CN113110082B - 用于家电控制的方法、装置和家电 - Google Patents
用于家电控制的方法、装置和家电 Download PDFInfo
- Publication number
- CN113110082B CN113110082B CN202110405226.XA CN202110405226A CN113110082B CN 113110082 B CN113110082 B CN 113110082B CN 202110405226 A CN202110405226 A CN 202110405226A CN 113110082 B CN113110082 B CN 113110082B
- Authority
- CN
- China
- Prior art keywords
- target
- parameter
- air conditioner
- information
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000007613 environmental effect Effects 0.000 claims abstract description 36
- 238000013145 classification model Methods 0.000 claims description 38
- 238000012549 training Methods 0.000 claims description 37
- 238000012360 testing method Methods 0.000 claims description 24
- 230000003749 cleanliness Effects 0.000 claims description 22
- 238000012795 verification Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005057 refrigeration Methods 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000012706 support-vector machine Methods 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 206010063385 Intellectualisation Diseases 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2642—Domotique, domestic, home control, automation, smart house
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本申请涉及智能家电技术领域,公开一种用于家电控制的方法,包括:获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型;控制空调在预设控制模型输出的预测运行信息下运行,并获得目标环境参数和空调运行过程中的第一实时环境参数;根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数;控制目标家电在目标运行参数下运行。这样,可以保证室内温度始终处于合适范围,避免空调长时间开启导致的环境失衡,影响用户的使用体验。本申请还公开一种用于家电控制的装置和家电。
Description
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于家电控制的方法、装置和家电。
背景技术
随着科技的进步和人们生活水平的提高,越来越多的人开始关注智能家居的发展,追求更智能化的家电控制体验。以空调为例,在空调开机后,一般都是通过用户遥控的方式来调节空调的运行模式、运行温度以及运行风速等,这样操作比较繁琐。此外,如果用户长时间不调节空调的运行参数,可能会导致室内环境变差,如温湿度失衡,影响用户的使用体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于家电控制的方法、装置和家电,以保证室内环境的稳定,提高用户的生活体验。
在一些实施例中,所述用于家电控制的方法包括:获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型;控制空调在预设控制模型输出的预测运行信息下运行,并获得目标环境参数和空调运行过程中的第一实时环境参数;根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数;控制目标家电在目标运行参数下运行。
在一些实施例中,预设控制模型包括参数预测模型,则参数预测模型通过如下方式获得:获得用于训练参数预测模型的第一样本,并将第一样本随机分为训练集和测试集,第一样本包括不同环境参数下用于调节空调运行信息的用户习惯信息;将训练集中的不同环境参数输入至初始预测模型,并将训练集中不同环境参数对应的用户习惯信息作为初始预测模型的输出,以对初始预测模型进行训练;根据测试集验证训练后的初始预测模型,得到验证结果;在验证结果表示预测准确的情况下,得到参数预测模型。
在一些实施例中,如果用户习惯信息包括空调的设定运行温度,预设控制模型还包括与设定运行温度对应的模式分类模型,则模式分类模型通过如下方式获得:获得用于训练模式分类模型的第二样本,第二样本包括不同环境参数下,已标注运行模式信息的设定运行温度;将不同环境参数和不同环境参数对应的设定运行温度输入至初始分类模型中,并将设定运行温度对应的运行模式信息作为初始分类模型的输出,以对初始分类模型进行训练,得到模式分类模型。
在一些实施例中,对初始分类模型进行训练,得到模式分类模型,包括:将第二样本随机分为训练样本和测试样本;根据训练样本训练模式分类模型,并根据测试样本测试模式分类模型,得到测试结果;如果测试结果表示运行模式信息和对应的环境参数不匹配,则继续根据训练样本训练模式分类模型。
在一些实施例中,根据第一实时环境参数和目标环境参数,确定用于满足目标参数的目标家电,以及目标家电的目标运行参数,包括:如果第一实时环境参数至少包括室内实时湿度,目标环境参数至少包括室内目标湿度,则在室内目标湿度和室内实时湿度的第一差值大于或等于预设湿度差值的情况下,将加湿器确定为目标家电,并将根据第一差值确定的加湿量设置为加湿器的目标运行参数。
在一些实施例中,根据第一实时环境参数和目标环境参数,确定用于满足目标参数的目标家电,以及目标家电的目标运行参数,包括:如果第一实时环境参数至少包括室内实时空气洁净度,目标环境参数至少包括室内目标空气洁净度,则在室内目标空气洁净度和室内实时空气洁净度的第二差值大于或等于预设洁净度差值的情况下,将新风机确定为目标家电,并将根据第二差值确定的新风比设置为新风机的目标运行参数。
在一些实施例中,控制目标家电在目标运行参数下运行后,还包括:根据第一实时环境信息和当前环境参数,确定预测运行信息关联的环境影响信息;获得用于确定目标家电和目标运行参数的影响因子模型;利用环境影响信息、目标家电以及目标家电的目标运行参数,修正影响因子模型。
在一些实施例中,控制空调在预设控制模型输出的预测运行信息下运行后,还包括:如果用户向空调发送控制指令,则获得控制指令对应的空调的设定运行信息;将空调从预测运行信息切换运行至设定运行信息。
在一些实施例中,所述用于家电控制的装置包括输入模块、获取模块、确定模块和控制模块。输入模块被配置为获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型;获取模块被配置为控制空调在预设控制模型输出的预测运行信息下运行,并获得目标环境参数和空调运行过程中的第一实时环境参数;确定模块被配置为根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数;控制模块被配置为控制目标家电在目标运行参数下运行。
在一些实施例中,所述用于家电控制的装置包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行上述的用于家电控制的方法。
在一些实施例中,所述家电包括上述的用于家电控制的装置。
本公开实施例提供的用于家电控制的方法、装置和家电,可以实现以下技术效果:
通过获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型,可以使空调在预设控制模型输出的预测运行信息下运行,使空调自动实现智能控制,简化了用户操作;同时,获得目标环境参数和空调运行过程中的第一实时环境参数,并根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数,智能化地控制目标家电在目标运行参数下运行,保证室内温度始终处于合适范围,避免空调长时间开启导致的环境失衡,影响用户的使用体验。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于家电控制的方法的流程图;
图2是本公开实施例提供的一个用于家电控制的装置的示意图;
图3是本公开实施例提供的一个用于家电控制的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
本公开实施例提供的用于家电控制的方法,应用于至少具有空气调节系统的室内环境中。这里,空气调节系统可以包括空调、加湿器以及新风机等家电,以便实现对室内空气的精准调控。
图1是本公开实施例提供的一个用于家电控制的方法的流程图。结合图1所示,本公开实施例提供一种用于家电控制的方法,以实现对上述室内环境的控制,该方法可以包括:
S1,获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型。
其中,当前环境参数至少可以包括当前室内温度、当前室外温度、当前湿度、当前空气洁净度等参数。对应地,通过在室内设置温湿度传感器和空气质量传感器,以及在室外设置温度传感器的方式,可以快速、准确地获得当前环境参数。
可选地,如果预设控制模型包括参数预测模型,则参数预测模型可以通过如下方式获得:获得用于训练参数预测模型的第一样本,并将第一样本随机分为训练集和测试集,第一样本包括不同环境参数下用于调节空调运行信息的用户习惯信息;将训练集中的不同环境参数输入至初始预测模型,并将训练集中不同环境参数对应的用户习惯信息作为初始预测模型的输出,以对初始预测模型进行训练;根据测试集验证训练后的初始预测模型,得到验证结果;在验证结果表示预测准确的情况下,得到参数预测模型。这样将机器学习算法引入空调的智能控制逻辑中,有助于空调能够准确、自动地在用户所习惯的运行信息下运行,使用户摆脱手动设置空调运行信息的复杂操作方式,提高了用户的使用体验。
其中,初始预测模型可以是根据机器学习算法确定的预测模型,具体可以是人工神经网络算法、随机森林算法、决策树算法、支持向量机算法等。以SVM(Support VectorMachine,支持向量机)算法为例,将第一样本随机分为训练集和测试集,以训练集中的不同环境参数作为训练输入,不同环境参数对应的用户习惯信息作为训练输出,调用svmtrain函数以训练初始预测模型;以测试集中的不同环境参数作为预测输入,调用svmprediect函数以输出不同环境参数下各自的预测用户习惯信息;将预测用户习惯信息和训练集中的用户习惯信息拟合成曲线,以验证训练后的初始预测模型,得到验证结果。这样根据SVM算法得到的模型,预测准确度较高,从而提高了空调的智能化。
此外,不同环境参数,可以体现为多种环境参数各自对应的不同数值。不同环境参数下用于调节空调运行信息的用户习惯信息,具体可以包括用户习惯的设定运行温度、设定运行模式、设定风速以及设定摆风方式等。
对应地,用户习惯信息可以通过多种实现方式获得,下面举例说明。
作为一种示例,可以在预设时长内,分别采集不同环境参数下用户设定的空调运行信息,以便根据采集到的数据确定用户习惯信息。具体地,预设时长可以为30天~90天。优选为90天,这样可以尽可能地按季度采集完整的空调运行信息,以便按季节准确地获得用户习惯信息。
作为另一种示例,如果空调,或者与空调关联的智能终端配置有信息录入模块,则可通过用户输入信息的方式,获得用户习惯信息。例如,信息录入模块可以体现为键盘,这样用户可以通过键盘手动输入用户习惯信息;或者,信息录入模块可以体现为语音采集模块,用户可以通过语音方式输入用户习惯信息,由空调或智能终端进行语音识别,以获得用户习惯信息。通过信息录入模块可以非常方便、快捷、低成本地获取用户习惯信息。
上述智能终端,例如为移动设备、电脑、或浮动车中内置的车载设备等,或其任意组合。在一些实施例中,移动设备例如可以包括手机、可穿戴设备、智能移动设备等,或其任意组合。
可选地,如果用户习惯信息包括空调的设定运行温度,预设控制模型还包括与设定运行温度对应的模式分类模型,则模式分类模型可以通过如下方式获得:获得用于训练模式分类模型的第二样本,第二样本包括不同环境参数下,已标注运行模式信息的设定运行温度;将不同环境参数和不同环境参数对应的设定运行温度输入至初始分类模型中,并将设定运行温度对应的运行模式信息作为初始分类模型的输出,以对初始分类模型进行训练,得到模式分类模型。这样,可以更准确地获得空调的运行模式信息,减少仅根据环境参数判断空调运行模式导致的误判,有助于提高空调的控制运行精度和智能化程度。
其中,运行模式信息可以是制冷模式或制热模式。这里,制冷模式可以指,在室内换热器作为蒸发器参与空气调节过程的情况下,空调的工作状态,至少可以包括普通制冷模式、除湿模式以及自清洁过程中室内换热器凝霜或室外换热器化霜的工作模式。制热模式可以指,在室内换热器作为冷凝器参与空气调节过程的情况下,空调的工作状态,至少可以包括普通制热模式、自清洁过程中室内换热器的除霜模式以及自清洁过程中室内换热器的高温灭菌模式。这里,运行模式信息可以通过不同的标识信息标注,例如,制冷模式标注为“-1”,制热模式标注为“1”,对此本公开实施例可不做具体限定。
初始分类模型可以是根据机器学习算法确定的分类模型,具体可以是K近邻算法、朴素贝叶斯算法、SVM算法等。
具体地,对初始分类模型进行训练,得到模式分类模型,可以包括:将第二样本随机分为训练样本和测试样本;根据训练样本训练模式分类模型,并根据测试样本测试模式分类模型,得到测试结果;如果测试结果表示运行模式信息和对应的环境参数不匹配,则继续根据训练样本训练模式分类模型。这样,便于构建模型,以及后续检验模式分类模型的准确率。
S12,控制空调在预设控制模型输出的预测运行信息下运行,并获得目标环境参数和空调运行过程中的第一实时环境参数。
这里,控制空调在预设控制模型输出的预测运行信息下运行后,还可以包括:如果用户向空调发送控制指令,则获得控制指令对应的空调的设定运行信息;将空调从预测运行信息切换运行至设定运行信息。这样,优先响应用户输出的控制指令,可以给用户提供更好的使用体验。
此外,可以获得空调在设定运行信息下运行的新的环境参数;根据设定运行信息和新的环境参数,确定新的环境参数下用于调节空调运行信息的新的用户习惯信息,以更新第一样本。这样采用新的用户习惯信息,可以优化预测控制模型的训练样本数据,从而有助于空调在用户最满意的运行信息下运行,提高用户的使用体验。
S13,根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数。
可选地,根据第一实时环境参数和目标环境参数,确定用于满足目标参数的目标家电,以及目标家电的目标运行参数,可以包括:如果第一实时环境参数至少包括室内实时湿度,目标环境参数至少包括室内目标湿度,则在室内目标湿度和室内实时湿度的第一差值大于或等于预设湿度差值的情况下,将加湿器确定为目标家电,并将根据第一差值确定的加湿量设置为加湿器的目标运行参数。这样,可以保证在空调运行时,室内的湿度也始终处于合适的范围,避免空调长时间开启导致的环境失衡,提高了家电联动控制的智能化,以及用户的使用体验。
其中,室内目标湿度的取值范围可以为40%~60%。预设湿度差值的取值可以为20%。这样设置预设湿度差值,可以避免在室内过于干燥时才调节湿度,影响用户的体验,也可以避免在室内并不干燥时就调节湿度,造成能源浪费。
可选地,根据第一实时环境参数和目标环境参数,确定用于满足目标参数的目标家电,以及目标家电的目标运行参数,可以包括:如果第一实时环境参数至少包括室内实时空气洁净度,目标环境参数至少包括室内目标空气洁净度,则在室内目标空气洁净度和室内实时空气洁净度的第二差值大于或等于预设洁净度差值的情况下,将新风机确定为目标家电,并将根据第二差值确定的新风比设置为新风机的目标运行参数。这样,可以保证在空调运行时,室内的空气洁净度也始终处于合适的范围,避免空调长时间开启导致的环境失衡,提高了家电联动控制的智能化,以及用户的使用体验。
这里,空气洁净度可以体现为空气质量,即空气中污染物的浓度,例如甲醛浓度、PM2.5(细颗粒物)浓度等。以PM2.5为例,室内目标空气洁净度,即室内目标PM2.5浓度可以为50毫克。预设洁净度差值的取值可以为10~20毫克。这样设置预设洁净度差值,可以避免在室内空气质量过差时才进行净化,影响用户的体验,也可以避免在室内空气质量良好时就进行净化,造成能源浪费。
S14,控制目标家电在目标运行参数下运行。
进一步地,控制目标家电在目标运行参数下运行后,还可以包括:根据第一实时环境信息和当前环境参数,确定预测运行信息关联的环境影响信息;获得用于确定目标家电和目标运行参数的影响因子模型;利用环境影响信息、目标家电以及目标家电的目标运行参数,修正影响因子模型。这样,可以进一步地提高家电家电联动控制的智能化效果,通过协调联动多个家电,保证室内环境能够始终处于合适的范围,提高用户的使用体验。
在实际应用中,如果第一实时环境参数包括第一实时湿度,且空调的预测运行信息包括空调处于制冷模式,则当空调在制冷模式下运行时第一实时湿度会下降,因此预测运行信息关联的环境影响信息至少可以体现为空调运行时对湿度的影响。
综上,采用本公开实施例提供的用于家电控制的方法,通过获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型,可以使空调在预设控制模型输出的预测运行信息下运行,使空调自动实现智能控制,简化了用户操作;同时,获得目标环境参数和空调运行过程中的第一实时环境参数,并根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数,智能化地控制目标家电在目标运行参数下运行,保证室内温度始终处于合适范围,避免空调长时间开启导致的环境失衡,影响用户的使用体验。
图2是本公开实施例提供的一个用于家电控制的装置的示意图。结合图2所示,本公开实施例提供一种用于家电控制的装置,包括输入模块21、获取模块22、确定模块23和控制模块24。输入模块21被配置为获得当前环境参数,并将当前环境参数输入至用于调节空调运行信息的预设控制模型;获取模块22被配置为控制空调在预设控制模型输出的预测运行信息下运行,并获得目标环境参数和空调运行过程中的第一实时环境参数;确定模块23被配置为根据第一实时环境参数和目标环境参数,确定用于满足目标环境参数的目标家电,以及目标家电的目标运行参数;控制模块24被配置为控制目标家电在目标运行参数下运行。
采用本公开实施例提供的用于家电控制的装置,通过输入模块、获取模块、确定模块和控制模块之间的联动配合,使空调在预设控制模型输出的预测运行信息下运行,使空调自动实现智能控制,简化了用户操作;同时,智能化地控制目标家电在目标运行参数下运行,保证室内温度始终处于合适范围,避免空调长时间开启导致的环境失衡,影响用户的使用体验。
图3是本公开实施例提供的一个用于家电控制的装置的示意图。结合图3所示,本公开实施例提供一种用于家电控制的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于家电控制的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于家电控制的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种家电,包含上述的用于家电控制的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于家电控制的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于家电控制的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
Claims (7)
1.一种用于家电控制的方法,其特征在于,包括:
获得当前环境参数,并将所述当前环境参数输入至用于调节空调运行信息的预设控制模型;
控制空调在所述预设控制模型输出的预测运行信息下运行,并获得目标环境参数和所述空调运行过程中的第一实时环境参数;
根据所述第一实时环境参数和所述目标环境参数,确定用于满足所述目标环境参数的目标家电,以及所述目标家电的目标运行参数;其中,所述目标家电为加湿器和/或新风机,所述目标环境参数至少包括:当前室内温度、当前室外温度、当前湿度以及当前空气清洁度;
控制所述目标家电在所述目标运行参数下运行;
根据所述第一实时环境信息和所述当前环境参数,确定所述预测运行信息关联的环境影响信息;
获得用于确定目标家电和目标运行参数的影响因子模型;
利用所述环境影响信息、所述目标家电以及所述目标家电的目标运行参数,修正所述影响因子模型;
其中,如果所述预设控制模型包括参数预测模型,则所述参数预测模型通过如下方式获得:
获得用于训练所述参数预测模型的第一样本,并将所述第一样本随机分为训练集和测试集,所述第一样本包括不同环境参数下用于调节空调运行信息的用户习惯信息;
将所述训练集中的不同环境参数输入至初始预测模型,并将所述训练集中不同环境参数对应的用户习惯信息作为所述初始预测模型的输出,以对所述初始预测模型进行训练;
根据所述测试集验证训练后的初始预测模型,得到验证结果;
在所述验证结果表示预测准确的情况下,得到所述参数预测模型;
获得空调在设定运行信息下运行的新的环境参数;
根据设定运行信息和新的环境参数,确定新的环境参数下用于调节空调运行信息的新的用户习惯信息,以更新第一样本;
其中,如果用户习惯信息包括所述空调的设定运行温度,所述预设控制模型还包括与所述设定运行温度对应的模式分类模型,则所述模式分类模型通过如下方式获得:
获得用于训练所述模式分类模型的第二样本,所述第二样本包括不同环境参数下,已标注运行模式信息的设定运行温度;
将所述不同环境参数和所述不同环境参数对应的设定运行温度输入至初始分类模型中,并将所述设定运行温度对应的运行模式信息作为所述初始分类模型的输出,以对所述初始分类模型进行训练,得到所述模式分类模型;所述运行模式为制冷模式或者制热模式;
所述用户习惯信息通过以下方式获得:
在预设时长内,分别采集不同环境参数下用户设定的空调运行信息;
根据采集到的数据确定用户习惯信息。
2.根据权利要求1所述的方法,其特征在于,所述对所述初始分类模型进行训练,得到所述模式分类模型,包括:
将所述第二样本随机分为训练样本和测试样本;
根据所述训练样本训练所述模式分类模型,并根据所述测试样本测试所述模式分类模型,得到测试结果;
如果所述测试结果表示运行模式信息和对应的环境参数不匹配,则继续根据所述训练样本训练所述模式分类模型。
3.根据权利要求1所述的方法,其特征在于,所述根据所述第一实时环境参数和所述目标环境参数,确定用于满足所述目标参数的目标家电,以及所述目标家电的目标运行参数,包括:
如果所述第一实时环境参数至少包括室内实时湿度,所述目标环境参数至少包括室内目标湿度,则在所述室内目标湿度和所述室内实时湿度的第一差值大于或等于预设湿度差值的情况下,将加湿器确定为所述目标家电,并将根据所述第一差值确定的加湿量设置为所述加湿器的目标运行参数。
4.根据权利要求1所述的方法,其特征在于,所述根据所述第一实时环境参数和所述目标环境参数,确定用于满足所述目标参数的目标家电,以及所述目标家电的目标运行参数,包括:
如果所述第一实时环境参数至少包括室内实时空气洁净度,所述目标环境参数至少包括室内目标空气洁净度,则在所述室内目标空气洁净度和所述室内实时空气洁净度的第二差值大于或等于预设洁净度差值的情况下,将新风机确定为所述目标家电,并将根据所述第二差值确定的新风比设置为所述新风机的目标运行参数。
5.根据权利要求2所述的方法,其特征在于,所述控制空调在所述预设控制模型输出的预测运行信息下运行后,还包括:
如果用户向所述空调发送控制指令,则获得所述控制指令对应的所述空调的设定运行信息;
将所述空调从所述预测运行信息切换运行至所述设定运行信息。
6.一种用于家电控制的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至5任一项所述的用于家电控制的方法。
7.一种家电,其特征在于,包括如权利要求6所述的用于家电控制的装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110405226.XA CN113110082B (zh) | 2021-04-15 | 2021-04-15 | 用于家电控制的方法、装置和家电 |
PCT/CN2022/075195 WO2022218014A1 (zh) | 2021-04-15 | 2022-01-30 | 用于家电控制的方法、装置和家电 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110405226.XA CN113110082B (zh) | 2021-04-15 | 2021-04-15 | 用于家电控制的方法、装置和家电 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113110082A CN113110082A (zh) | 2021-07-13 |
CN113110082B true CN113110082B (zh) | 2023-05-16 |
Family
ID=76717133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110405226.XA Active CN113110082B (zh) | 2021-04-15 | 2021-04-15 | 用于家电控制的方法、装置和家电 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113110082B (zh) |
WO (1) | WO2022218014A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112415966B (zh) * | 2020-11-16 | 2021-11-23 | 珠海格力电器股份有限公司 | 基于用户行为的智能家电节能方法、系统及存储介质 |
CN113110082B (zh) * | 2021-04-15 | 2023-05-16 | 青岛海尔空调器有限总公司 | 用于家电控制的方法、装置和家电 |
CN113485146B (zh) * | 2021-07-30 | 2022-12-23 | 重庆海尔空调器有限公司 | 用于家电设备的控制方法及控制装置、家电设备 |
CN114091336A (zh) * | 2021-11-22 | 2022-02-25 | 中国第一汽车股份有限公司 | 一种空调调节方法、装置、车辆及存储介质 |
CN114322271B (zh) * | 2021-12-06 | 2024-06-18 | 青岛海尔空调器有限总公司 | 用于空调的控制方法及装置、空调、存储介质 |
CN114675552A (zh) * | 2022-03-10 | 2022-06-28 | 深圳亿思腾达集成股份有限公司 | 一种基于深度学习算法的智能家居管理方法及系统 |
CN114815642B (zh) * | 2022-03-30 | 2024-11-19 | 青岛海尔科技有限公司 | 智能设备的控制方法和装置、存储介质及电子装置 |
CN115524988B (zh) * | 2022-05-31 | 2024-09-24 | 青岛海尔智能家电科技有限公司 | 用于厨电设备控制的方法、装置、云端设备及存储介质 |
CN115654686A (zh) * | 2022-10-20 | 2023-01-31 | 珠海格力电器股份有限公司 | 联动控制方法、装置、电子设备、甲醛净化器及存储介质 |
CN115736685A (zh) * | 2022-11-07 | 2023-03-07 | 青岛海尔空调器有限总公司 | 智能毛巾架的控制方法与装置 |
CN116149196A (zh) * | 2022-12-07 | 2023-05-23 | 青岛海尔智能家电科技有限公司 | 用于调整室内环境状况的方法及装置、电子设备、存储介质 |
CN117055737B (zh) * | 2023-10-11 | 2024-01-26 | 天津市品茗科技有限公司 | 一种基于ar装置的人机交互方法及装置 |
CN117970828B (zh) * | 2024-04-01 | 2024-08-23 | 深圳百川装饰集团有限公司 | 一种智能家居多方位控制管理系统 |
CN118732529B (zh) * | 2024-09-03 | 2024-12-17 | 广东顺德拓昊电子电器有限公司 | 一种智能家电设备控制方法及系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112303850A (zh) * | 2020-10-29 | 2021-02-02 | 珠海格力电器股份有限公司 | 空调的控制方法及装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI546506B (zh) * | 2014-12-04 | 2016-08-21 | 台達電子工業股份有限公司 | 環境舒適度控制系統及其控制方法 |
CN106949599A (zh) * | 2017-03-17 | 2017-07-14 | 珠海格力电器股份有限公司 | 控制湿度的方法、装置、系统及空调 |
CN109990444B (zh) * | 2017-12-29 | 2022-05-13 | 大金工业株式会社 | 空气质量管理系统和方法 |
DE102018205760A1 (de) * | 2018-04-16 | 2019-10-17 | BSH Hausgeräte GmbH | Verfahren zum Betreiben eines Haushaltskältegeräts, bei welchem ein Sensor im Schutzbetrieb betrieben werden kann, sowie Haushaltskältegerät |
CN108759006B (zh) * | 2018-06-08 | 2020-12-11 | 广东美的制冷设备有限公司 | 空调器的加湿方法、空调器及计算机可读存储介质 |
CN110578994B (zh) * | 2018-06-11 | 2021-01-29 | 珠海格力电器股份有限公司 | 一种运行方法及装置 |
CN110779175A (zh) * | 2018-07-31 | 2020-02-11 | 珠海格力电器股份有限公司 | 一种运行模式控制方法及装置 |
CN110836515A (zh) * | 2018-08-17 | 2020-02-25 | 珠海格力电器股份有限公司 | 一种家居设备控制方法、装置、控制设备及可读存储介质 |
CN110836514B (zh) * | 2018-08-17 | 2021-01-29 | 珠海格力电器股份有限公司 | 空调组的控制方法和装置 |
CN110836509A (zh) * | 2018-08-17 | 2020-02-25 | 珠海格力电器股份有限公司 | 一种家居设备控制方法、装置、控制设备及可读存储介质 |
CN109827292A (zh) * | 2019-01-16 | 2019-05-31 | 珠海格力电器股份有限公司 | 家电自适应节能控制模型的构建方法、控制方法、家电 |
CN110715356B (zh) * | 2019-10-21 | 2023-09-08 | 广东美的制冷设备有限公司 | 用于家用电器的加湿方法、控制装置及家用电器 |
CN111414996B (zh) * | 2020-03-17 | 2023-08-01 | 上海万晟建筑设计顾问有限公司 | 一种智能家居控制方法、系统、存储介质和计算机设备 |
CN112255928A (zh) * | 2020-10-30 | 2021-01-22 | 北京金山云网络技术有限公司 | 智能家居的控制方法、装置、系统及电子设备 |
CN112413858B (zh) * | 2020-11-24 | 2021-11-16 | 珠海格力电器股份有限公司 | 一种空调控制方法、装置、系统、电子设备及存储介质 |
CN113110082B (zh) * | 2021-04-15 | 2023-05-16 | 青岛海尔空调器有限总公司 | 用于家电控制的方法、装置和家电 |
-
2021
- 2021-04-15 CN CN202110405226.XA patent/CN113110082B/zh active Active
-
2022
- 2022-01-30 WO PCT/CN2022/075195 patent/WO2022218014A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112303850A (zh) * | 2020-10-29 | 2021-02-02 | 珠海格力电器股份有限公司 | 空调的控制方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113110082A (zh) | 2021-07-13 |
WO2022218014A1 (zh) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113110082B (zh) | 用于家电控制的方法、装置和家电 | |
CN110836514B (zh) | 空调组的控制方法和装置 | |
Yoon et al. | Performance based thermal comfort control (PTCC) using deep reinforcement learning for space cooling | |
CN110726229B (zh) | 空调器的控制方法及装置、存储介质及处理器 | |
CN108488987B (zh) | 空气调节设备的控制方法、存储介质和设备 | |
KR20230110452A (ko) | 데이터 학습 서버 및 이의 학습 모델 생성 및 이용방법 | |
CN110736248B (zh) | 空调出风温度的控制方法和装置 | |
CN110726218B (zh) | 空调器及其控制方法、装置、存储介质和处理器 | |
CN106842914B (zh) | 一种温度控制节能处理方法、装置及系统 | |
CN110736225B (zh) | 空调的控制方法和装置 | |
CN102844773A (zh) | 基于交互式学习的建筑物节能化单元和系统 | |
CN109114742A (zh) | 控制方法、装置、空调器、遥控终端、服务器及存储介质 | |
CN110726209B (zh) | 空调控制方法、装置、存储介质以及处理器 | |
CN110836515A (zh) | 一种家居设备控制方法、装置、控制设备及可读存储介质 | |
CN113339965A (zh) | 用于空调控制的方法、装置和空调 | |
CN112781193A (zh) | 用于加湿的方法、装置和加湿空调 | |
CN110726216B (zh) | 空调器及其控制方法、装置、系统、存储介质和处理器 | |
CN112240633B (zh) | 用于空调控制的方法、装置及空调 | |
CN111649465A (zh) | 一种空调设备自动控制方法及系统 | |
WO2023141766A1 (en) | Method and apparatus for optimizing control parameters, storage medium, and electronic device | |
Zenger et al. | Towards the intelligent home: Using reinforcement-learning for optimal heating control | |
CN114811891A (zh) | 用于空调新风管防凝露的方法、装置及空调 | |
Genkin et al. | Using reinforcement learning with transfer learning to overcome smart building cold start | |
CN110793163B (zh) | 空调配置处理方法及装置 | |
CN110894981A (zh) | 一种空调及其控制方法和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |