材料中具有不同对称性的氧化物团簇的原子结构模型,并以每种团簇的每单位阳离子i的结合能
Figure BDA0003135366490000021
含有阳离子i的团簇对应的阳离子和氧离子的平衡键长、阳离子i在各类团簇中的巴德电荷和包含阳离子i的各类团簇的HOMO-LUMO gap;所述包含阳离子i的各类团簇的HOMO-LUMO gap为包含阳离子i的团簇结构的最高占据分子轨道和最低未占分子轨道的能量的差值作为性能参数构造介电常数的包含“材料基因”的描述符;
步骤3,基于步骤1构建的介电常数数据库和步骤2构造的描述符,构建训练集、验证集和测试集;
步骤4,基于M5P模型树构建介电常数预测模型,根据步骤3构造的训练集、验证集和测试集对所构建的介电常数预测模型进行训练,得到训练好的介电常数预测模型;
步骤5,针对待预测的玻璃材料,利用训练好的介电常数预测模型预测该玻璃材料的介电常数。
可选的,所述步骤2包括:
步骤2-1,构造具有不同对称性的氧化物团簇的原子结构模型,作为第一性原理计算的晶胞;
步骤2-2,对于在步骤2-1中构造的每一类氧化物团簇的晶胞结构,进行第一性原理计算,获得每种晶胞的团簇能量Ecluster和结构常数;
步骤2-3,对于步骤2-1中构造得到的每一种晶胞结构;通过进一步的第一性原理计算获得其性能参数集合,构造用于机器学习的描述符
Figure BDA0003135366490000022
Figure BDA0003135366490000023
其中n是-3到+3之间的所有非零整数,Ci是对应阳离子i的比例,Cation为阳离子i的集合,xi是对应阳离子i的第一性原理计算的性能参数;性能参数包括每种团簇的每单位阳离子i的结合能
Figure BDA0003135366490000024
含有阳离子i的团簇对应的阳离子和氧离子的平衡键长、阳离子i在各类团簇中的巴德电荷和包含阳离子i的各类团簇的HOMO-LUMO gap;所述包含阳离子i的各类团簇的HOMO-LUMO gap为包含阳离子i的团簇结构的最高占据分子轨道和最低未占分子轨道的能量的差值。
可选的,所述步骤2-1构造具有不同对称性的氧化物团簇的原子结构模型时,按照以下规则进行构造:
(1)每个团簇都处在一个
Figure BDA0003135366490000025
的立方晶胞里;
(2)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照线性分子的方式添加2个氧原子;同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(3)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照3次旋转对称的方式在同一平面添3个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(4)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照四面体对称的方式添加4个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(5)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照八面体对称的方式添加6个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基。
可选的,所述每种团簇的每单位阳离子i的结合能
Figure BDA0003135366490000031
的计算方式为:
使用步骤2-1中构造的晶胞结构中氧化物团簇的团簇能量Ecluster减去相同数目和种类的单个原子的能量之和求得,计算公式为:
Figure BDA0003135366490000032
式中,l为氧化物团簇中氧原子的数目,Ei和EOH分别为单个阳离子和单个羟基在一个
Figure BDA0003135366490000033
的立方晶胞里能量。
可选的,所述步骤1中构建介电常数数据库时,还包括,对采集到的介电常数数据进行预处理,所述预处理包括:
针对两两玻璃成分,判断以下两个条件是否同时成立:
条件1:每种氧化物组元的成分的摩尔比差值小于等于第一预设阈值,单位为百分比;
条件2:介电常数的差值大于第二预设阈值,单位为百分比;
若同时成立,则将对应的玻璃成分和相应的介电常数数据从数据库中剔除。
可选的,所述第一预设阈值为2%,第二预设阈值为10%。
可选的,所述步骤4,基于M5P模型树构建介电常数预测模型,包括:
步骤4-1,设定M5P模型树的最大层数集合h={h1,h2,h3,.....,hg}和节点分裂的最小样本数集合f={f1,f2,f3,.....,fj};
步骤4-2,对于(h1,f1),基于样本数据的标准差进行划分,选出二叉树分裂节点的特征参数
Figure BDA0003135366490000034
步骤4-3,对每个叶节点,采用多元线性回归模型,建立介电常数和该分支剩余未划分特征参数Unpart的线性回归模型:
Figure BDA0003135366490000041
式中,Unpart为该分支树中其余未划分的描述符的集合,θ为回归参数集合,D为所有描述符组成的集合,I为示性函数;
步骤4-4,利用步骤3中的训练集D1,按照最小二乘法确定每个叶节点对应的线性模型的系数[θ0l,θl],其中[θ0l,θl]为数据集Dl下的回归参数;
步骤4-5,利用步骤3中的验证集,计算线性回归模型在验证集中的均方误差值:
Figure BDA0003135366490000042
式中,N*为验证集的数据量,
Figure BDA0003135366490000043
为验证集的预测值,ya为验证集的实际值;
步骤4-6,采用k折交叉验证法,重复执行步骤4-3至步骤4-5共k次,计算在(h1,f1)条件下的k折交叉验证的平均
Figure BDA0003135366490000044
Figure BDA0003135366490000045
步骤4-7,调整M5P树模型的超参数(h,f),依次设置h系数为h1,h2,h3,.....,hg,设置f系数为f1,f2,f3,.....,fj,重复步骤4-2至步骤4-6,依次计算
Figure BDA0003135366490000046
步骤4-8,选取最小的
Figure BDA0003135366490000047
对应的
Figure BDA0003135366490000048
值作为M5P模型的最优超参数;
步骤4-9,取所有训练集{D}和验证集{V}的总和作为调参完成后最终模型的训练集,即{S1,S2,S3.....Sk};
步骤4-10,基于步骤4-2至步骤4-4,经训练集{S1,S2,S3.....Sk}训练后,得到M5P模型叶子节点的一系列回归系数,形成介电常数预测模型。
可选的,所述训练集{D}和验证集{V}采用k折交叉验证的方法构造。
本发明还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方法的步骤。
本发明有益效果是:
通过提供一种新的具有不同对称性的氧化物团簇的原子结构模型的构造方法,并基于第一性原理考虑电子结构,只构造团簇而不构造晶体,从而既可以反映体系的状态,又不增加计算成本,同时保证了介电常数的预测准确度。而且本申请采用M5P模型树构造介电常数预测模型,不需要考虑全局线性回归,M5P模型树将样本特征划分为若干个分段线性回归,树的可解释性更强,而且该算法的训练模型时间短。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中基于第一性原理的玻璃介电常数预测方法的流程图。
图2为本发明一个实施例中基于第一性原理构造描述符的流程图。
图3为四面体对称方式的氧化物团簇的原子结构模型示意图。
图4为八面体对称方式的氧化物团簇的原子结构模型示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一:
本实施例提供一种基于M5P算法预测玻璃介电常数的方法,参见图1,所述方法包括:
步骤1,采集不同成分构成的玻璃材料的介电常数数据,构建介电常数数据库,该库中包括一一映射的玻璃成分和其对应的介电常数;
步骤2,基于第一性原理构造氧化物玻璃材料介电常数的包含“材料基因”的描述符,包括:
步骤2-1,构造具有不同对称性的氧化物团簇的原子结构模型,作为第一性原理计算的晶胞;
步骤2-2,对于在步骤2-1中构造的每一类氧化物团簇的晶胞结构,进行第一性原理计算,获得每种晶胞的团簇能量Ecluster和结构常数;
步骤2-3,对于步骤2-1中构造得到的每一种晶胞结构;通过进一步的第一性原理计算获得其性能参数集合,构造用于机器学习的描述符
Figure BDA0003135366490000051
Figure BDA0003135366490000052
其中n是-3到+3之间的所有非零整数,Ci是对应阳离子i的比例,Cation为阳离子i的集合,xi是对应阳离子i的第一性原理计算的性能参数;性能参数包括每种团簇的每单位阳离子i的结合能
Figure BDA0003135366490000053
含有阳离子i的团簇对应的阳离子和氧离子的平衡键长、阳离子i在各类团簇中的巴德电荷和包含阳离子i的各类团簇的HOMO-LUMO gap;所述包含阳离子i的各类团簇的HOMO-LUMO gap为包含阳离子i的团簇结构的最高占据分子轨道和最低未占分子轨道的能量的差值。
步骤3,基于步骤1构建的介电常数数据库和步骤2构造的描述符,构建训练集、验证集和测试集;
步骤4,基于M5P模型树构建介电常数预测模型,根据步骤3构造的训练集、验证集和测试集对所构建的介电常数预测模型进行训练,得到训练好的介电常数预测模型;
步骤5,针对待预测的玻璃材料,利用训练好的介电常数预测模型预测该玻璃材料的介电常数。
实施例二:
本实施例提供一种基于M5P算法预测玻璃介电常数的方法,参见图1,所述方法包括:
步骤1,采集不同成分构成的玻璃材料的介电常数数据,构建介电常数数据库,该库中包括一一映射的玻璃成分和其对应的介电常数;
对于采集的介电常数数据,在实际应用中,还包括对其进行预处理,所述预处理包括:
针对两两玻璃成分,判断以下两个条件是否同时成立:
条件1:每种氧化物组元的成分的摩尔比差值小于等于第一预设阈值,单位为百分比;
条件2:介电常数的差值大于第二预设阈值,单位为百分比;
若同时成立,则将对应的玻璃成分和相应的介电常数数据从数据库中剔除。
其中,上述两个条件中的第一预设阈值和第二预设阈值可由本领域技术人员根据先验知识确定,本申请中,第一预设阈值为2%,第二预设阈值为10%。
步骤2,基于第一性原理构造氧化物玻璃材料介电常数的包含“材料基因”的描述符,具体的,参见图2;
步骤2-1,构造具有不同对称性的氧化物团簇的原子结构模型,作为第一性原理计算的晶胞;
具体的:
(1)每个团簇都处在一个
Figure BDA0003135366490000061
的立方晶胞里;
(2)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照线性分子的方式添加2个氧原子;同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(3)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照3次旋转对称的方式在同一平面添3个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(4)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照图3所示四面体对称的方式添加4个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(5)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照图4所示八面体对称的方式添加6个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
即针对每种阳离子,按照上述(2)~(5)分别构造一次。
步骤2-2,对于在步骤2-1中构造的每一类氧化物团簇的晶胞结构,进行第一性原理计算,获得每种晶胞的团簇能量Ecluster和结构常数;
步骤4a:采用的第一性原理计算的软件Quantum Espresso;
步骤4b:按以下参数,使用Quantum Espresso的pw.x优化晶胞大小,获得所构造的晶胞的团簇能量Ecluster和结构常数;
采用Quantum Espresso自带的赝势库:Pseudopotential type:PAW;Functionaltype:PBE;Non Linear Core Correction Full relativistic
截断能为45Ry=612eV,自洽场收敛标准为10-5Ry
计算的方式是通过优化得到晶胞内部的团簇的平衡键长(calculation=‘relax’)
晶胞结构在优化过程中保持原有的对称性(nosym=‘FALSE’)
费米能级附近的电子轨道占据采取对应的绝缘体的方法(occupations=‘fixed’)
所有计算都采取非自旋极化的方法(nspin=1)
对于所有团簇的晶胞,K空间的点阵为1×1×1;
步骤2-3,对于上述通过第一性原理计算优化好的包含各种团簇的结构;通过进一步的第一性原理计算获得其性能参数集合,构造用于机器学习的描述符
Figure BDA0003135366490000071
Figure BDA0003135366490000072
其中n是-3到+3之间的所有非零整数,Ci是对应阳离子i的比例,xi是对应阳离子i的第一性原理计算的性能参数,这些性能参数通过第一性原理计算得到。
所述性能参数集合包括以下性能参数:
(1)每种团簇的每单位阳离子i的结合能
Figure BDA0003135366490000073
单位:eV/atom;
结合能的计算通过使用优化好的团簇能量Ecluster减去相同数目和种类的单个原子的能量之和求得,计算公式为:
Figure BDA0003135366490000081
式中,l为团簇中氧原子的数目,Ei和EOH分别为单个阳离子和单个羟基在一个
Figure BDA0003135366490000082
的立方晶胞里能量;
(2)含有阳离子i的团簇对应的阳离子和氧离子的平衡键长;
(3)阳离子i在各类团簇中的Bader Charge(巴德电荷)
对应于阳离子i的4种团簇结构,在第一性原理优化好后,根据QuantumEspresso输出的电子密度文件,计算各种团簇结构中阳离子i的Bader Charge。
(4)通过Quantum Espresso直接计算包含阳离子i的各类团簇的HOMO-LUMO gap;
对应于阳离子i的4种团簇结构,在第一性原理优化好后,直接获得其团簇结构的最高占据分子轨道和最低未占分子轨道的能量,其差值为HOMO-LUMO gap。
这里示例性地,结合上述性能参数对描述符的计算进行进一步详细说明:
从数据库中收集到的一组数据如下:一种玻璃结构含有A mol SiO2,B mol B2O3,Cmol Na2O,该组分玻璃的介电常数为y。
经计算,总离子数为(3A+5B+3C)mol,其中Si原子所占的比例CSi为:
Figure BDA0003135366490000083
B3+比例:
Figure BDA0003135366490000084
Na+比例:
Figure BDA0003135366490000085
预测介电常数时,对于每一种阳离子i(Si,B,Na),对应的性能参数x都有以下4类参数(16种子参数)组成,包括
Figure BDA0003135366490000086
(共4种,ET1~ET4)、团簇平均键长(4种,LT1~LT4)、Bader Charge(4种,Q1~Q4)、团簇gap(4种,EG1~EG4)。
n=1情况如下(共4个
Figure BDA0003135366490000087
):
Figure BDA0003135366490000088
Figure BDA0003135366490000089
Figure BDA0003135366490000091
Figure BDA0003135366490000092
以此类推,可以构造其余n值的描述符(n=-3,-2,-1,2,3)情况(每个n值有4个描述符)。
步骤3,基于步骤1构建得到的介电常数数据库和步骤2构造的描述符,构建训练集、验证集和测试集;
具体过程包括:
步骤3-1,从介电常数数据库中按照总数据量N的p1%随机抽取数据,作为第一测试子集{T1};
步骤3-2,对于剩下的(1-p1)%的数据集,从中筛选出介电常数值小于第三预设阈值的数据,之后从这些数据中随机选取p2%*N的数据,作为第二测试子集{T2};
步骤3-3,对于除测试子集{T1}、{T2}剩下的数据,获取其中关注的特定成分在预设区间段的玻璃成分,之后从中随机选取p3%*N的玻璃数据,作为第三测试子集{T3};
步骤3-4,将以上三部分测试子集合并,构成模型的测试集{T}={T1,T2,T3},其余的数据作为模型的训练集与验证集,所述p1、p2和p3的取值需保证训练集加验证集({D}+{V})和测试集{T}的数据比例为9∶1。
所述其余的数据作为模型的训练集与验证集,具体划分过程包括:
采用k折交叉验证的方法构造训练集{D}和验证集{V},具体包括以下步骤:
步骤3-4-1,将数据库中剩余的90%*N的数据按照介电常数值进行升序排列,之后将这些数据平均划分为k个不相交的子集{S1,S2,S3.....Sk};
步骤3-4-2,每次取其中的1个子集{S1}作为验证集{V1},1=1,2,3.....k,其余k-1个子集作为训练集{D1},将训练集{D1}和验证集{V1}作为交叉验证数据。
步骤4,基于M5P模型树构建介电常数预测模型,并根据步骤3构造的训练集、验证集和测试集对所构建的介电常数预测模型进行训练,得到训练好的介电常数预测模型;
具体过程包括:
步骤4-1,设定树的最大层数集合h={h1,h2,h3,.....,hg}和节点分裂的最小样本数集合f={f1,f2,f3,.....,fj};
步骤4-2,对于(h1,f1),基于样本数据的标准差进行划分,选出二叉树分裂节点的特征参数
Figure BDA0003135366490000101
具体过程包括:
步骤4-2-1,选择每个特征参数
Figure BDA0003135366490000102
作为二叉树划分节点,分别计算划分前后的二叉树的标准差的降低值SDR:
Figure BDA0003135366490000103
式中,sd(T)表示总体样本数据的标准差,|Tb|表示按照
Figure BDA0003135366490000104
分类后的各个子集的样本数量,b=1,2,...,nclass,nclass表示子集的数量,T表示总体样本中样本的数量;
步骤4-2-2,选取最大的SDR值对应的特征
Figure BDA0003135366490000105
步骤4-2-3,在分类的各子集中重复迭代步骤4-2-1,选出一系列特征参数
Figure BDA0003135366490000106
进行节点的分裂,直到树的层数超过设定的最大层数h1或节点分裂的最小样本数小于设定值f1时停止分裂,最终所有分支都达到叶节点。
步骤4-3,对每个叶节点,采用多元线性回归模型,建立介电常数和该分支剩余未划分特征参数Unpart的线性回归模型:
Figure BDA0003135366490000107
式中,Unpart为该分支树中其余未划分的描述符的集合,θ为回归参数集合,D为所有描述符组成的集合,I为示性函数;
步骤4-4,利用步骤3中的训练集D1,按照最小二乘法确定每个叶节点对应的线性模型的系数[θ0l,θl],其中[θ0l,θl]为数据集Dl下的回归参数;
步骤4-5,利用步骤3中的验证集V1,计算线性回归模型在验证集V1中的均方误差值:
Figure BDA0003135366490000108
式中,N*为验证集的数据量,
Figure BDA0003135366490000109
为验证集的预测值,ya为验证集的实际值;
步骤4-6,采用k折交叉验证法,重复执行步骤4-3至步骤4-5共k次,计算在(h1,f1)条件下的k折交叉验证的平均
Figure BDA00031353664900001010
Figure BDA00031353664900001011
步骤4-7,调整M5P树模型的超参数(h,f),依次设置h系数为h1,h2,h3,.....,hg,设置f系数为f1,f2,f3,.....,fj,重复步骤4-2至步骤4-6,依次计算
Figure BDA00031353664900001012
步骤4-8,选取最小的
Figure BDA00031353664900001013
对应的
Figure BDA00031353664900001014
值作为M5P模型的最优超参数;
步骤4-9,取所有训练集{D}和验证集{V}的总和作为调参完成后最终模型的训练集,即{S1,S2,S3.....Sk};
步骤4-10,基于步骤4-2至步骤4-4,经训练集{S1,S2,S3.....Sk}训练后,得到M5P模型叶子节点的一系列回归系数,形成介电常数预测模型。
步骤5,针对待预测的玻璃材料,利用所述介电常数预测模型预测该玻璃材料的介电常数。
具体过程包括:
步骤5-1,依据步骤2的过程,构造待预测玻璃材料的描述符
Figure BDA0003135366490000111
步骤5-2,将所述描述符
Figure BDA0003135366490000112
代入所述介电常数预测模型中,得到预测的介电常数。
为验证本申请方法的有效性,采用本发明的方法对10组已知介电常数的玻璃材料进行预测,预测结果如下表1所示。
表1本方法预测玻璃介电常数的预测值与真实值的比较
Figure BDA0003135366490000113
由上表1可知,采用本发明提供的方法预测出的玻璃介电常数与真实值的平均误差仅为2.83%,相对于现有方法,本发明方法能够相对准确的预测出介电常数,验证了本方法的有效性。而且,采用本发明方法对未知介电常数的玻璃进行预测,可以较快的估计出不同成分配比的玻璃的介电常数,对降低玻璃研发的试错成本可以大大降低,对于一些对玻璃介电常数有严格要求的研发目标意义重大。
实施例三
本实施例提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
步骤1,采集不同成分构成的玻璃材料的介电常数数据,构建介电常数数据库,该库中包括一一映射的玻璃成分和其对应的介电常数;
步骤2,基于第一性原理构造氧化物玻璃材料介电常数的包含“材料基因”的描述符;
步骤3,基于步骤1构建的介电常数数据库和步骤2构造的描述符,构建训练集、验证集和测试集;
步骤4,基于M5P模型树构建介电常数预测模型,根据步骤3构造的训练集、验证集和测试集对所构建的介电常数预测模型进行训练,得到训练好的介电常数预测模型;
步骤5,针对待预测的玻璃材料,利用训练好的介电常数预测模型预测该玻璃材料的介电常数。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
步骤1,采集玻璃材料的介电常数数据,构建介电常数数据库,该库中包括一一映射的玻璃成分和其对应的介电常数;
步骤2,基于第一性原理构造氧化物玻璃材料介电常数的包含“材料基因”的描述符;
步骤3,基于介电常数数据库和步骤2构造的描述符,构建训练集、验证集和测试集;
步骤4,基于M5P模型树构建介电常数预测模型;
步骤5,针对待预测的玻璃材料,利用所述介电常数预测模型预测该玻璃材料的介电常数。
关于每一步的具体限定可以参见上文中对于利用M5P算法预测玻璃介电常数的方法的限定,在此不再赘述。
本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于M5P算法预测玻璃介电常数的方法,其特征在于,所述方法包括:
步骤1,采集不同成分构成的玻璃材料的介电常数数据,构建介电常数数据库,该库中包括一一映射的玻璃成分和其对应的介电常数;
步骤2,基于第一性原理构造氧化物玻璃材料中具有不同对称性的氧化物团簇的原子结构模型,并以每种团簇的每单位阳离子i的结合能
Figure FDA0003778972260000011
含有阳离子i的团簇对应的阳离子和氧离子的平衡键长、阳离子i在各类团簇中的巴德电荷和包含阳离子i的各类团簇的HOMO-LUMO gap;所述包含阳离子i的各类团簇的HOMO-LUMO gap为包含阳离子i的团簇结构的最高占据分子轨道和最低未占分子轨道的能量的差值作为性能参数构造介电常数的包含“材料基因”的描述符;
步骤3,基于步骤1构建的介电常数数据库和步骤2构造的描述符,构建训练集、验证集和测试集;
步骤4,基于M5P模型树构建介电常数预测模型,根据步骤3构造的训练集、验证集和测试集对所构建的介电常数预测模型进行训练,得到训练好的介电常数预测模型;
步骤5,针对待预测的玻璃材料,利用训练好的介电常数预测模型预测该玻璃材料的介电常数;
所述步骤2包括:
步骤2-1,构造具有不同对称性的氧化物团簇的原子结构模型,作为第一性原理计算的晶胞;
步骤2-2,对于在步骤2-1中构造的每一类氧化物团簇的晶胞结构,进行第一性原理计算,获得每种晶胞的团簇能量Ecluster和结构常数;
步骤2-3,对于步骤2-1中构造得到的每一种晶胞结构;通过进一步的第一性原理计算获得其性能参数集合,构造用于机器学习的描述符
Figure FDA0003778972260000012
Figure FDA0003778972260000013
其中n是-3到+3之间的所有非零整数,Ci是对应阳离子i的比例,Cation为阳离子i的集合,xi是对应阳离子i的第一性原理计算的性能参数;性能参数包括每种团簇的每单位阳离子i的结合能
Figure FDA0003778972260000014
含有阳离子i的团簇对应的阳离子和氧离子的平衡键长、阳离子i在各类团簇中的巴德电荷和包含阳离子i的各类团簇的HOMO-LUMO gap;所述包含阳离子i的各类团簇的HOMO-LUMO gap为包含阳离子i的团簇结构的最高占据分子轨道和最低未占分子轨道的能量的差值。
2.根据权利要求1所述的方法,其特征在于,所述步骤2-1构造具有不同对称性的氧化物团簇的原子结构模型时,按照以下规则进行构造:
(1)每个团簇都处在一个
Figure FDA0003778972260000021
的立方晶胞里;
(2)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照线性分子的方式添加2个氧原子;同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(3)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照3次旋转对称的方式在同一平面添3个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(4)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照四面体对称的方式添加4个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基;
(5)针对玻璃成分中存在的每种阳离子,将该阳离子对应的原子放置于晶胞中心,在其周围按照八面体对称的方式添加6个氧原子,同时在每个氧原子上沿着从中心原子到氧原子的原子键的延长方向添加一个氢原子,每一个氧原子和氢原子组成一个羟基。
3.根据权利要求2所述的方法,其特征在于,所述每种团簇的每单位阳离子i的结合能
Figure FDA0003778972260000022
的计算方式为:
使用步骤2-1中构造的晶胞结构中氧化物团簇的团簇能量Ecluster减去相同数目和种类的单个原子的能量之和求得,计算公式为:
Figure FDA0003778972260000023
式中,l为氧化物团簇中氧原子的数目,Ei和EOH分别为单个阳离子和单个羟基在一个
Figure FDA0003778972260000024
的立方晶胞里能量。
4.根据权利要求3所述的方法,其特征在于,所述步骤1中构建介电常数数据库时,还包括,对采集到的介电常数数据进行预处理,所述预处理包括:
针对两两玻璃成分,判断以下两个条件是否同时成立:
条件1:每种氧化物组元的成分的摩尔比差值小于等于第一预设阈值,单位为百分比;
条件2:介电常数的差值大于第二预设阈值,单位为百分比;
若同时成立,则将对应的玻璃成分和相应的介电常数数据从数据库中剔除。
5.根据权利要求4所述的方法,其特征在于,所述第一预设阈值为2%,第二预设阈值为10%。
6.根据权利要求5所述的方法,其特征在于,所述步骤4,基于M5P模型树构建介电常数预测模型,包括:
步骤4-1,设定M5P模型树的最大层数集合h={h1,h2,h3,.....,hg}和节点分裂的最小样本数集合f={f1,f2,f3,.....,fj};
步骤4-2,对于(h1,f1),基于样本数据的标准差进行划分,选出二叉树分裂节点的特征参数
Figure FDA0003778972260000031
步骤4-3,对每个叶节点,采用多元线性回归模型,建立介电常数和该叶节点所处的分支剩余未划分特征参数Unpart的线性回归模型:
Figure FDA0003778972260000032
式中,Unpart为该分支树中其余未划分的描述符的集合,θ为回归参数集合,D为所有描述符组成的集合,I为示性函数;
步骤4-4,利用步骤3中的训练集Dl,按照最小二乘法确定每个叶节点对应的线性模型的系数[θ0ll],其中[θ0ll]为数据集Dl下的回归参数;
步骤4-5,利用步骤3中的验证集,计算线性回归模型在验证集中的均方误差值:
Figure FDA0003778972260000033
式中,N*为验证集的数据量,
Figure FDA0003778972260000034
为验证集的预测值,ya为验证集的实际值;
步骤4-6,采用k折交叉验证法,重复执行步骤4-3至步骤4-5共k次,计算在(h1,f1)条件下的k折交叉验证的平均
Figure FDA0003778972260000035
Figure FDA0003778972260000036
步骤4-7,调整M5P树模型的超参数(h,f),依次设置h系数为h1,h2,h3,.....,hg,设置f系数为f1,f2,f3,.....,fj,重复步骤4-2至步骤4-6,依次计算
Figure FDA0003778972260000037
步骤4-8,选取最小的
Figure FDA0003778972260000041
对应的
Figure FDA0003778972260000042
值作为M5P模型的最优超参数;
步骤4-9,取所有训练集{D}和验证集{V}的总和作为调参完成后最终模型的训练集,即{S1,S2,S3.....Sk};
步骤4-10,基于步骤4-2至步骤4-4,经训练集{S1,S2,S3.....Sk}训练后,得到M5P模型叶子节点的一系列回归系数,形成介电常数预测模型。
7.根据权利要求6所述的方法,其特征在于,所述训练集{D}和验证集{V}采用k折交叉验证的方法构造。
8.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述方法的步骤。
CN202110717315.8A 2021-06-28 2021-06-28 一种基于m5p算法预测玻璃介电常数的方法 Active CN113326664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110717315.8A CN113326664B (zh) 2021-06-28 2021-06-28 一种基于m5p算法预测玻璃介电常数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110717315.8A CN113326664B (zh) 2021-06-28 2021-06-28 一种基于m5p算法预测玻璃介电常数的方法

Publications (2)

Publication Number Publication Date
CN113326664A CN113326664A (zh) 2021-08-31
CN113326664B true CN113326664B (zh) 2022-10-21

Family

ID=77424914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110717315.8A Active CN113326664B (zh) 2021-06-28 2021-06-28 一种基于m5p算法预测玻璃介电常数的方法

Country Status (1)

Country Link
CN (1) CN113326664B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113627036A (zh) * 2021-09-15 2021-11-09 昆明理工大学 材料介电常数预测方法、装置、计算机设备及存储介质
CN116354600A (zh) * 2021-12-28 2023-06-30 海南大学 一种医药包装玻璃及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381381A1 (fr) * 2010-04-23 2011-10-26 IFP Energies nouvelles Procédé pour déterminer une propriété physique ou chimique d'un composé moléculaire de structure moléculaire connue
CN102944751A (zh) * 2012-11-12 2013-02-27 中国传媒大学 基于混波室的介电常数测量方法
CN108960493A (zh) * 2018-06-22 2018-12-07 中材科技股份有限公司 玻璃材料性能的预测模型建立及预测方法、装置
WO2019111636A1 (ja) * 2017-12-04 2019-06-13 Tdk株式会社 誘電体材料の検出方法、検出装置、検出プログラムおよび誘電体組成物
JP2019148437A (ja) * 2018-02-26 2019-09-05 応用地質株式会社 誘電率推定装置及び誘電率推定方法
WO2019172280A1 (ja) * 2018-03-09 2019-09-12 昭和電工株式会社 ポリマーの物性予測装置、記憶媒体、及びポリマーの物性予測方法
CN111091878A (zh) * 2019-11-07 2020-05-01 上海大学 一种快速预测钙钛矿介电常数的方法
AU2020100709A4 (en) * 2020-05-05 2020-06-11 Bao, Yuhang Mr A method of prediction model based on random forest algorithm
CN111627505A (zh) * 2020-06-04 2020-09-04 安庆师范大学 一种团簇结构类型识别方法
CN112216355A (zh) * 2020-10-22 2021-01-12 哈尔滨理工大学 一种基于机器学习的多组分晶体构型能预测方法
CN112687351A (zh) * 2021-01-07 2021-04-20 哈尔滨工业大学 一种基于遗传算法-bp神经网络快速预测复合介质微波电磁性能的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302297B2 (ja) * 2019-05-30 2023-07-04 富士通株式会社 材料特性予測装置、材料特性予測方法、及び材料特性予測プログラム
CN112992290B (zh) * 2021-03-17 2024-02-23 华北电力大学 一种基于机器学习和团簇模型的钙钛矿带隙预测方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381381A1 (fr) * 2010-04-23 2011-10-26 IFP Energies nouvelles Procédé pour déterminer une propriété physique ou chimique d'un composé moléculaire de structure moléculaire connue
CN102944751A (zh) * 2012-11-12 2013-02-27 中国传媒大学 基于混波室的介电常数测量方法
WO2019111636A1 (ja) * 2017-12-04 2019-06-13 Tdk株式会社 誘電体材料の検出方法、検出装置、検出プログラムおよび誘電体組成物
JP2019148437A (ja) * 2018-02-26 2019-09-05 応用地質株式会社 誘電率推定装置及び誘電率推定方法
WO2019172280A1 (ja) * 2018-03-09 2019-09-12 昭和電工株式会社 ポリマーの物性予測装置、記憶媒体、及びポリマーの物性予測方法
CN108960493A (zh) * 2018-06-22 2018-12-07 中材科技股份有限公司 玻璃材料性能的预测模型建立及预测方法、装置
CN111091878A (zh) * 2019-11-07 2020-05-01 上海大学 一种快速预测钙钛矿介电常数的方法
AU2020100709A4 (en) * 2020-05-05 2020-06-11 Bao, Yuhang Mr A method of prediction model based on random forest algorithm
CN111627505A (zh) * 2020-06-04 2020-09-04 安庆师范大学 一种团簇结构类型识别方法
CN112216355A (zh) * 2020-10-22 2021-01-12 哈尔滨理工大学 一种基于机器学习的多组分晶体构型能预测方法
CN112687351A (zh) * 2021-01-07 2021-04-20 哈尔滨工业大学 一种基于遗传算法-bp神经网络快速预测复合介质微波电磁性能的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Frequency-dependent dielectric constant prediction of polymers using machine learning;Lihua Chen;《npj Computational Materials》;20200331;全文 *
基于不同机器学习算法的钙钛矿材料性能预测;郑伟达等;《中国有色金属学报》;20190415(第04期);全文 *
环氧树脂体系固化反应及其复合材料介电性能;陈平等;《高分子通报》;20030830(第04期);全文 *

Also Published As

Publication number Publication date
CN113326664A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
CN113326664B (zh) 一种基于m5p算法预测玻璃介电常数的方法
Kibria et al. A new ridge‐type estimator for the linear regression model: simulations and applications
Biroli et al. Anderson model on Bethe lattices: density of states, localization properties and isolated eigenvalue
CN108696331B (zh) 一种基于生成对抗网络的信号重构方法
Kaplan et al. Measuring scars of periodic orbits
Sorathia et al. From closed to open one-dimensional Anderson model: Transport versus spectral statistics
CN113591652A (zh) 一种基于优化变分模态分解的电磁信号处理方法和装置
Hutahaean et al. Impact of model parameterisation and objective choices on assisted history matching and reservoir forecasting
Liang et al. Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm
D'Urso et al. Wavelet‐based self‐organizing maps for classifying multivariate time series
Butler et al. Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data
Craven et al. Machine learning a manifold
Farshbaf et al. Multi-objective optimization of graph partitioning using genetic algorithms
CN112133383A (zh) 基于遗传符号回归预测钙钛矿比表面积的方法
LeBlanc et al. Partitioning and peeling for constructing prognostic groups
Bowler On the diagnosis of model error statistics using weak‐constraint data assimilation
CN114186518A (zh) 一种集成电路良率估算方法及存储器
CN113433514A (zh) 基于展开式深度网络的参数自学习干扰抑制方法
Liu et al. Reduced‐dimension MVDR beamformer based on sub‐array optimization
Wu et al. Overcoming the slowing down of flat-histogram Monte Carlo simulations: Cluster updates and optimized broad-histogram ensembles
Li et al. Identification of oxygen diffusion mechanisms in Nd 1− x AE x BaInO 4− x/2 (AE= Ca, Sr, Ba) compounds through molecular dynamics
Viana Lopes et al. Optimized multicanonical simulations: A proposal based on classical fluctuation theory
CN113657593B (zh) 一种基于bp神经网络的等离子体参数诊断方法
CN116343032A (zh) 结合高斯回归混合模型和mrf高光谱函数数据的分类方法
CN115810401A (zh) 配方建构系统、方法、可读存储介质与计算机程序产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant