CN113221776B - 一种基于人工智能对反刍动物一般行为识别的方法 - Google Patents
一种基于人工智能对反刍动物一般行为识别的方法 Download PDFInfo
- Publication number
- CN113221776B CN113221776B CN202110546204.5A CN202110546204A CN113221776B CN 113221776 B CN113221776 B CN 113221776B CN 202110546204 A CN202110546204 A CN 202110546204A CN 113221776 B CN113221776 B CN 113221776B
- Authority
- CN
- China
- Prior art keywords
- image data
- ruminant
- ruminants
- behavior
- artificial intelligence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006399 behavior Effects 0.000 title claims abstract description 75
- 241000282849 Ruminantia Species 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 13
- 244000144972 livestock Species 0.000 claims abstract description 35
- 238000013145 classification model Methods 0.000 claims abstract description 15
- 230000009471 action Effects 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 6
- 210000000988 bone and bone Anatomy 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 241001465754 Metazoa Species 0.000 abstract description 61
- 230000008569 process Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000001488 breeding effect Effects 0.000 description 6
- 238000009395 breeding Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 206010000117 Abnormal behaviour Diseases 0.000 description 4
- 238000013480 data collection Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000003975 animal breeding Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000011840 criminal investigation Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 235000021050 feed intake Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000003715 nutritional status Nutrition 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Image Analysis (AREA)
Abstract
Description
类别 | 牧场A | 牧场B | 牧场C |
休息行为识别率(%) | 86% | 85% | 88% |
站立行为识别率(%) | 82% | 84% | 85% |
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110546204.5A CN113221776B (zh) | 2021-05-19 | 2021-05-19 | 一种基于人工智能对反刍动物一般行为识别的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110546204.5A CN113221776B (zh) | 2021-05-19 | 2021-05-19 | 一种基于人工智能对反刍动物一般行为识别的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113221776A CN113221776A (zh) | 2021-08-06 |
CN113221776B true CN113221776B (zh) | 2024-05-28 |
Family
ID=77093094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110546204.5A Active CN113221776B (zh) | 2021-05-19 | 2021-05-19 | 一种基于人工智能对反刍动物一般行为识别的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113221776B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114091548B (zh) * | 2021-09-23 | 2024-08-09 | 昆明理工大学 | 一种基于关键点和图匹配的车辆跨域重识别方法 |
CN115035594B (zh) * | 2022-05-31 | 2024-09-20 | 南京工业大学 | 基于Gated Transformer网络的野生哺乳动物行为识别方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2048619A1 (en) * | 2007-10-13 | 2009-04-15 | Toyota Motor Europe NV | Methods and systems for processing of video data |
CN105307482A (zh) * | 2013-04-10 | 2016-02-03 | 维京遗传学Fmba | 用于确定至少一个动物的饲料消耗量的系统 |
CN108537136A (zh) * | 2018-03-19 | 2018-09-14 | 复旦大学 | 基于姿态归一化图像生成的行人重识别方法 |
CN110008913A (zh) * | 2019-04-08 | 2019-07-12 | 南京工业大学 | 基于姿态估计与视点机制融合的行人再识别方法 |
CN110991340A (zh) * | 2019-12-03 | 2020-04-10 | 郑州大学 | 一种基于图像压缩的人体动作分析方法 |
CN111310720A (zh) * | 2020-03-11 | 2020-06-19 | 广东工业大学 | 基于图度量学习的行人重识别方法及系统 |
CN111598067A (zh) * | 2020-07-24 | 2020-08-28 | 浙江大华技术股份有限公司 | 视频中重识别训练方法、重识别方法及存储装置 |
CN111680551A (zh) * | 2020-04-28 | 2020-09-18 | 平安国际智慧城市科技股份有限公司 | 监控牲畜数量的方法、装置、计算机设备及存储介质 |
CN111797813A (zh) * | 2020-07-21 | 2020-10-20 | 天津理工大学 | 基于可见感知纹理语义对齐的部分行人重识别方法 |
CN112287959A (zh) * | 2020-06-01 | 2021-01-29 | 北京沃东天骏信息技术有限公司 | 目标重识别模型的训练方法以及目标重识别方法和装置 |
CN112395977A (zh) * | 2020-11-17 | 2021-02-23 | 南京林业大学 | 基于身体轮廓和腿部关节骨架的哺乳动物姿态识别方法 |
CN112488057A (zh) * | 2020-12-17 | 2021-03-12 | 北京航空航天大学 | 一种利用人头点定位和关节点信息的单相机多目标跟踪方法 |
CN112800967A (zh) * | 2021-01-29 | 2021-05-14 | 重庆邮电大学 | 一种姿态驱动的遮挡行人重识别方法 |
CN112800816A (zh) * | 2019-11-13 | 2021-05-14 | 北京卡尔斯通科技有限公司 | 一种基于多模型的视频动作识别检测方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10614310B2 (en) * | 2018-03-22 | 2020-04-07 | Viisights Solutions Ltd. | Behavior recognition |
JP7404125B2 (ja) * | 2019-09-13 | 2023-12-25 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 物体追跡方法及びプログラム |
-
2021
- 2021-05-19 CN CN202110546204.5A patent/CN113221776B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2048619A1 (en) * | 2007-10-13 | 2009-04-15 | Toyota Motor Europe NV | Methods and systems for processing of video data |
CN105307482A (zh) * | 2013-04-10 | 2016-02-03 | 维京遗传学Fmba | 用于确定至少一个动物的饲料消耗量的系统 |
CN108537136A (zh) * | 2018-03-19 | 2018-09-14 | 复旦大学 | 基于姿态归一化图像生成的行人重识别方法 |
CN110008913A (zh) * | 2019-04-08 | 2019-07-12 | 南京工业大学 | 基于姿态估计与视点机制融合的行人再识别方法 |
CN112800816A (zh) * | 2019-11-13 | 2021-05-14 | 北京卡尔斯通科技有限公司 | 一种基于多模型的视频动作识别检测方法 |
CN110991340A (zh) * | 2019-12-03 | 2020-04-10 | 郑州大学 | 一种基于图像压缩的人体动作分析方法 |
CN111310720A (zh) * | 2020-03-11 | 2020-06-19 | 广东工业大学 | 基于图度量学习的行人重识别方法及系统 |
CN111680551A (zh) * | 2020-04-28 | 2020-09-18 | 平安国际智慧城市科技股份有限公司 | 监控牲畜数量的方法、装置、计算机设备及存储介质 |
CN112287959A (zh) * | 2020-06-01 | 2021-01-29 | 北京沃东天骏信息技术有限公司 | 目标重识别模型的训练方法以及目标重识别方法和装置 |
CN111797813A (zh) * | 2020-07-21 | 2020-10-20 | 天津理工大学 | 基于可见感知纹理语义对齐的部分行人重识别方法 |
CN111598067A (zh) * | 2020-07-24 | 2020-08-28 | 浙江大华技术股份有限公司 | 视频中重识别训练方法、重识别方法及存储装置 |
CN112395977A (zh) * | 2020-11-17 | 2021-02-23 | 南京林业大学 | 基于身体轮廓和腿部关节骨架的哺乳动物姿态识别方法 |
CN112488057A (zh) * | 2020-12-17 | 2021-03-12 | 北京航空航天大学 | 一种利用人头点定位和关节点信息的单相机多目标跟踪方法 |
CN112800967A (zh) * | 2021-01-29 | 2021-05-14 | 重庆邮电大学 | 一种姿态驱动的遮挡行人重识别方法 |
Non-Patent Citations (6)
Title |
---|
Deep cascaded convolutional models for cattle pose estimation;Xiangyuan Li等;《Computers and Electronics in Agriculture》;20190722;第164卷;1-11 * |
Pose-guided representation learning for person re-identification;Jianing Li等;《IEEE Transactions on Pattern Analysis and Machine Intelligence》;20190716;第44卷(第02期);622-635 * |
TransReID:Transformer-based object re-identification;Shuting He等;《arXiv》;20210326;1-13 * |
Using a CNN-LSTM for basic behaviors detection of a single dairy cow in a complex environment;Dihua Wu等;《Computers and Electronics in Agriculture》;20210208;第182卷;1-12 * |
基于增强特征融合网络的行人重识别方法;刘玉杰等;《计算机辅助设计与图形学学报》;20201231;第33卷(第02期);232-240 * |
视频人体行为识别深度学习算法研究;陈红颖;《中国优秀硕士学位论文全文数据库 信息科技辑》;20210515;第2021卷(第05期);I138-1008 * |
Also Published As
Publication number | Publication date |
---|---|
CN113221776A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Using a CNN-LSTM for basic behaviors detection of a single dairy cow in a complex environment | |
US11910784B2 (en) | Animal visual identification, tracking, monitoring and assessment systems and methods thereof | |
KR102341715B1 (ko) | 가축 모니터링 장치 및 방법 | |
Ayadi et al. | Dairy cow rumination detection: A deep learning approach | |
Noe et al. | Automatic detection and tracking of mounting behavior in cattle using a deep learning-based instance segmentation model | |
CN113221776B (zh) | 一种基于人工智能对反刍动物一般行为识别的方法 | |
Gan et al. | Automated detection and analysis of piglet suckling behaviour using high-accuracy amodal instance segmentation | |
Xu et al. | Automatic quantification and assessment of grouped pig movement using the XGBoost and YOLOv5s models | |
CN116824626A (zh) | 一种动物异常状态人工智能识别的方法 | |
CN116563758A (zh) | 狮头鹅监控方法、装置、设备及存储介质 | |
Sun et al. | Basic behavior recognition of yaks based on improved SlowFast network | |
CN110781870A (zh) | 一种基于ssd卷积神经网络的奶牛反刍行为识别方法 | |
CN114898405A (zh) | 基于边缘计算的便携式肉鸡异常监测系统 | |
CN113989745A (zh) | 一种反刍动物饲养状况的非接触式监测方法 | |
Avanzato et al. | Dairy cow behavior recognition using computer vision techniques and CNN networks | |
KR102452932B1 (ko) | 지도 기반 유기동물 관리 플랫폼 서비스 제공 시스템 | |
Doulgerakis et al. | An Animal Welfare Platform for Extensive Livestock Production Systems. | |
KR102332252B1 (ko) | 영상 분석 기반의 반추 동물의 발정행동패턴 분석 장치 및 방법 | |
Trezubov et al. | Analysis of technologies for visual tracking of physiological condition of cattle | |
Singhal et al. | Cattle Collar: An End-to-End Multi-Model Framework for Cattle Monitoring | |
Taiwo et al. | Vision transformers for automated detection of pig interactions in groups | |
Tung et al. | Calf Posture Recognition Using Convolutional Neural Network. | |
CN111568598A (zh) | 一种智能绵羊繁殖能力检测的系统及方法 | |
Zhang et al. | Behaviour recognition of housed sheep based on spatio-temporal information | |
Wang et al. | Design and implementation of pig intelligent classification monitoring system based on convolution neural network (CNN). |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241129 Address after: Office D127, Co Creation Space, 2nd Floor, Building 1, Science and Technology Achievement Transformation Park, Lianshi Town, Nanxun District, Huzhou City, Zhejiang Province (self declared) Patentee after: Zhejiang Wugeng Zhilian Technology Co.,Ltd. Country or region after: China Address before: 133000 group 55, Baifeng Committee, Henan Street, Yanji City, Yanbian Korean Autonomous Prefecture, Jilin Province Patentee before: Peng Dongqiao Country or region before: China Patentee before: Liu Wei |
|
TR01 | Transfer of patent right |