Nothing Special   »   [go: up one dir, main page]

CN113019153A - 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用 - Google Patents

一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用 Download PDF

Info

Publication number
CN113019153A
CN113019153A CN202110169888.1A CN202110169888A CN113019153A CN 113019153 A CN113019153 A CN 113019153A CN 202110169888 A CN202110169888 A CN 202110169888A CN 113019153 A CN113019153 A CN 113019153A
Authority
CN
China
Prior art keywords
solvent
substrate
triblock copolymer
hydrogenated styrene
styrene triblock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110169888.1A
Other languages
English (en)
Other versions
CN113019153B (zh
Inventor
熊晓鹏
钟成堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202110169888.1A priority Critical patent/CN113019153B/zh
Publication of CN113019153A publication Critical patent/CN113019153A/zh
Application granted granted Critical
Publication of CN113019153B publication Critical patent/CN113019153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用,其水接触角为145°‑155°,包括网状基底和由混合浆料在非溶剂气氛中经蒸气诱导相分离后固化于该网状基底上的聚合物膜层。本发明通过蒸气诱导相分离与表面涂覆技术,使氢化苯乙烯三嵌段共聚物在高强网状基底上经蒸气诱导相分离过程,从而产生三维网孔状微观结构且纳米粒子均匀粘附在嵌段共聚物基体上,所需原料价格低廉,来源广泛,无需用到复杂且昂贵的仪器设备与危险化学品,也无需复杂的化学处理过程,制备过程简单高效、安全,所涉及的溶剂可完全回收因而环保。

Description

一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用
技术领域
本发明属于功能材料技术领域,具体涉及一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用。
背景技术
现今,空气污染己成为全球性威胁,导致人类发病率和死亡率不断增加。特别是最近因呼吸道冠状病毒在全球范围内持续扩散,导致超亿人感染、超200万人死亡,给人类生存带来严重威胁,也使全球经济遭受巨大损失。呼吸道冠状病毒的主要传播途径是飞沫传播,同时Doremalen等人(New England Journal of Medicine 2020,382,(16)1564-1567)发现病毒可以在空气中悬浮至少3h以上。另外,在医护环境、公共空间,由于开展的活动多种多样,空气中不可避免的含有许多微小物质或颗粒,如PM2.5、细菌、病毒、真菌等,给人们的身心健康带来极大威胁。鉴于此,研究者们正在寻求可持续且有效的空气净化技术。
膜过滤被认为是空气净化最为有效和可靠的物理截留方法。A.Claudi等人(Materials Science&Engineering C,2019,102,718-729)用静电纺丝的方法在基材上沉积新型银/聚丙烯腈(Ag/PAN)纳米纤维膜,具有低压降和高过滤效率,同时负载的纳米Ag也表现出较好的抗菌活性。但是,这种静电纺丝法制备膜材料的效率较低,难以推广、规模化生产且成本高昂。
基于纳米材料的特异性功能,在光辅助下对空气过滤过程进行光催化处理的空气净化技术受到了广泛的关注。但是,如何通过简便工艺制备出性能优异且能应用于实际的空气净化膜滤芯仍然是一个巨大的挑战。E.Iliana等(Chemosphere,2020,257,127236)用Ag和Cu掺杂TiO2,以珍珠岩为负载基体制备光催化材料,该光催化材料在空气净化时表现出优异的抗菌活性,但是其制备过程较为复杂。
光催化空气净化膜滤芯的材料必须耐用且高效,风阻低即低压降,还需其制备工艺简便,生产成本低,并能灵活满足不同特定需求才能应用于实际,这也导致其推广和实际使用存在极大的难度。熊晓鹏等(CN105925113A和CN103013024A)公开的超疏水、三维网孔薄膜尽管具有很好的防水透气性能,然而采用的聚合物为苯乙烯-丁二烯嵌段共聚物或苯乙烯-异戊二烯嵌段共聚物中存在具有反应活性的孤立双键,对光催化过程以及再次使用所需消杀过程的紫外-可见光辐照、酒精消杀比较敏感,易于老化、降解,所以并不适合用作光催化空气净化膜滤芯。因此,迫切需要开发出一种制备工艺简便、性价比高、耐用的光催化空气净化膜滤芯,这将具有重大的社会意义和经济效益。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种疏水透气光催化聚合物纳米复合膜。
本发明的另一目的在于提供上述疏水透气光催化聚合物纳米复合膜的制备方法。
本发明的再一目的在于提供上述疏水透气光催化聚合物纳米复合膜的应用。
本发明的技术方案如下:
一种疏水透气光催化聚合物纳米复合膜,其水接触角为145°-155°,包括网状基底和由混合浆料在非溶剂气氛中经蒸气诱导相分离固化于该网状基底上的聚合物膜层,
该网状基底经氢化苯乙烯三嵌段共聚物溶液浸泡预处理,该氢化苯乙烯三嵌段共聚物溶液由溶剂和氢化苯乙烯三嵌段共聚物组成;
该混合浆料由溶剂、氢化苯乙烯三嵌段共聚物和纳米二氧化钛组成,其中,氢化苯乙烯三嵌段共聚物为SEBS和/或SEPS。
在本发明的一个优选实施方案中,所述纳米二氧化钛占纳米二氧化钛与氢化苯乙烯三嵌段共聚物的总质量的2-60%。
在本发明的一个优选实施方案中,所述溶剂为环己烷、乙酸乙酯和丁酮中的至少一种。
在本发明的一个优选实施方案中,所述非溶剂气氛包括水蒸气、甲醇蒸气、乙醇蒸气和正丙醇蒸气中的至少一种。
在本发明的一个优选实施方案中,所述网状基底为不锈钢网、尼龙网、聚对苯二甲酸乙二醇酯纤维织物或聚丙烯无纺布。
本发明的另一技术方案如下:
上述疏水透气光催化聚合物纳米复合膜的制备方法,包括如下步骤:
(1)将所述氢化苯乙烯三嵌段共聚物与溶剂充分混合,分别配制成第一胶束溶液和第二胶束溶液;
(2)将纳米二氧化钛超声分散于步骤(1)所得的第一胶束溶液中,然后置于45-55℃静置5-7h,获得混合浆料;
(3)将网状基底浸泡于步骤(1)所得的第二胶束溶液中,获得高强网状基底;
(4)在所述非溶剂气氛中,将混合浆料涂覆于高强网状基底上进行蒸气诱导相分离,待溶剂挥发后,即得所述疏水透气光催化聚合物纳米复合膜。
在本发明的一个优选实施方案中,所述第一胶束溶液的浓度为5-120mg/mL。
在本发明的一个优选实施方案中,所述第二胶束溶液的浓度为30-120mg/mL。
本发明的再一技术方案如下:
上述疏水透气光催化聚合物纳米复合膜在空气净化滤芯中的应用。
一种空气净化滤芯,具有上述疏水透气光催化聚合物纳米复合膜。
本发明的有益效果是:
1、本发明的微观结构是三维网孔结构,具有很高的透气性,不仅可以高效地过滤并灭活空气中的细菌,而且对微小粒物质如PM2.5、细菌、病毒具有截留性能。
2、本发明因微-纳多级尺度结构,水接触角大于145°,具有超疏水性,抗结垢且便于清洗和消杀,使用寿命长,且可以重复使用多次,适用于净化污浊空气。
3、本发明中的纳米粒子的均匀分布,具有很好的光催化性能。
4、本发明具有良好的耐磨性。
5、本发明的制备方法通过蒸气诱导相分离与表面涂覆技术,使氢化苯乙烯三嵌段共聚物在高强网状基底上经蒸气诱导相分离过程,从而产生三维网孔状微观结构且纳米粒子均匀粘附在嵌段共聚物基体上,所需原料价格低廉,来源广泛,无需用到复杂且昂贵的仪器设备与危险化学品,也无需复杂的化学处理过程,制备过程简单高效、安全,所涉及的溶剂可完全回收因而环保。
附图说明
图1为本发明实施例1中对SEBS膜和SBS膜经紫外辐照后进行X射线光电子能谱分析(XPS)所获得的C1s图谱。
图2为本发明实施例1制备的疏水透气光催化聚合物纳米复合膜的表面形貌扫描电镜图。其中,a的标尺为50μm,b-d的标尺为5μm。
图3为本发明实施例1制备的疏水透气光催化聚合物纳米复合膜的平均接触角随纳米二氧化钛含量的变化关系图。
图4为本发明实施例2中摩擦循环测试的结果图。
图5为本发明实施例2中的复合膜在10次摩擦循环后的表面形貌对比图。
图6为本发明实施例3所制备的超疏水、高透气并具有光催化功能的聚合物纳米复合膜的表面形貌扫描电镜图,标尺为30μm。
图7为本发明实施例1、实施例3所制备的两种复合膜以及相关文献中复合膜的空气压降大小比较图。
图8为本发明实施例4所制备纳米复合膜组装的空气净化机照片。
图9为本发明实施例5和实施例1所制备的复合膜在模拟空气净化测试后对大肠杆菌的过滤与灭活效果图。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
向200mg氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SEBS)中加入40mL环己烷,在50℃油浴下剧烈搅拌2h后形成淡蓝色的第一胶束溶液,再向其中加入不同质量的纳米二氧化钛,剧烈超声10min,再放到50℃恒温箱中静置6h获得均匀稳定的混合浆料备用。将不锈钢网(300目)基底在浓度为100mg/mL的SEBS环己烷溶液(第二胶束溶液)中浸泡10min后取出自然晾干,获得高强网状基底。将混合浆料、高强网状基底和气动喷枪同时放入充满水蒸气的50℃恒温密闭手套箱中。取36mL混合浆料装入气动喷枪中,在密闭手套箱中对高强网状基底表面进行喷涂,喷涂高度为20cm,喷枪工作压力为0.2MPa。喷完混合浆料后静置挥发溶剂10min,即通过蒸气诱导相分离过程后可获得表面为白色的疏水透气光催化聚合物纳米复合膜(SEBS膜)。
通过本实施例的相同过程制备基于苯乙烯-丁二烯-苯乙烯三嵌段共聚物的复合膜(SBS膜),对本实施例制得的SEBS膜与该SBS膜均进行TGA测试以比较两者热稳定性,SEBS膜和SBS膜的起始热分解温度(Tid)如表1所示,可见,SEBS膜的Tid高达425.5℃,而SBS膜的Tid只有381.6℃,说明本实施例制得的SEBS膜的耐热性高于SBS。
表1.SBS、SEBS起始热分解温度(Tid)
Figure BDA0002938629690000041
将上述SEBS膜和SBS膜,在30℃下采用500W、波长为254nm的条件下紫外光辐照24h,所得产物进行X-射线光电子能谱(XPS)分析,以对比二者的耐氧化、耐老化性能。如图1所示,SEBS膜只有一个C-C峰(C峰),而SBS膜则有C-C峰(A峰)与C-O峰(B峰),由此说明SBS经紫外辐照后分子链中的C原子被氧化,而SEBS膜耐紫外、抗氧化或耐老化能力均高于SBS膜。
将本实施例所制备的SEBS膜的表面喷金后在电镜下观察表面形貌,如图2所示,其中纳米二氧化钛占固含量的质量百分比为分别为1%(a)、10%(b)、30%(c)、60%(d)。将本实施例所制备的SEBS膜与5μL水滴接触,测试其水接触角。其平均接触角随纳米二氧化钛含量的变化关系如图3所示,水接触角范围为145.7-153.6°。
由此可见,本实施例所制备的SEBS膜的表面粗糙度和水接触角随着纳米二氧化钛的质量分数的增大而增大,纳米二氧化钛分布均匀并且与水滴的接触角大于145°,具有超疏水性能。
实施例2
按实施例1的方法配制72mL浓度为100mg/mL的SEBS环己烷溶液(第一胶束溶液),以及混合浆料,混合浆料中的纳米二氧化钛占固含量的质量百分比为50%。将剪切适当大小的300目不锈钢网浸没于浓度为100mg/mL的SEBS环己烷溶液(第二胶束溶液)浸泡5min,取出后在空气中自然挥发溶剂1h,得高强网状基底。将上述混合浆料在25℃下于充满水与甲醇(水∶甲醇,质量比4∶6)混合蒸气气氛中,分别喷涂于高强网状基底和不锈钢网上,然后经静置10min挥发溶剂的非溶剂蒸气诱导相分离过程后,获得两种复合膜。对二者进行耐磨性对照实验。将复合膜固定在玻璃片上,倒置后将固定的复合膜接触1000cc砂纸上,再在玻璃片上放置一个100g的砝码,由此水平推动玻璃片移动,即是使复合膜在砂纸上匀速移动;移动10cm后停止,再往回水平移动而回到起始位置;然后,再朝向起始移动方向的90°,再次重复前述负重下复合膜与砂纸的摩擦移动;通过这种正交的两次摩擦记为一个循环,每隔1个循环后测试复合膜与5μL水滴的接触角,结果见图4。两种复合膜经10次摩擦循环后,将其喷金进行扫描电镜形貌观察,见图5。结果表明,经过预处理的复合膜(b),聚合物与不锈钢网粘合牢固,表现出优异的耐磨性能,在10次摩擦循环后仍具有优秀的疏水性;而未经预处理的复合膜(a),则易于破损并从基底上脱落。
实施例3
将氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物(SEPS)溶解于乙酸乙酯,获得浓度为120mg/mL的SEPS乙酸乙酯溶液(第一胶束溶液);并向其中加入纳米二氧化钛,纳米二氧化钛占固含量的质量百分比为20%。将尼龙网(400目)浸泡于浓度为120mg/mL的SEPS乙酸乙酯溶液(第二胶束溶液)中5min,取出后在空气中自然挥发溶剂1h,获得高强网状基底。将上述混合浆料在5℃密闭气氛箱中喷涂在高强网状基底上,气氛箱中预先充满乙醇与正丙醇(二者质量比5∶5)的混合蒸气,经溶剂挥发后即可制得复合膜。将所得复合膜经喷金处理后进行扫描电镜形貌观察,见图6。
将该复合膜以及实施例1所制备的纳米二氧化钛占固含量的质量百分比为50%的SEBS膜进行透气性对照测试。将复合膜固定在透气性测试仪上,有效膜面积为5cm2,通过测试空气通过复合膜的流速达到6.8cm/s时,膜两侧的压力差来说明复合膜透气性能,结果参见图7。可见,该复合膜的形貌与实施例1所制备的SEBS膜类似,透气性相近。并且,相比于相关文献([1]Process Safety and Environmental Protection2020,144,177-185;[2]Journal of Industrial Textiles 2014,45,265-297;[3]Polymer2013,54,2364-2372)中的空气净化膜,本发明所制备的疏水透气光催化聚合物纳米复合膜具有优异的透气性。
实施例4
配制SEBS丁酮溶液(第一胶束溶液),再向其中加纳米二氧化钛,所得混合浆料中SEBS的浓度为10mg/mL、纳米二氧化钛占固含量的质量百分比为40%。将不锈钢网(300目)基底在浓度为80mg/mL的SEBS丁酮溶液(第二胶束溶液)中浸泡10min后取出自然晾干,获得高强网状基底。将上述混合浆料在40℃密闭气氛箱中喷涂在高强网状基底,气氛箱中预先充满乙醇蒸气,经溶剂挥发后即可制得复合膜,其水接触角经测试为154.7±1.8°。将所得复合膜夹装在空气净化系统中,即可制得空气净化机,如图8所示。
实施例5
按实施例1的方法制备不含纳米二氧化钛的复合膜,与实施例1所制备的纳米二氧化钛占固含量的质量百分比为50%的SEBS膜进行对照实验。将两种复合膜组装到空气净化系统中,净化含有大肠杆菌(直径约0.5μm、长度约2μm)的污浊空气,净化时长为1h。收集净化前、净化后的空气冷凝液,用移液枪分别吸取100uL滴在载玻片上晾干,用革兰氏染色剂将其染色,然后置于偏光显微镜下观察净化前、净化后细菌数量。同时,用10mL的PBS缓冲液冲洗复合膜表面三次,收集洗涤液,用移液枪吸取100uL涂覆到伊红美蓝培养基上,置于37℃恒温箱中培养24h后观察菌落数。其中,实施例1的SEBS膜对细菌过滤效果参见图9a(净化前)、9b(净化后),统计结果表明对大肠杆菌的截留率达99.7%。在紫外光照下,本实施例制得的不含纳米二氧化钛的复合膜对细菌的灭活效果参见图9c;无紫外光照下,实施例1的SEBS膜对细菌的灭活效果参见图9d;紫外光照下,实施例1的SEBS膜对细菌的灭活效果参见图9e。可见,实施例1的SEBS膜对含有细菌的空气具有极好的截留过滤效果;在紫外光照下,实施例1的SEBS膜赋予其强大的光催化性能,对大肠杆菌灭活率达98.3%。因此,采用实施例1的SEBS膜的滤芯过滤污浊空气,将有效地截留病毒、细菌等细微物质颗粒并同时使截留的病毒、细菌失活,可极大降低其在空气中的浓度和传播,从而达到阻断交叉感染和有效防治的效果。
实施例6
配制丁酮与乙酸乙酯混合溶剂,二者质量比为2∶8。将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SEBS)溶解于上述混合溶剂(第一胶束溶液)中,再向其中加入纳米二氧化钛,所得混合浆料中SEBS的浓度为5mg/mL、纳米二氧化钛占固含量的质量百分比为2%。配制SEBS在上述混合溶剂的溶液,其中SEBS浓度为100mg/mL(第二胶束溶液),再将不锈钢网(300目)基底在其中浸泡10min后取出自然挥发溶剂晾干,获得高强网状基底。将上述混合浆料在50℃密闭气氛箱中喷涂在高强网状基上,气氛箱中预先充满正丙醇蒸气,经溶剂挥发后即可制得复合膜,其水接触角经测试为151.7±1.3°,空气通过该复合膜的流速为6.8cm/s时的压降为77±11Pa。采用实施例5的方法检测其对大肠杆菌的截留率为99.3%、灭活率达92.1%。
实施例7
将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SEBS)和氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物(SEPS)共同溶解于乙酸乙酯中(第一胶束溶液),再向其中加纳米二氧化钛,所得混合浆料中SEBS和SEPS的总浓度为60mg/mL、SEBS和SEPS的质量比为5∶5、纳米二氧化钛占固含量的质量分数为40%。配制仅含聚合物的溶液(第二胶束溶液),其中SEBS和SEPS的总浓度为30mg/mL、SEBS和SEPS的质量比为5∶5,再将聚丙烯无纺布(400目)基底在其中浸泡10min后取出自然挥发溶剂晾干,获得高强网状基底。将上述混合浆料在25℃密闭气氛箱中喷涂在高强网状基底上,气氛箱中预先充满水蒸气,经溶剂挥发后即可制得所需复合膜,其水接触角经测试为153.4±2.8°。采用实施例5的方法检测其对大肠杆菌的截留率为99.6%、灭活率达97.4%。
实施例8
将实施例1所制备的纳米二氧化钛占固含量的质量百分比为50%的SEBS膜浸泡于75%的酒精中24h后再自然晾干,由此模拟酒精消杀过程。测试酒精浸泡前后该复合膜的接触角、透气性、对大肠杆菌的截留及灭活。结果显示:经酒精消杀后该SEBS膜的上述各性能(超疏水性、耐磨性、对细菌的灭活性)保持不变,且透气性有略为提高。
实施例9
配制环己烷与乙酸乙酯混合溶剂,二者质量比为7∶3。以其为溶剂配制氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物(SEPS)溶液(第一胶束溶液),再向其中加纳米二氧化钛,所得混合浆料中SEPS的浓度为30mg/mL、纳米二氧化钛占固含量的质量百分比为5%。配制SEPS溶解于上述混合溶剂的溶液,其中SEBS浓度为30mg/mL(第二胶束溶液),再将聚对苯二甲酸乙二醇酯纤维织物(200目)基底在其中浸泡5min后取出自然挥发溶剂晾干,获得高强网状基底。将上述混合浆料在室温下(约24℃)密闭气氛箱中喷涂在上述高强网状基底,气氛箱中预先充满乙醇与水的混合蒸气(乙醇∶水质量比为1∶9),经溶剂挥发后即可制得复合膜,其水接触角经测试为152.1±1.1°。
以上所述,仅为本发明的较佳实施例而己,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

1.一种疏水透气光催化聚合物纳米复合膜,其特征在于:其水接触角为145°-155°,包括网状基底和由混合浆料在非溶剂气氛中经蒸气诱导相分离后固化于该网状基底上的聚合物膜层,
该网状基底经氢化苯乙烯三嵌段共聚物溶液浸泡预处理,该氢化苯乙烯三嵌段共聚物溶液由溶剂和氢化苯乙烯三嵌段共聚物组成;
该混合浆料由溶剂、氢化苯乙烯三嵌段共聚物和纳米二氧化钛组成,其中,氢化苯乙烯三嵌段共聚物为SEBS和/或SEPS。
2.如权利要求1所述的一种疏水透气光催化聚合物纳米复合膜,其特征在于:所述纳米二氧化钛占纳米二氧化钛与氢化苯乙烯三嵌段共聚物的总质量的2-60%。
3.如权利要求1所述的一种疏水透气光催化聚合物纳米复合膜,其特征在于:所述溶剂为环己烷、乙酸乙酯和丁酮中的至少一种。
4.如权利要求1所述的一种疏水透气光催化聚合物纳米复合膜,其特征在于:所述非溶剂气氛包括水蒸气、甲醇蒸气、乙醇蒸气和正丙醇蒸气中的至少一种。
5.如权利要求1所述的一种疏水透气光催化聚合物纳米复合膜,其特征在于:所述网状基底为不锈钢网、尼龙网、聚对苯二甲酸乙二醇酯纤维织物或聚丙烯无纺布。
6.权利要求1至5中任一权利要求所述的疏水透气光催化聚合物纳米复合膜的制备方法,其特征在于:包括如下步骤:
(1)将所述氢化苯乙烯三嵌段共聚物与溶剂充分混合,分别配制成第一胶束溶液和第二胶束溶液;
(2)将纳米二氧化钛超声分散于步骤(1)所得的第一胶束溶液中,然后置于45-55℃静置5-7h,获得混合浆料;
(3)将网状基底浸泡于步骤(1)所得的第二胶束溶液中,获得高强网状基底;
(4)在所述非溶剂气氛中,将混合浆料涂覆于高强网状基底上进行蒸气诱导相分离,待溶剂挥发后,即得所述疏水透气光催化聚合物纳米复合膜。
7.如权利要求6所述的制备方法,其特征在于:所述第一胶束溶液的浓度为5-120mg/mL。
8.如权利要求6所述的制备方法,其特征在于:所述第二胶束溶液的浓度为30-120mg/mL。
9.权利要求1至5中任一权利要求所述的疏水透气光催化聚合物纳米复合膜在空气净化滤芯中的应用。
10.一种空气净化滤芯,其特征在于:具有权利要求1至5中任一权利要求所述的疏水透气光催化聚合物纳米复合膜。
CN202110169888.1A 2021-02-08 2021-02-08 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用 Active CN113019153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110169888.1A CN113019153B (zh) 2021-02-08 2021-02-08 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110169888.1A CN113019153B (zh) 2021-02-08 2021-02-08 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113019153A true CN113019153A (zh) 2021-06-25
CN113019153B CN113019153B (zh) 2022-04-26

Family

ID=76460242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110169888.1A Active CN113019153B (zh) 2021-02-08 2021-02-08 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113019153B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114504951A (zh) * 2022-01-24 2022-05-17 华南理工大学 一种可循环使用驻极体过滤膜及其制备方法、清洗和电荷再生方法
CN114799190A (zh) * 2022-06-20 2022-07-29 杭州电子科技大学富阳电子信息研究院有限公司 一种金纳米棒薄膜及其合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481461A (zh) * 2009-02-03 2009-07-15 厦门大学 一种苯乙烯嵌段共聚物微-纳米微球的制备方法及应用
CN101972573A (zh) * 2010-10-12 2011-02-16 福州职业技术学院 吸附降解滤芯及采用该滤芯的空气净化装置
CN103013024A (zh) * 2012-12-10 2013-04-03 厦门大学 苯乙烯嵌段共聚物薄膜及其制备方法
CN103945924A (zh) * 2011-09-28 2014-07-23 阿卜杜拉国王科技大学 具有可转变的超亲油性和超疏油性表面的接枝膜和基材及其应用
CN104157833A (zh) * 2014-08-25 2014-11-19 厦门大学 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
CN105925113A (zh) * 2016-04-29 2016-09-07 厦门大学 防水透气苯乙烯嵌段共聚物复合涂层材料及其制备和用途
US20190126211A1 (en) * 2017-10-27 2019-05-02 Soochow University Titanium dioxide / sulfonated graphene oxide / ag nanoparticle composite membrane and preparation and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101481461A (zh) * 2009-02-03 2009-07-15 厦门大学 一种苯乙烯嵌段共聚物微-纳米微球的制备方法及应用
CN101972573A (zh) * 2010-10-12 2011-02-16 福州职业技术学院 吸附降解滤芯及采用该滤芯的空气净化装置
CN103945924A (zh) * 2011-09-28 2014-07-23 阿卜杜拉国王科技大学 具有可转变的超亲油性和超疏油性表面的接枝膜和基材及其应用
CN103013024A (zh) * 2012-12-10 2013-04-03 厦门大学 苯乙烯嵌段共聚物薄膜及其制备方法
CN104157833A (zh) * 2014-08-25 2014-11-19 厦门大学 一种石墨烯/二氧化钛复合多孔材料及其制备方法和用途
CN105925113A (zh) * 2016-04-29 2016-09-07 厦门大学 防水透气苯乙烯嵌段共聚物复合涂层材料及其制备和用途
US20190126211A1 (en) * 2017-10-27 2019-05-02 Soochow University Titanium dioxide / sulfonated graphene oxide / ag nanoparticle composite membrane and preparation and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高重辉等: "《高分子化学》", 31 December 1997, 北京:中国石化出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114504951A (zh) * 2022-01-24 2022-05-17 华南理工大学 一种可循环使用驻极体过滤膜及其制备方法、清洗和电荷再生方法
CN114504951B (zh) * 2022-01-24 2023-09-22 华南理工大学 一种可循环使用驻极体过滤膜及其制备方法、清洗和电荷再生方法
CN114799190A (zh) * 2022-06-20 2022-07-29 杭州电子科技大学富阳电子信息研究院有限公司 一种金纳米棒薄膜及其合成方法
CN114799190B (zh) * 2022-06-20 2023-04-28 杭州电子科技大学富阳电子信息研究院有限公司 一种金纳米棒薄膜及其合成方法

Also Published As

Publication number Publication date
CN113019153B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Cao et al. Multifunctional nanofibrous membranes with sunlight-driven self-cleaning performance for complex oily wastewater remediation
Zhang et al. Structural design and environmental applications of electrospun nanofibers
Gul et al. Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol
Qayum et al. Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane
CN113019153B (zh) 一种疏水透气光催化聚合物纳米复合膜及其制备方法和应用
RU2317843C2 (ru) Фильтрующий материал, способ его получения и способ фильтрования
Kang et al. Hierarchical ZnO nano-spines grown on a carbon fiber seed layer for efficient VOC removal and airborne virus and bacteria inactivation
Chen et al. Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application
Mao et al. PAN supported Ag-AgBr@ Bi20TiO32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability
Li et al. A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution
JP2008188082A (ja) マスク
Li et al. Highly efficient sunlight-driven self-cleaning electrospun nanofiber membrane NM88B@ HPAN for water treatment
CN113439136B (zh) 纳米纤维表面
Dehghan et al. Production of nanofibers containing magnesium oxide nanoparticles for the purpose of bioaerosol removal
Cheng et al. Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application
Bates et al. Antibacterial electrospun chitosan-PEO/TEMPO-oxidized cellulose composite for water filtration
WO2010120730A1 (en) Hazardous substance removing materials, apparatus and methods
Sheraz et al. Electrospinning synthesis of CuBTC/TiO2/PS composite nanofiber on HEPA filter with self-cleaning property for indoor air purification
CN107051232A (zh) 一种杀菌除醛空气过滤膜
Żywicka et al. Argon plasma-modified bacterial cellulose filters for protection against respiratory pathogens
Peng et al. Photocatalytic inactivation technologies for bioaerosols: advances and perspective
Luo et al. Self-assembled TiO2/MOF on corrugated paper as a recyclable and efficient composite for dual-channel dye removal
Ren et al. Chitosan and TiO2 functionalized polypropylene nonwoven fabrics with visible light induced photocatalytic antibacterial performances
Li et al. Preparation and research of Mn-TiO2/Fe membrane with high efficiency light-oil/water emulsion separation
Zhong et al. Preparation of a composite coating film via vapor induced phase separation for air purification and real-time bacteria photocatalytic inactivation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant