Nothing Special   »   [go: up one dir, main page]

CN112871212A - 一种基于精氨酸适配体的光催化剂的制备方法及应用 - Google Patents

一种基于精氨酸适配体的光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112871212A
CN112871212A CN202110267182.9A CN202110267182A CN112871212A CN 112871212 A CN112871212 A CN 112871212A CN 202110267182 A CN202110267182 A CN 202110267182A CN 112871212 A CN112871212 A CN 112871212A
Authority
CN
China
Prior art keywords
arginine
aptamer
carbon quantum
quantum dot
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110267182.9A
Other languages
English (en)
Other versions
CN112871212B (zh
Inventor
卢春华
方啸
袁萌
杨黄浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110267182.9A priority Critical patent/CN112871212B/zh
Publication of CN112871212A publication Critical patent/CN112871212A/zh
Application granted granted Critical
Publication of CN112871212B publication Critical patent/CN112871212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种基于精氨酸适配体的光催化剂的制备方法及应用,其是以氨基修饰的精氨酸适配体和碳量子点掺杂的石墨相氮化碳为原料,使两者通过酰胺缩合反应形成所述基于精氨酸适配体的光催化剂。本发明制备方法简单、绿色、温和且成本低廉,所得光催化剂可以通过联接的适配体将细胞内的精氨酸富集在周围,并在波长>630 nm的红色光激发下产生光生空穴,催化周围富集的精氨酸产生一氧化氮。细胞内精氨酸的消耗和一氧化氮的产生可分别抑制肿瘤细胞的糖酵解和氧化磷酸化,从而能够通过两条途径的协同作用杀死肿瘤细胞,有望为癌症协同治疗提供新的技术支持。

Description

一种基于精氨酸适配体的光催化剂的制备方法及应用
技术领域
本发明属于生物医药领域,具体涉及一种用于肿瘤治疗的基于精氨酸适配体的光催化剂及其制备方法。
背景技术
充足的能量供应是癌细胞不受控制地增殖,浸润和转移的前提,因此,针对性地抑制为癌细胞提供能量的糖酵解和氧化磷酸化过程是癌症治疗的有效策略。但是,癌细胞强大的代谢可塑性使其能够在糖酵解和氧化磷酸化之间调整其代谢表型,以适应能量缺乏的环境,导致单一抑制剂的作用差强人意。相比之下,联合使用糖酵解和氧化磷酸化的抑制剂在消除肿瘤方面具有更广阔的前景。然而,由于多种药物联用时存在固有的药代动力学差异,要使糖酵解和氧化磷酸化的共同抑制在时间和空间上达成协同仍然是一个巨大的挑战。
在癌细胞的各种生理过程中,精氨酸氧化生成一氧化氮是维持生理活性的一个非常重要的反应,并且该反应可以同时影响糖酵解和氧化磷酸化的进程。一方面,癌细胞需要以精氨酸为原料合成大量的2型丙酮酸激酶肌肉同工酶,来维持活跃的糖酵解过程。精氨酸消耗过多将导致癌细胞糖酵解的显着抑制,这被称为精氨酸耗竭。另一方面,过量产生的一氧化氮会破坏线粒体的电子传输链并抑制氧化磷酸化。基于此,人为设计反应体系来实现癌细胞中迅速而大量的精氨酸氧化反应,即可实现糖酵解和氧化磷酸化双重抑制的时空统一。
碳量子点掺杂的石墨相氮化碳是一种合适的半导体光敏剂材料。它本身具有较好的生物相容性,并且可以在>630 nm的红光照射下产生光生空穴来氧化精氨酸产生一氧化氮。然而由于生理环境中存在大量的有机质分子,碳量子点掺杂的石墨相氮化碳与精氨酸的结合会被显著干扰,使该反应几乎不能发生。为了解决这个问题,可以在碳量子点掺杂的石墨相氮化碳上连接精氨酸的适配体。适配体是具有特殊三维结构的单链RNA或DNA寡核苷酸,可以以优异的亲和力和特异性与靶标结合。将适配体与碳量子点掺杂的石墨相氮化碳偶联后,即使在细胞内的复杂环境下,适配体也可以通过与精氨酸的特异性结合,将精氨酸富集在碳量子点掺杂的石墨相氮化碳周围,从而促进光催化反应的进行。通过将这种基于精氨酸适配体的光催化剂应用于癌细胞内,可以将内源性精氨酸源源不断地转化为一氧化氮,实现时空统一的糖酵解和氧化磷酸化的双重抑制,对肿瘤协同治疗策略的发展具有重要的科学意义。
发明内容
本发明的目的在于提供一种基于精氨酸适配体的光催化剂的制备方法及应用,其采用一种简单的方法设计出了一种能同时抑制癌细胞的糖酵解和氧化磷酸化的光催化剂,可以实现高效的抗肿瘤治疗。
为实现上述目的,本发明采用如下技术方案:
一种基于精氨酸适配体的光催化剂,其是以氨基修饰的精氨酸适配体和碳量子点掺杂的石墨相氮化碳为原料,利用精氨酸适配体上修饰的氨基和碳量子点掺杂的石墨相氮化碳表面的羧基经酰胺缩合反应制得;其制备方法包括以下步骤:
(1)碳量子点溶液的制备:将柠檬酸和尿素按质量比4:1溶解在二次蒸馏水中,置于聚四氟乙烯反应釜中,于160-200℃高温反应16-20h,然后冷却至室温,离心去除沉淀,再将上清液透析,经旋转蒸发得到2 mg·L-1的碳量子点溶液;
(2)碳量子点掺杂的石墨相氮化碳的制备:将尿素溶解在步骤(1)制备的碳量子点溶液中,然后置入坩埚中,并于500-600℃加热反应2-4h,待冷却后过滤,所得产物研磨成粉并置于5mol/L的硝酸溶液中,130℃保温回流24h,冷却至室温后将产物离心,并用二次蒸馏水洗涤至pH=7,之后将产物在二次蒸馏水中超声分散4-24 h,以5000 rpm的转速离心10min取上清液,将上清液以8000 rpm的转速离心10 min得到沉淀,得到粒径大小为100nm-200nm的碳量子点掺杂的石墨相氮化碳;
(3)精氨酸适配体修饰的光催化剂的制备:将氨基修饰的精氨酸适配体与步骤(2)制备的碳量子点掺杂的石墨相氮化碳、酰胺化偶联试剂溶解在缓冲溶液中,混合均匀后于2-8℃反应6-24h,反应后将产物以8000 rpm的转速离心10 min,并用二次蒸馏水洗涤5-7次,制备得到所述基于精氨酸适配体的光催化剂。
步骤(2)中所用尿素的量按与碳量子点的质量比为105:1-107:1进行换算。
步骤(3)中每nmol氨基修饰的精氨酸适配体使用20-200 μg碳量子点掺杂的石墨相氮化碳;所用酰胺化偶联试剂与氨基修饰的精氨酸适配体的摩尔比为(1-105):1;所述缓冲溶液为含有0.1 M 2-(N-吗啉)乙磺酸一水物的水溶液。
所述氨基修饰的精氨酸适配体是对精氨酸适配体的核酸序列进行延长或修饰后,再在其序列的一端或其他不影响精氨酸适配体结构的位置上进行氨基修饰;所述精氨酸适配体的核酸序列为:GACCAGGGCAAACGGTAGGTGAGTGGTC;每条精氨酸适配体修饰一个氨基。
上述方法制备的基于精氨酸适配体的光催化剂可用于制备肿瘤治疗药物,其具体是通过同时抑制癌细胞的糖酵解和氧化磷酸化实现对肿瘤的双途径协同治疗作用。
本发明的有益效果在于:
本发明提供了一种基于精氨酸适配体的光催化剂的制备方法,该方法简单、原料易得。所得基于精氨酸适配体的光催化剂可以捕获细胞内源性精氨酸,并在>630 nm的红光照射下催化所捕获的精氨酸氧化产生一氧化氮,从而可实现对癌细胞糖酵解通路和氧化磷酸化通路的双重抑制,即可用于肿瘤的双途径协同治疗。
附图说明
图1为实施例制备的精氨酸适配体修饰的碳量子点掺杂的石墨相氮化碳(AptCCN)的透射电镜图(a)和粒径分布图(b)。
图2为性能试验测试结果图,其中(a)为碳量子点掺杂的石墨相氮化碳(CCN)、物理混合的精氨酸适配体和碳量子点掺杂的石墨相氮化碳(Apt/CCN)、非适配体的DNA链修饰的碳量子点掺杂的石墨相氮化碳(RanCCN)和AptCCN在光照下消耗精氨酸的能力试验结果,(b)为CCN、Apt/CCN、RanCCN、AptCCN在精氨酸溶液中经光照产生一氧化氮的能力情况图。
图3为CCN、Apt/CCN、RanCCN、AptCCN的细胞内性能测试结果,其中(a)为CCN、Apt/CCN、RanCCN、AptCCN在光照下反应后测定的细胞内精氨酸含量图,(b)为CCN、Apt/CCN、RanCCN、AptCCN在细胞内引起的一氧化氮产生对应的荧光图,(c)为CCN、Apt/CCN、RanCCN、AptCCN在细胞内反应后测定的ATP含量图,(d)为CCN、Apt/CCN、RanCCN、AptCCN在细胞内反应后诱导细胞死亡的情况图。
具体实施方式
一种基于精氨酸适配体的光催化剂的制备方法包括以下步骤:
(1)碳量子点溶液的制备:将柠檬酸和尿素按质量比4:1溶解在二次蒸馏水中,置于聚四氟乙烯反应釜中,于160-200℃高温反应16-20h,然后冷却至室温,以≥10000 rpm的转速离心去除沉淀,再将上清液置入透析袋中透析3-7 d,然后经40-60 ℃、真空度为25-50mbar条件下旋转蒸发,得到2 mg·L-1的碳量子点溶液;
(2)碳量子点掺杂的石墨相氮化碳的制备:将尿素溶解在步骤(1)制备的碳量子点溶液中,然后置入坩埚中,并于500-600℃加热反应2-4h,待冷却后过滤,所得产物研磨成粉并置于5mol/L的硝酸溶液中,130℃保温回流24h,冷却至室温后将产物离心,并用二次蒸馏水洗涤至pH=7,之后将产物在二次蒸馏水中超声分散4-24 h,以5000 rpm的转速离心10min取上清液,将上清液以8000 rpm的转速离心10 min得到沉淀,得到粒径大小为100nm-200nm的碳量子点掺杂的石墨相氮化碳;
(3)精氨酸适配体修饰的光催化剂的制备:将氨基修饰的精氨酸适配体与步骤(2)制备的碳量子点掺杂的石墨相氮化碳、酰胺化偶联试剂溶解在缓冲溶液中,混合均匀后于2-8℃反应6-24h,反应后将产物以8000 rpm的转速离心10 min,并用二次蒸馏水洗涤5-7次,制备得到基于精氨酸适配体的光催化剂。
步骤(2)中所用尿素的量按与碳量子点的质量比为105:1-107:1进行换算。
步骤(3)中每nmol氨基修饰的精氨酸适配体使用20-200 μg碳量子点掺杂的石墨相氮化碳;所用酰胺化偶联试剂与氨基修饰的精氨酸适配体的摩尔比为(1-105):1,其中,所述酰胺化偶联试剂为常规已知的酰胺化偶联试剂中的任意一种,如4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐、1,3-二环己基碳二亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐等;所述缓冲溶液为含有0.1 M 2-(N-吗啉)乙磺酸一水物(MES)的水溶液。
所述氨基修饰的精氨酸适配体是对精氨酸适配体的核酸序列进行延长或修饰后,再在其序列的一端或其他不影响精氨酸适配体结构的位置上进行氨基修饰;所述精氨酸适配体的核酸序列为:GACCAGGGCAAACGGTAGGTGAGTGGTC;每条精氨酸适配体修饰一个氨基。
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例
(1)将2 g柠檬酸和0.5 g尿素溶解在25 mL二次蒸馏水中,置于聚四氟乙烯反应釜中,升温至170 ℃,保温反应18 h,然后冷却至室温,将产物以10000 rpm的转速离心10min,将所得上清液置入截留分子量为10kDa的透析袋中透析7天,之后将所得透析液在40℃、真空度为25 mbar的条件下旋转蒸发,制备得到碳量子点溶液,其浓度为2 mg·L-1
(2)将10 g尿素溶解在5 mL上述制备的碳量子点溶液中,然后置入坩埚中,并以5℃ min-1的速度升温至550 ℃,保温反应3 h,然后冷却至室温,将产物研磨成粉并置于5 MHNO3溶液中,保持温度在130 ℃,回流24h,冷却至室温后将产物离心并用二次蒸馏水洗涤至pH=7,之后将产物在二次蒸馏水中超声分散24 h,以5000 rpm的转速离心10 min取上清液,将上清液以8000 rpm的转速离心10 min得到沉淀,即得到碳量子点掺杂的石墨相氮化碳(CCN),其粒径约为100 nm-120 nm;
(3)将4 nmol的5’末端氨基修饰的精氨酸适配体(购自生工生物工程(上海)股份有限公司,其核酸序列为:5’-NH2-GACCAGGGCAAACGGTAGGTGAGTGGTC-3’)、200 μg的碳量子点掺杂的石墨相氮化碳、50 mg(0.26 mmol)的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、30 mg(0.26 mmol)的N-羟基琥珀酰亚胺溶解于1 mL、0.1 M的MES缓冲溶液中并混合均匀,然后在4 ℃反应12 h,然后以8000 rpm的转速离心10 min,并用二次蒸馏水洗涤7次,制备得到精氨酸适配体修饰的碳量子点掺杂的石墨相氮化碳(AptCCN)。
图1为制备得到的AptCCN的透射电镜图(a)和粒径分布图(b)。从图中可以观察到,制备得到的精氨酸适配体修饰的碳量子点掺杂的石墨相氮化碳纳米颗粒尺寸均匀,其粒径集中分布在140 nm。
性能试验
将4 nmol的5’末端氨基修饰的随机序列核酸分子(购买自生工生物工程(上海)股份有限公司,其核酸序列为:5’-NH2-GACCAGTGCAAACGGTATGTGAGTGGTC-3’)、200 μg的碳量子点掺杂的石墨相氮化碳、50 mg(0.26 mmol)的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐、30 mg(0.26 mmol)的N-羟基琥珀酰亚胺溶解于1 mL、0.1 M的MES缓冲溶液中并混合均匀,然后在4 ℃反应12 h,然后以8000 rpm的转速离心10 min,并用二次蒸馏水洗涤7次,制备得到随机序列核酸分子修饰的碳量子点掺杂的石墨相氮化碳(RanCCN),以作为对照。
1. 取CCN、RanCCN和AptCCN样品各200 μg,以及4 nmol精氨酸适配体和200 μgCCN物理混合的Apt/CCN样品,分别分散于含有320 μM精氨酸的1 mL水溶液中,再用660nm的激光(200 mW cm-2)照射不同的时间(以不含上述样品的空白溶液作为对照),并每隔一定时间取反应液,8000 rpm离心3 min后,取上清50 μl,分别用超高效液相色谱-质谱联用仪和一氧化氮检测试剂盒测定其中精氨酸和一氧化氮的浓度。
2. 以乳腺癌细胞系MCF-7为验证模型。将三种细胞分别接种在6孔板中,在细胞培养箱中孵育24 h,用浓度均为200 μg mL-1的CCN、Apt/CCN、RanCCN或AptCCN的培养液孵育细胞2 h,然后用PBS清洗。之后用660 nm的激光(200 mW cm-2)照射细胞10 min(以不含上样品的空白细胞作为对照),将细胞消化后用液氮反复冻融三次来裂解,并将裂解液离心取上清液,用超高效液相色谱-质谱联用仪测定其中的精氨酸含量。
3. 以乳腺癌细胞系MCF-7为验证模型。将MCF-7细胞接种在20 mm玻底培养皿中,在细胞培养箱中孵育24 h,用浓度均为200 μg mL-1的CCN、Apt/CCN、RanCCN或AptCCN的培养液孵育细胞2 h。然后用一氧化氮荧光探针孵育细胞20 min并用PBS清洗。之后用660 nm的激光(200 mW cm-2)照射细胞10 min(以不含上述样品的空白细胞作为对照),将培养皿放在共聚焦荧光显微镜下拍摄488 nm光激发的荧光图片。
4. 以乳腺癌细胞系MCF-7为验证模型。将MCF-7细胞接种在6孔板中,在细胞培养箱中孵育24 h,用浓度均为200 μg mL-1的CCN、Apt/CCN、RanCCN或AptCCN的培养液孵育细胞2 h,然后用PBS清洗。之后用660 nm的激光(200 mW cm-2)照射细胞10 min(以不含上述样品的空白细胞作为对照),再将孔板内的PBS置换为培养液培养3 h。随后将孔板内的溶液吸干,在冰上用细胞裂解液将细胞裂解,并将裂解液离心取上清液,用ATP检测试剂盒测定其中的ATP含量。
5. 以乳腺癌细胞系MCF-7为验证模型。将MCF-7细胞接种在96孔板中,孵育24 h,用PBS清洗三次。分别加入浓度为200 μg mL-1的各样品(CCN、Apt/CCN、RanCCN或AptCCN)培养液100 μL,孵育2 h。然后用PBS清洗三次,用660 nm的激光(200 mW cm-2)照射细胞10 min(以不含上述样品的空白细胞作为对照),再将孔板内的PBS置换为培养液培养6 h。之后取出培养液,加入含有CCK-8(Cell Counting Kit-8,碧云天)的培养基100 μL,孵育15 min,用酶标仪测定450 nm的吸收值。
图2为性能试验测试结果图,其中(a)为CCN、Apt/CCN、RanCCN和AptCCN在光照下消耗精氨酸的能力情况图,由图中可见,CCN、Apt/CCN、RanCCN在红光照射下可以引起精氨酸的消耗,而且AptCCN引起的精氨酸的消耗速度比其他样品快很多,这说明AptCCN可以在红光激发下能更高效地催化精氨酸氧化;(b)为CCN、Apt/CCN、RanCCN和AptCCN在精氨酸水溶液中经光照产生一氧化氮的能力情况图,由图中可见,CCN、Apt/CCN、RanCCN在精氨酸水溶液中经光照可以产生一氧化氮,而且AptCCN引起的一氧化氮的产生速度比其他样品快很多,这说明AptCCN可以在红光激发下能更高效地催化精氨酸转化成一氧化氮。
图3为CCN、Apt/CCN、RanCCN、AptCCN的细胞内性能测试结果,其中(a)和(b)分别为上述样品在细胞内催化精氨酸消耗和引起一氧化氮产生的情况图。图中可以观察到,AptCCN在细胞内的复杂环境下仍然可以经光照实现催化精氨酸向一氧化氮的转化;(c)为上述样品在细胞内反应后测定的ATP含量图,可以看出经AptCCN在细胞内的光反应后导致细胞内的ATP含量明显下降;(d)为上述样品在细胞内反应后诱导细胞死亡的情况图,可以观察到AptCCN在光照下具有显著杀伤细胞的能力,表现出其对癌细胞的治疗潜力。
由上述试验可见,本发明所提供的AptCCN可以在红光照射下催化精氨酸转化为一氧化氮,诱导细胞的凋亡。
总之,本发明提供了一种基于精氨酸适配体的光催化剂的制备方法,其将精氨酸适配体共价偶联到碳量子点掺杂的石墨相氮化碳光催化剂上,其方法简单,所制备的材料具有很高的光稳定性。同时,所制备的材料在红光照射下具有催化精氨酸氧化产生一氧化氮的能力,能够同时抑制糖酵解和氧化磷酸化通路,共同诱导细胞凋亡,展现出对肿瘤的协同治疗潜力。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种基于精氨酸适配体的光催化剂的制备方法,其特征在于:包括以下步骤:
(1)碳量子点溶液的制备:将柠檬酸和尿素溶解在二次蒸馏水中,经高温反应后离心去除沉淀,然后将上清液透析,再经旋转蒸发得到一定浓度的碳量子点溶液;
(2)碳量子点掺杂的石墨相氮化碳的制备:将尿素与步骤(1)制备的碳量子点溶液置入坩埚并进行加热反应,待冷却后过滤,所得产物研磨成粉并置于硝酸溶液中回流,之后将产物离心洗涤,经差速离心法收集得到粒径大小适当的碳量子点掺杂的石墨相氮化碳;
(3)精氨酸适配体修饰的光催化剂的制备:将氨基修饰的精氨酸适配体与步骤(2)制备的碳量子点掺杂的石墨相氮化碳、酰胺化偶联试剂溶解在缓冲溶液中并混合均匀进行反应,反应后将产物离心并洗涤,制备得到所述基于精氨酸适配体的光催化剂。
2. 根据权利要求1所述的光催化剂的制备方法,其特征在于:步骤(1)中所用柠檬酸和尿素的质量比为4:1;所述高温反应的温度为160-200℃,时间为16-20h;所得碳量子点溶液的浓度为2 mg·L-1
3. 根据权利要求1所述的光催化剂的制备方法,其特征在于:步骤(2)中所用尿素的量按与碳量子点的质量比为105:1-107:1进行换算;所述加热反应的温度为500-600℃,时间为2-4h;所述硝酸溶液的浓度为5mol/L;所述回流的温度为130℃,时间为24h;所述差速离心法是先以5000 rpm的转速离心10 min,再以8000 rpm的转速离心10 min;所得碳量子点掺杂的石墨相氮化碳的粒径为100nm-200nm。
4. 根据权利要求1所述的光催化剂的制备方法,其特征在于:步骤(3)中每nmol氨基修饰的精氨酸适配体使用20-200 μg碳量子点掺杂的石墨相氮化碳;所用酰胺化偶联试剂与氨基修饰的精氨酸适配体的摩尔比为(1-105):1;所述缓冲溶液为含有0.1 M 2-(N-吗啉)乙磺酸一水物的水溶液;所述反应的温度为2-8℃,时间为6-24h。
5.一种如权利要求1所述方法制备的基于精氨酸适配体的光催化剂在制备肿瘤治疗药物中的应用。
CN202110267182.9A 2021-03-11 2021-03-11 一种基于精氨酸适配体的光催化剂的制备方法及应用 Active CN112871212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110267182.9A CN112871212B (zh) 2021-03-11 2021-03-11 一种基于精氨酸适配体的光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110267182.9A CN112871212B (zh) 2021-03-11 2021-03-11 一种基于精氨酸适配体的光催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112871212A true CN112871212A (zh) 2021-06-01
CN112871212B CN112871212B (zh) 2022-09-13

Family

ID=76040999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110267182.9A Active CN112871212B (zh) 2021-03-11 2021-03-11 一种基于精氨酸适配体的光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112871212B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212055A (zh) * 2022-12-13 2023-06-06 南通大学 近红外激发HSCs靶向、脂酶响应的氮化碳基纳米片制备方法及其应用
CN116328810A (zh) * 2023-02-10 2023-06-27 南京工业大学 丝氨酸骨架修饰氮化碳的复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990423A (zh) * 2014-03-27 2014-08-20 华南师范大学 一种单链dna核酸适配体修饰二氧化硅/四氧化三铁磁性微球的制备方法
WO2015155341A1 (en) * 2014-04-11 2015-10-15 Cellectis Method for generating immune cells resistant to arginine and/or tryptophan depleted microenvironment
EP3164490A1 (en) * 2014-07-02 2017-05-10 Uniwersytet Jagiellonski Dna aptamer recognising arginine tag and use thereof
CN109550049A (zh) * 2018-12-03 2019-04-02 浙江大学 碳量子点-类石墨相氮化碳光催化材料在制备杀菌和促进皮肤疤痕愈合的药物中的应用
CN109603879A (zh) * 2018-12-24 2019-04-12 新疆工程学院 一种碳量子点修饰的石墨相氮化碳光催化材料的制备方法
CN110898229A (zh) * 2019-12-16 2020-03-24 福州大学 一种用于癌症协同治疗的双响应纳米前药的制备方法
CN110982521A (zh) * 2019-12-31 2020-04-10 山西医科大学 石墨相氮化碳量子点复合物及其合成方法和生物应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990423A (zh) * 2014-03-27 2014-08-20 华南师范大学 一种单链dna核酸适配体修饰二氧化硅/四氧化三铁磁性微球的制备方法
WO2015155341A1 (en) * 2014-04-11 2015-10-15 Cellectis Method for generating immune cells resistant to arginine and/or tryptophan depleted microenvironment
EP3164490A1 (en) * 2014-07-02 2017-05-10 Uniwersytet Jagiellonski Dna aptamer recognising arginine tag and use thereof
CN109550049A (zh) * 2018-12-03 2019-04-02 浙江大学 碳量子点-类石墨相氮化碳光催化材料在制备杀菌和促进皮肤疤痕愈合的药物中的应用
CN109603879A (zh) * 2018-12-24 2019-04-12 新疆工程学院 一种碳量子点修饰的石墨相氮化碳光催化材料的制备方法
CN110898229A (zh) * 2019-12-16 2020-03-24 福州大学 一种用于癌症协同治疗的双响应纳米前药的制备方法
CN110982521A (zh) * 2019-12-31 2020-04-10 山西医科大学 石墨相氮化碳量子点复合物及其合成方法和生物应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAO FANG ET AL.: "Photogenerated Holes Mediated Nitric Oxide Production for Hypoxic Tumor Treatment", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》 *
刘珍宝等: "核酸适配体在肿瘤靶向治疗中应用的研究进展", 《科学通报》 *
赵孟甲等: "肿瘤代谢研究进展", 《中国细胞生物学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212055A (zh) * 2022-12-13 2023-06-06 南通大学 近红外激发HSCs靶向、脂酶响应的氮化碳基纳米片制备方法及其应用
CN116212055B (zh) * 2022-12-13 2024-09-20 南通大学 近红外激发HSCs靶向、脂酶响应的氮化碳基纳米片制备方法及其应用
CN116328810A (zh) * 2023-02-10 2023-06-27 南京工业大学 丝氨酸骨架修饰氮化碳的复合材料及其制备方法和应用
CN116328810B (zh) * 2023-02-10 2024-04-09 南京工业大学 丝氨酸骨架修饰氮化碳的复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112871212B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Ma et al. Metal–organic‐framework‐engineered enzyme‐mimetic catalysts
Meng et al. Bioorthogonal DNA adsorption on polydopamine nanoparticles mediated by metal coordination for highly robust sensing in serum and living cells
Peng et al. Current Advances on the Single‐Atom Nanozyme and Its Bioapplications
CN112871212B (zh) 一种基于精氨酸适配体的光催化剂的制备方法及应用
Zhang et al. X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy
Song et al. Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy
Feng et al. Development of an Au-anchored Fe Single-atom nanozyme for biocatalysis and enhanced tumor photothermal therapy
Tang et al. Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy
Su et al. Co, N-doped carbon dot nanozymes with acid pH-independence and substrate selectivity for biosensing and bioimaging
CN108545761B (zh) 一种大孔普鲁士蓝纳米粒及其制备方法
Wang et al. Peroxidase‐mimetic copper‐doped carbon‐dots for oxidative stress‐mediated broad‐spectrum and efficient antibacterial activity
Cheng et al. MnO2 nanosheet-mediated generalist probe: cancer-targeted dual-microRNAs detection and enhanced CDT/PDT synergistic therapy
Wang et al. Inorganic nanozymes: prospects for disease treatments and detection applications
Lin et al. Two‐dimensional FePS3 nanosheets as an integrative sonosensitizer/nanocatalyst for efficient nanodynamic tumor therapy
Ali et al. Graphdiyne–hemin-mediated catalytic system for wound disinfection and accelerated wound healing
Shen et al. Atomic Engineering of Single‐Atom Nanozymes for Biomedical Applications
Xia et al. Transition metal oxide‐decorated MXenes as drugless nanoarchitectonics for enriched nanocatalytic chemodynamic treatment
Li et al. A multifunctional nanoamplifier with self-enhanced acidity and hypoxia relief for combined photothermal/photodynamic/starvation therapy
Liu et al. “Domino” cascade reactor based on DNA hydrogel for synergistic treatment of malignant tumor
Sun et al. Photothermal lysis of engineered bacteria to modulate amino acid metabolism against tumors
CN109200060B (zh) 氮掺杂纳米碳球的类氧化酶活性及其用途
Liu et al. Iron‐Single‐Atom Nanozyme with NIR Enhanced Catalytic Activities for Facilitating MRSA‐Infected Wound Therapy
Liu et al. Precise Design of TiO2@ CoOx Heterostructure via Atomic Layer Deposition for Synergistic Sono‐Chemodynamic Oncotherapy
CN111759808B (zh) 一种脂质体-石墨烯-金复合纳米材料及其制备方法和应用
Wang et al. Norepinephrine-induced hydrophilic Pd aerogels with photothermal-boosted multienzyme-like activity for chemodynamic therapy of MRSA infections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant