CN112683904B - An in-situ characterization device and characterization method for the interaction between microorganisms and solid surfaces - Google Patents
An in-situ characterization device and characterization method for the interaction between microorganisms and solid surfaces Download PDFInfo
- Publication number
- CN112683904B CN112683904B CN202011519640.5A CN202011519640A CN112683904B CN 112683904 B CN112683904 B CN 112683904B CN 202011519640 A CN202011519640 A CN 202011519640A CN 112683904 B CN112683904 B CN 112683904B
- Authority
- CN
- China
- Prior art keywords
- solid surface
- glass substrate
- microorganism
- surface material
- microorganisms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 128
- 239000007787 solid Substances 0.000 title claims abstract description 124
- 238000012512 characterization method Methods 0.000 title claims abstract description 45
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 40
- 230000003993 interaction Effects 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 87
- 239000011521 glass Substances 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 18
- 230000006399 behavior Effects 0.000 claims description 15
- 238000009629 microbiological culture Methods 0.000 claims description 15
- 241000894006 Bacteria Species 0.000 claims description 11
- 239000000565 sealant Substances 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000012780 transparent material Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 241000195493 Cryptophyta Species 0.000 claims description 3
- 241000233866 Fungi Species 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 3
- 239000008223 sterile water Substances 0.000 claims description 3
- 230000000994 depressogenic effect Effects 0.000 claims 7
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000035755 proliferation Effects 0.000 abstract description 5
- 238000000386 microscopy Methods 0.000 abstract description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 11
- 230000000813 microbial effect Effects 0.000 description 9
- 229920006264 polyurethane film Polymers 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 241000251730 Chondrichthyes Species 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 241000711573 Coronaviridae Species 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 241000315672 SARS coronavirus Species 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 230000010065 bacterial adhesion Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 208000007578 phototoxic dermatitis Diseases 0.000 description 1
- 231100000018 phototoxicity Toxicity 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000003380 quartz crystal microbalance Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明属于显微学、微生物学与材料学交叉技术领域,具体涉及一种微生物与固体表面相互作用的原位表征装置及表征方法。The invention belongs to the interdisciplinary technical field of microscopy, microbiology and materials science, and particularly relates to an in-situ characterization device and a characterization method for the interaction between microorganisms and solid surfaces.
背景技术Background technique
微生物无处不在,与人类息息相关。有益微生物系统的存在,不仅决定着人体的健康情况(如肠道菌群),且在废水处理、金属回收、精细化学品制备等方面发挥着其他物质所不能替代的重要作用。然而,在给人类生产生活带来便利的同时,微生物在食品包装、船舶运输、生物材料、植入器械等表面滋生所产生的高能耗等问题,也给人类带来了沉重的经济负担,甚至直接威胁人类的生命安全(如2003年SARS病毒及2019年底新冠病毒的传播)。不管是有益微生物还是有害微生物,都倾向于在固体表面粘附及增殖,因此,研究微生物与固体表面的相互作用具有重要的理论及实际意义。Microorganisms are ubiquitous and closely related to human beings. The existence of beneficial microbial systems not only determines the health of the human body (such as intestinal flora), but also plays an important role that cannot be replaced by other substances in wastewater treatment, metal recovery, and preparation of fine chemicals. However, while bringing convenience to human production and life, the high energy consumption caused by the growth of microorganisms on the surfaces of food packaging, ship transportation, biological materials, implanted devices, etc. has also brought a heavy economic burden to human beings, and even Directly threaten the safety of human life (such as the SARS virus in 2003 and the spread of the new coronavirus at the end of 2019). Both beneficial and harmful microorganisms tend to adhere and proliferate on solid surfaces. Therefore, it is of great theoretical and practical significance to study the interaction between microorganisms and solid surfaces.
现有技术中,用于表征微生物与固体表面相互作用的设备主要有扫描电子显微镜、原子力显微镜、荧光显微镜、激光扫描共聚焦显微镜、石英晶体微天平等。其中,扫描电子显微镜分辨率高,放大倍数高,景深大,可以清晰地观察到细菌和固体表面(Colloids&Surfaces B Biointerfaces[J],2015,135:549-555),但该方法需要对微生物样品进行脱水固定处理,然后在电子显微镜下观察固体表面上固定后的微生物形态,也就是说,该方法只是对二者相互作用的最终结果进行表征,无法实现实时跟踪。原子力显微镜主要用于微生物超高分辨率表面形貌的获得及微生物表面粘附力的定量表征等(Nat.Commun.[J],2010,1:26),无法观察微生物在表面的运动表型。荧光显微镜(ACS Applied Materials&Interfaces[J],2018,10(11):9225–9234)和激光扫描共聚焦显微镜(Biofouling[J],2014,30(9-10):1023-1033.)可以对微生物进行实时观测,尤其是激光扫描共聚焦显微镜,它在荧光显微镜的基础上增加了激光扫描装置,采用了共轭聚焦原理和装置,再配合焦点稳定系统可以实现数小时活细胞的动态观察。然而,这两种方法都需要荧光蛋白标记,因此存在光毒性对微生物活性的影响、光淬灭无法长时间观测等问题,另外,荧光模式下,无法同时在镜头下观察到微生物和表面图案。石英晶体微天平灵敏度可达纳克级别,可以灵敏地检测到微生物的粘附、脱附行为,但它反映的是一个整体的状态,无法对微生物个体的实时运动行为进行观察(Applied&Environmental Microbiology[J],2005, 71(5):2705-2712.)。In the prior art, the devices used to characterize the interaction between microorganisms and solid surfaces mainly include scanning electron microscopes, atomic force microscopes, fluorescence microscopes, laser scanning confocal microscopes, and quartz crystal microscales. Among them, the scanning electron microscope has high resolution, high magnification, and large depth of field, which can clearly observe bacteria and solid surfaces (Colloids & Surfaces B Biointerfaces [J], 2015, 135: 549-555), but this method requires microbial samples to be analyzed. Dehydration and fixation treatment, and then observe the microbial morphology on the solid surface under an electron microscope, that is to say, this method only characterizes the final result of the interaction between the two, and cannot achieve real-time tracking. Atomic force microscopy is mainly used for the acquisition of ultra-high-resolution surface topography of microorganisms and the quantitative characterization of microbial surface adhesion (Nat. Commun. [J], 2010, 1:26), but cannot observe the movement phenotype of microorganisms on the surface . Fluorescence microscopy (ACS Applied Materials&Interfaces [J], 2018, 10(11): 9225–9234) and laser scanning confocal microscopy (Biofouling [J], 2014, 30(9-10): 1023-1033.) can detect microorganisms For real-time observation, especially the laser scanning confocal microscope, which adds a laser scanning device on the basis of the fluorescence microscope, adopts the principle and device of conjugate focusing, and cooperates with the focus stabilization system to realize the dynamic observation of living cells for several hours. However, both methods require fluorescent protein labeling, so there are problems such as the effect of phototoxicity on the activity of microorganisms, and the inability to observe light quenching for a long time. In addition, in fluorescence mode, microorganisms and surface patterns cannot be observed under the lens at the same time. The sensitivity of the quartz crystal microbalance can reach the nanogram level, which can sensitively detect the adhesion and desorption behavior of microorganisms, but it reflects the overall state and cannot observe the real-time movement behavior of individual microorganisms (Applied & Environmental Microbiology [J] ], 2005, 71(5):2705-2712.).
针对现有技术缺陷,开发一种操作简便、可实时观测微生物与固体表面相互作用的原位表征装置及表征方法很有必要。In view of the shortcomings of the existing technology, it is necessary to develop an in-situ characterization device and characterization method that is easy to operate and can observe the interaction between microorganisms and solid surfaces in real time.
发明内容SUMMARY OF THE INVENTION
本发明为解决现有技术中的技术问题,提供一种微生物与固体表面相互作用的原位表征装置及表征方法。In order to solve the technical problems in the prior art, the present invention provides an in-situ characterization device and a characterization method for the interaction between microorganisms and solid surfaces.
为了解决上述技术问题,本发明采取的技术方案如下:In order to solve the above-mentioned technical problems, the technical scheme adopted by the present invention is as follows:
本发明的微生物与固体表面相互作用的原位表征装置,包括控温热台,控温热台为顶端开口的容器,且顶端开口处设有控温热台盖,控温热台盖的材料为透明材料,控温热台的内壁的底面上设有通孔;The in-situ characterization device for the interaction between microorganisms and a solid surface of the present invention comprises a temperature-controlling heat stage, the temperature-controlling heat stage is a container with an open top, and the top opening is provided with a temperature-controlling stage cover, and the material of the temperature-controlling and heating stage cover is It is a transparent material, and there are through holes on the bottom surface of the inner wall of the temperature control heating table;
该原位表征装置还包括,微生物培养池、玻璃基底、固体表面材料、倒置显微镜、图像传感器和上位机;The in-situ characterization device further includes a microbial culture tank, a glass substrate, a solid surface material, an inverted microscope, an image sensor and an upper computer;
所述微生物培养池为两端开口的容器,底端固定在控温热台的内壁的底面上,顶端开口处设有微生物培养池盖,微生物培养池的内壁的下部设有环形挡板,环形挡板的外边缘沿微生物培养池的内壁固定;微生物培养池和微生物培养池盖的材料均为透明材料;The microorganism cultivation pool is a container with openings at both ends, the bottom end is fixed on the bottom surface of the inner wall of the temperature control heat table, the top opening is provided with a microorganism cultivation pool cover, and the lower part of the inner wall of the microorganism cultivation pool is provided with an annular baffle plate. The outer edge of the baffle is fixed along the inner wall of the microorganism cultivation pool; the materials of the microorganism cultivation pool and the cover of the microorganism cultivation pool are all transparent materials;
所述玻璃基底的边缘夹在环形挡板的下表面与控温热台的内壁的底面之间,且玻璃基底的上表面与环形挡板的下表面密封固定,形成一个以玻璃基底为底部,以微生物培养池为侧壁的容器,用于承装微生物溶液;The edge of the glass substrate is sandwiched between the lower surface of the annular baffle and the bottom surface of the inner wall of the temperature control heat table, and the upper surface of the glass substrate and the lower surface of the annular baffle are sealed and fixed to form a glass substrate as the bottom, A container with a microbial culture tank as a side wall for holding microbial solutions;
所述固体表面材料设置在微生物培养池的内腔中,且固体表面材料的下表面与玻璃基底的上表面的中部贴合,固体表面材料下表面的外边缘密封固定在玻璃基底上表面上,固体表面材料的表面为平面、具有不规则图案的表面或具有规则图案的表面,固体表面材料的材料为透明材料;玻璃基底与固体表面材料的总厚度<0.36mm;The solid surface material is arranged in the inner cavity of the microorganism culture tank, and the lower surface of the solid surface material is attached to the middle of the upper surface of the glass substrate, and the outer edge of the lower surface of the solid surface material is sealed and fixed on the upper surface of the glass substrate, The surface of the solid surface material is a plane, a surface with an irregular pattern or a surface with a regular pattern, and the material of the solid surface material is a transparent material; the total thickness of the glass substrate and the solid surface material is <0.36mm;
所述倒置显微镜的光源为卤素灯,光源发出的光依次经过控温热台盖、微生物培养池盖、固体表面材料和玻璃基底,再经过倒置显微镜的物镜放大,传输至图像传感器;The light source of the inverted microscope is a halogen lamp, and the light emitted by the light source sequentially passes through the temperature-controlled heating table cover, the microorganism culture tank cover, the solid surface material and the glass substrate, and then is amplified by the objective lens of the inverted microscope and transmitted to the image sensor;
所述图像传感器采集倒置显微镜的光学信号,并将光学信号转换为模拟电流信号,且对模拟电流信号进行放大和模数转换,得到的数字信号传输至上位机;The image sensor collects the optical signal of the inverted microscope, converts the optical signal into an analog current signal, amplifies and converts the analog current signal, and transmits the obtained digital signal to the host computer;
所述上位机对接收的数字信号进行处理,获得微生物在固体表面材料上的行为的实时画面,并对画面进行分析。The host computer processes the received digital signal to obtain a real-time picture of the behavior of microorganisms on the solid surface material, and analyzes the picture.
进一步的,所述控温热台为方体结构,通孔为圆形。Further, the temperature-controlling heating stage is of a cube structure, and the through hole is a circle.
进一步的,所述微生物培养池为圆柱形结构,环形挡板为圆环形,环形挡板和微生物培养池一体成型。Further, the microorganism culture tank is of a cylindrical structure, the annular baffle is a circular shape, and the annular baffle and the microorganism culture tank are integrally formed.
进一步的,所述玻璃基底为圆盘形。Further, the glass substrate is disc-shaped.
进一步的,所述玻璃基底的厚度为0.05mm-0.30mm,所述固体表面材料的厚度为0.05mm-0.30mm。Further, the thickness of the glass substrate is 0.05mm-0.30mm, and the thickness of the solid surface material is 0.05mm-0.30mm.
进一步的,所述玻璃基底的上表面与环形挡板的下表面通过密封胶粘贴固定,固体表面材料的下表面的外边缘通过密封胶密封固定在玻璃基底的上表面的中部。Further, the upper surface of the glass substrate and the lower surface of the annular baffle are pasted and fixed by sealant, and the outer edge of the lower surface of the solid surface material is sealed and fixed to the middle of the upper surface of the glass substrate by sealant.
进一步的,所述固体表面材料的下表面与玻璃基底的上表面贴合方式为:将固体表面材料浸入无菌水中再取出,平铺在玻璃基底的上表面的中部,然后将固体表面材料与玻璃基底放在37℃的生化培养箱中,水分挥发完全后固体表面材料与玻璃基底即可贴合。Further, the bonding method between the lower surface of the solid surface material and the upper surface of the glass substrate is as follows: immerse the solid surface material in sterile water and then take it out, lay it flat on the middle of the upper surface of the glass substrate, and then combine the solid surface material with the upper surface of the glass substrate. The glass substrate is placed in a biochemical incubator at 37°C, and the solid surface material can be attached to the glass substrate after the water evaporates completely.
进一步的,所述固体表面材料为具有规则图案的表面,规则图案为凸起的圆柱形、凸起的圆锥形、凸起的半球形、凸起的四方体形、凸起的蜂窝形、凸起的鲨鱼皮形、凸起的脊状、凹陷的圆柱形、凹陷的圆锥形、凹陷的半球形、凹陷的四方体形、凹陷的蜂窝形、凹陷的鲨鱼皮形、凹陷的脊状中的一种或多种的混合。Further, the solid surface material is a surface with a regular pattern, and the regular pattern is a raised cylindrical shape, a raised conical shape, a raised hemispherical shape, a raised square shape, a raised honeycomb shape, and a raised shape. One of the shark skin shape, the raised ridge shape, the recessed cylindrical shape, the recessed conical shape, the recessed hemispherical shape, the recessed square shape, the recessed honeycomb shape, the recessed shark skin shape, the recessed ridge shape or a mixture of various.
进一步的,所述倒置显微镜配有放大倍数为10倍的目镜,最高放大倍数为 100倍的物镜。Further, the inverted microscope is equipped with an eyepiece with a magnification of 10 times, and an objective lens with a maximum magnification of 100 times.
进一步的,所述图像传感器为CCD图像传感器。Further, the image sensor is a CCD image sensor.
进一步的,所述上位机中有Infinity Analyze、FastStone Capture和Image J,Infinity Analyze将图像传感器的数字信号转化为图片,FastStone Capture将实时图片录屏转化成视频,Image J对视频进行分析。Further, there are Infinity Analyze, FastStone Capture and Image J in the host computer. Infinity Analyze converts the digital signal of the image sensor into a picture, FastStone Capture converts the real-time picture screen recording into a video, and Image J analyzes the video.
进一步的,所述微生物为细菌、真菌、藻类、细胞中的一种或多种的混合。Further, the microorganism is a mixture of one or more of bacteria, fungi, algae and cells.
本发明还提供利用上述微生物与固体表面相互作用的原位表征装置,本发明的微生物与固体表面相互作用的原位表征方法如下:The present invention also provides an in-situ characterization device utilizing the interaction of the above-mentioned microorganisms with the solid surface. The in-situ characterization method for the interaction between the microorganisms and the solid surface of the present invention is as follows:
将微生物在培养液中培养后,稀释到100倍倒置显微镜的物镜视野内能够观察到少于十个微生物个体的浓度,得到微生物溶液,然后取微生物溶液加入到微生物培养池中,微生物溶液淹没固体表面材料且并不超过微生物培养池容量的4/5,调节温度,打开倒置显微镜,调整倒置显微镜的物镜的高度直至聚焦到固体表面材料,打开图像传感器和上位机,实时记录并分析微生物在固体表面材料上的行为。After culturing the microorganisms in the culture medium, the concentration of less than ten microorganisms can be observed in the objective lens field of the inverted microscope by 100 times, and the microorganism solution is obtained, and then the microorganism solution is taken and added to the microorganism culture tank. The surface material does not exceed 4/5 of the capacity of the microorganism culture tank, adjust the temperature, turn on the inverted microscope, adjust the height of the objective lens of the inverted microscope until it focuses on the solid surface material, turn on the image sensor and the host computer, record and analyze the microorganisms in the solid in real time. behavior on surface materials.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的微生物与固体表面相互作用的原位表征装置搭建便捷、操作简单、适用范围广,结合本发明提供的微生物与固体表面相互作用的原位表征方法,实现了无需对微生物进行标记的情况下,在倒置显微镜明场中对微生物与固体表面相互作用的原位、实时、长时间观测,可有效用于微生物在固体表面的粘附动力学及增殖行为研究。The in-situ characterization device for the interaction between microorganisms and solid surfaces provided by the present invention is convenient to build, simple to operate, and has a wide range of applications. Combined with the in-situ characterization method for the interaction of microorganisms and solid surfaces provided by the present invention, it realizes no need to label microorganisms. The in-situ, real-time, and long-term observation of the interaction between microorganisms and solid surfaces in the bright field of an inverted microscope can be effectively used to study the adhesion kinetics and proliferation behavior of microorganisms on solid surfaces.
附图说明Description of drawings
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明的微生物与固体表面相互作用的原位表征装置的结构示意图;1 is a schematic structural diagram of the in-situ characterization device for the interaction between microorganisms and solid surfaces of the present invention;
图2为图1的沿A-A向的轴测爆炸图;Fig. 2 is the axonometric exploded view along the A-A direction of Fig. 1;
图3为本发明的微生物与固体表面相互作用的原位表征装置的几种常见的固体表面的结构示意图,a-f分别为凸起的四方体形、凹陷的四方体形、凸起的圆柱形、凹陷的圆柱形、凸起的鲨鱼皮形、凸起的三角形和圆柱形的混合图形、凸起的脊状。3 is a schematic diagram of the structure of several common solid surfaces of the in-situ characterization device for the interaction between microorganisms and solid surfaces of the present invention, a-f are respectively a convex square shape, a concave square shape, a convex cylindrical shape, and a concave shape. Cylindrical, Raised Sharkskin, Raised Triangular and Cylindrical Mixed Figures, Raised Ridges.
图4为本发明实施例1中金黄色葡萄球菌与5μm半球形图案化聚氨酯薄膜表面的相互作用截图,a-d培养时间分别为1h、2h、3h和4h。Figure 4 is a screenshot of the interaction between Staphylococcus aureus and the surface of a 5 μm hemispherical patterned polyurethane film in Example 1 of the present invention. The incubation times a-d are 1h, 2h, 3h and 4h, respectively.
图5为本发明实施例1中金黄色葡萄球菌在5μm半球形图案化聚氨酯薄膜表面的运动轨迹,标记1、2、3分别代表1-2h、2-3h和3-4h细菌运动的轨迹。5 is the movement trajectory of Staphylococcus aureus on the surface of the 5 μm hemispherical patterned polyurethane film in Example 1 of the present invention, and marks 1, 2, and 3 represent the trajectory of bacterial movement for 1-2h, 2-3h and 3-4h, respectively.
图6为本发明实施例2中金黄色葡萄球菌在2μm半球形图案化聚氨酯薄膜表面的运动轨迹,标记1、2、3分别代表1-2h、2-3h和3-4h细菌运动的轨迹。6 is the movement trajectory of Staphylococcus aureus on the surface of the 2 μm hemispherical patterned polyurethane film in Example 2 of the present invention, and the
图中,1、控温热台,1-1、控温热台盖,2、微生物培养池,2-1、微生物培养池盖,3、玻璃基底,4、固体表面材料,5、微生物溶液,6、密封胶,7、倒置显微镜,8、图像传感器,9、上位机。In the figure, 1. Temperature-controlled heating table, 1-1, Temperature-controlled heating table cover, 2. Microbial culture tank, 2-1, Microbial culture tank cover, 3. Glass substrate, 4. Solid surface material, 5. Microbial solution , 6, sealant, 7, inverted microscope, 8, image sensor, 9, host computer.
具体实施方式Detailed ways
为了进一步了解本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点而不是对本发明专利要求的限制。In order to further understand the present invention, the preferred embodiments of the present invention are described below in conjunction with specific embodiments, but it should be understood that these descriptions are only for further illustrating the features and advantages of the present invention rather than limiting the patent requirements of the present invention.
如图1-2所示,本发明的微生物与固体表面相互作用的原位表征装置,包括控温热台1、微生物培养池2、玻璃基底3、固体表面材料4、倒置显微镜7、图像传感器8和上位机9。As shown in Figures 1-2, the in-situ characterization device for the interaction between microorganisms and solid surfaces of the present invention includes a temperature-controlled
其中,控温热台1为顶端开口的容器,且顶端开口处设有控温热台盖1-1,控温热台盖1-1能够将控温热台1的顶端开口密封。为不遮挡光路,控温热台盖 1-1为透明材料。控温热台1的内壁的底面上设有通孔,通常为圆形。优选控温热台1为方体结构,如长方体或正方体。控制热台1的壳体内设有加热设备和温控设备,用于控制温度。控温热台1为现有技术,可通过商购获得,如PECON 的Heating Insert P 2000。The temperature control heat table 1 is a container with an open top, and a temperature control heat table cover 1-1 is provided at the top opening, and the temperature control heat table cover 1-1 can seal the top opening of the temperature control heat table 1 . In order not to block the light path, the temperature-controlled heating stage cover 1-1 is made of transparent material. The bottom surface of the inner wall of the temperature control heating table 1 is provided with through holes, which are generally circular. Preferably, the temperature control heating table 1 has a cubic structure, such as a rectangular parallelepiped or a cube. A heating device and a temperature control device are arranged in the shell of the
微生物培养池2为两端开口的容器,底端固定在控温热台1的内壁的底面上,顶端开口处设有微生物培养池盖2-1,微生物培养池盖2-1能够将微生物培养池2的顶端开口密封,微生物培养池2的内壁的下部设有环形挡板2-2,环形挡板2-2的外边缘沿微生物培养池2的内壁固定。优选微生物培养池2为圆柱形结构,环形挡板2-2为圆环形。优选环形挡板2-2和微生物培养池2一体成型。The
玻璃基底3的边缘夹在环形挡板2-2的下表面与控温热台1的内壁的底面之间,且玻璃基底3的上表面与环形挡板2-2的下表面密封固定,形成一个以玻璃基底3为底部,以微生物培养池2为侧壁的容器,用于承装微生物溶液5。优选密封固定的方式为通过密封胶6粘贴固定,密封胶6优选为NOA63,采用紫外光固化。玻璃基底3优选为圆盘形。玻璃基底3可替换,具体根据固体表面材料4的厚度选择合适的、可聚焦清晰的玻璃基底3,玻璃基底3与固体表面材料 4二者厚度相加<0.36mm,作为优选,玻璃基底3的厚度为0.05mm-0.30mm,固体表面材料4的厚度为0.05mm-0.30mm。The edge of the
固体表面材料4设置在微生物培养池2的内腔中,且固体表面材料4的下表面与玻璃基底3的上表面的中部贴合,固体表面材料4下表面的外边缘密封固定在玻璃基底3上表面上,保证整个表征期间固体表面材料4不漂移,微生物溶液不渗入固体表面材料4和玻璃基底3之间,密封固定方式优选通过密封胶6 粘贴固定,密封胶6优选为NOA63,采用紫外光固化。固体表面材料4应为透明材料,不限于高分子材料,常用的为聚氨酯薄膜、聚苯乙烯薄膜、聚二甲基硅氧烷薄膜等等。固体表面材料4的下表面与玻璃基底3的上表面的贴合方式为:将固体表面材料4浸入无菌水中再取出,平铺在玻璃基底3的上表面的中部,然后将固体表面材料4与玻璃基底3放在37℃的生化培养箱中,水分挥发完全后固体表面材料4与玻璃基底3即可贴合。固体表面材料4的表面可为平面、具有不规则图案的表面或具有规则图案的表面,优选为具有规则图案的表面,规则图案为凸起的圆柱形、凸起的圆锥形、凸起的半球形、凸起的四方体形、凸起的蜂窝形、凸起的鲨鱼皮形、凸起的脊状、凹陷的圆柱形、凹陷的圆锥形、凹陷的半球形、凹陷的四方体形、凹陷的蜂窝形、凹陷的鲨鱼皮形、凹陷的脊状中的一种或多种的混合,如图3所示,规则图案的尺寸为0.5μm-50μm,固体表面材料4的面积通常为1cm×1cm。通常采用两段复制成型工艺(Advanced Materials,1997,9(2):147-149.)制备固体表面材料4,然后置于干燥器中保存。The
倒置显微镜7用于观测固体表面材料4,倒置显微镜7的物镜置于固体表面材料4的正下方,倒置显微镜7的光源为卤素灯,光源发出的光依次经过控温热台盖1-1、微生物培养池盖2-1、固体表面材料4和玻璃基底3,再经过倒置显微镜7的物镜放大,传输至图像传感器8。优选倒置显微镜7配有放大倍数为 10倍的目镜,最高放大倍数为100倍的物镜,物镜优选为100倍的油镜。The inverted microscope 7 is used to observe the
图像传感器8采集倒置显微镜7的光学信号,并将光学信号转换为模拟电流信号,且对模拟电流信号进行放大和模数转换,得到的数字信号传输至上位机9。图像传感器8优选为CCD图像传感器。The
上位机9对接收的数字信号进行处理,获得微生物在固体表面材料4上行为的实时画面,并对画面进行分析,如微生物粘附、迁移、聚集、增殖等行为进行分析。作为优选,上位机9中有Infinity Analyze、FastStone Capture和Image J,Infinity Analyze将图像传感器8的数字信号转化为图片,FastStone Capture将图片录屏转化成视频,Image J对视频进行分析,完成粘附动力学及增殖行为研究,通常通过TrackMate插件手动记录微生物经过的像素点位置,获得微生物运动轨迹。上述软件均可通过商业购买获得。The host computer 9 processes the received digital signal to obtain a real-time picture of the behavior of microorganisms on the
上述技术方案中,微生物为细菌、真菌、藻类、细胞中的一种或多种的混合。单个微生物尺寸为0.5μm-10μm。In the above technical solution, the microorganism is a mixture of one or more of bacteria, fungi, algae and cells. The size of individual microorganisms is 0.5 μm-10 μm.
利用上述微生物与固体表面相互作用的原位表征装置,本发明的微生物与固体表面相互作用的原位表征方法如下:Utilizing the in-situ characterization device for the interaction of the microorganisms with the solid surface, the in-situ characterization method for the interaction between the microorganisms and the solid surface of the present invention is as follows:
将微生物在培养液中培养,稀释到100倍倒置显微镜7的物镜视野内能够观察到少于十个微生物个体的浓度,得到微生物溶液5,将微生物溶液5加入到微生物培养池2中,微生物溶液5淹没固体表面材料4且并不超过微生物培养池2容量的4/5,调节温度,打开倒置显微镜7,调整倒置显微镜7物镜的高度直至聚焦到固体表面材料4,打开图像传感器8和上位机9,实时记录并分析微生物在固体表面材料4上的行为。The microorganisms are cultivated in the culture solution, diluted to a concentration of less than ten microorganisms in the field of view of the objective lens of the inverted microscope 7, and the
上述技术技术方案中,微生物的培养液、培养条件和调节温度依据微生物的不同而不同,具体可以根据现有技术确定,本实施方式的微生物如采用金黄色葡萄球菌,作为优选,培养液为TSB培养液,微生物的培养条件为:180rpm、 37℃条件下摇菌培养12h,调节温度为37℃;如采用大肠杆菌,作为优选,培养液为LB培养液,微生物的培养条件为:180rpm、37℃条件下摇菌培养12h,调节温度为37℃。本实施方式的微生物如采用金黄色葡萄球菌,作为优选,浓度为105CFU/ml,如采用大肠杆菌,作为优选,浓度为106CFU/ml。In the above-mentioned technical scheme, the nutrient solution, culturing conditions and adjustment temperature of the microorganism are different according to the difference of the microorganism, and the specific can be determined according to the prior art. As the microorganism of the present embodiment adopts Staphylococcus aureus, as preferably, the nutrient solution is TSB. Culture medium, the culture conditions of microorganisms are: 180rpm, 37°C under the conditions of shaking bacteria for 12h, and the temperature is adjusted to 37°C; if Escherichia coli is used, preferably, the culture medium is LB culture medium, and the culture conditions of microorganisms are: 180rpm, 37°C The bacteria were shaken for 12 h under the condition of ℃, and the temperature was adjusted to 37 ℃. As the microorganism of this embodiment, if Staphylococcus aureus is used, preferably, the concentration is 10 5 CFU/ml, and if Escherichia coli is used, preferably, the concentration is 10 6 CFU/ml.
在本发明中所使用的术语,一般具有本领域普通技术人员通常理解的含义,除非另有说明。Terms used in the present invention generally have the meanings commonly understood by those of ordinary skill in the art, unless otherwise specified.
为了使本领域的技术人员更好地理解本发明的技术方案,下面将结合实施例对本发明作进一步的详细介绍。In order to make those skilled in the art better understand the technical solutions of the present invention, the present invention will be further described in detail below with reference to the embodiments.
在以下实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。下述实施例中所用的材料、试剂、装置、仪器、设备等,如无特殊说明,均可从商业途径获得。In the following examples, various procedures and methods not described in detail are conventional methods well known in the art. The materials, reagents, devices, instruments, equipment, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
实施例1Example 1
微生物与固体表面相互作用的原位表征装置,包括控温热台1、微生物培养池2、玻璃基底3、固体表面材料4、倒置显微镜7、图像传感器8和上位机9,控温热台1为顶端开口的长方体容器,且顶端开口处设有控温热台盖1-1,控温热台1的内壁的底面上设有圆形通孔;微生物培养池2为两端开口的圆柱形容器,底端固定在控温热台1的内壁的底面上,顶端开口处设有微生物培养池盖 2-1,微生物培养池2的内壁的下部设有圆环形的环形挡板2-2,环形挡板2-2的外边缘沿微生物培养池2的内壁固定;玻璃基底3为圆盘形,边缘夹在环形挡板2-2的下表面与控温热台1的内壁的底面之间,且玻璃基底3的上表面与环形挡板2-2的下表面通过密封胶6NOA63粘贴固定,形成一个以玻璃基底3为底部,以微生物培养池2为侧壁的容器,用于承装微生物溶液5。固体表面材料4 的下表面与玻璃基底3的上表面的中央贴合,固体表面材料4的外边缘的下表面采用密封胶6NOA63密封固定在玻璃基底3的上表面上。倒置显微镜7用于观测固体表面材料4,倒置显微镜7的物镜置于固体表面材料4的正下方,倒置显微镜7的光源为卤素灯,光源发出的光依次经过控温热台盖1-1、微生物培养池盖2-1、固体表面材料4和玻璃基底3,再经过倒置显微镜7的物镜放大,传输至图像传感器8,倒置显微镜7配有放大倍数为10倍的目镜,最高放大倍数为100倍的油镜。图像传感器8为CCD图像传感器,图像传感器8采集倒置显微镜7的光学信号,并将光学信号转换为模拟电流信号,且对模拟电流信号进行放大和模数转换,得到的数字信号传输至上位机9。上位机9中有Infinity Analyze、FastStone Capture和Image J,Infinity Analyze将图像传感器8的数字信号转化为图片,FastStone Capture将图片录屏转化成视频,帧数为25帧,Image J对视频进行分析。其中,固体表面材料4为聚氨酯薄膜,面积为1cm×1cm,厚度为0.10mm,表面图案为六方密堆积的直径为5μm的半球形凸起。玻璃基底 3的厚度为0.10mm。An in-situ characterization device for the interaction between microorganisms and solid surfaces, including a temperature-controlled
微生物与固体表面相互作用的原位表征方法如下:In situ characterization methods for the interaction of microorganisms with solid surfaces are as follows:
将金黄色葡萄球菌置于TSB培养液中,在180rpm、37℃条件下摇菌培养 12h后,稀释到105CFU/ml,取2ml加入到微生物培养池2中,调节到37℃,打开倒置显微镜7,调整倒置显微镜7的物镜高度直至聚焦到固体表面4,打开图像传感器8及上位机9,上位机9对接收的数字信号进行处理,获得微生物在固体表面材料(4)上的行为的实时画面,并对画面进行分析。Put Staphylococcus aureus in the TSB medium, shake the bacteria at 180rpm and 37°C for 12h, dilute to 10 5 CFU/ml, add 2ml to the
图4中,a-d分别为本实施例的金黄色葡萄球菌在1h、2h、3h、4h时间点的细菌粘附和增殖结果。图5为实施例的金黄色葡萄球菌运动轨迹,标记1、2、 3分别代表1-2h、2-3h、3-4h不同时间段的细菌运动轨迹,同时获得平均运动路程为175像素、平均用时为70s等粘附动力学参数。In FIG. 4 , a-d are respectively the bacterial adhesion and proliferation results of Staphylococcus aureus of the present embodiment at time points of 1 h, 2 h, 3 h and 4 h. Fig. 5 is the locus of Staphylococcus aureus of the embodiment, the
实施例2Example 2
微生物与固体表面相互作用的原位表征装置,同实施例1,仅固体表面材料 4替换为聚氨酯薄膜,面积为1cm×1cm,厚度为0.05mm,表面图案为六方密堆积的直径为2μm的半球形凸起。玻璃基底3的厚度为0.17mm。The in-situ characterization device for the interaction between microorganisms and solid surfaces is the same as in Example 1, except that the
微生物与固体表面相互作用的原位表征方法如下:In situ characterization methods for the interaction of microorganisms with solid surfaces are as follows:
将金黄色葡萄球菌置于TSB培养液中,在180rpm、37℃条件下摇菌培养 12h后,稀释到105CFU/ml,取2ml加入到微生物培养池2中,调节到37℃,打开倒置显微镜7,调整倒置显微镜7的物镜高度直至聚焦到固体表面4,打开图像传感器8及上位机9,上位机9对接收的数字信号进行处理,获得微生物在固体表面材料(4)上的行为的实时画面,并对画面进行分析。Put Staphylococcus aureus in the TSB medium, shake the bacteria at 180rpm and 37°C for 12h, dilute to 10 5 CFU/ml, add 2ml to the
图6为本实施例的金黄色葡萄球菌在该表面的运动轨迹,标记1、2、3分别代表1-2h、2-3h、3-4h不同时间段的细菌运动轨迹,同时获得平均运动路程为195像素、平均用时为52s等粘附动力学参数。Fig. 6 is the movement trajectory of Staphylococcus aureus on the surface of this embodiment, and the
实施例3Example 3
微生物与固体表面相互作用的原位表征装置,同实施例1,仅固体表面材料 4替换为聚苯乙烯薄膜,面积为1cm×1cm,厚度约为0.05mm;表面图案为六方密堆积的直径为5μm的半球形凸起。玻璃基底3的厚度为0.17mm。The in-situ characterization device for the interaction between microorganisms and solid surfaces is the same as in Example 1, except that the
微生物与固体表面相互作用的原位表征方法如下:In situ characterization methods for the interaction of microorganisms with solid surfaces are as follows:
将金黄色葡萄球菌置于TSB培养液中,在180rpm、37℃条件下摇菌培养 12h后,稀释到105CFU/ml,取2ml加入到微生物培养池2中,调节到37℃,打开倒置显微镜7,调整倒置显微镜7的物镜高度直至聚焦到固体表面4,打开图像传感器8及上位机9,上位机9对接收的数字信号进行处理,获得微生物在固体表面材料(4)上的行为的实时画面,并对画面进行分析。Put Staphylococcus aureus in the TSB medium, shake the bacteria at 180rpm and 37°C for 12h, dilute to 10 5 CFU/ml, add 2ml to the
实施例4Example 4
微生物与固体表面相互作用的原位表征装置,同实施例1,仅固体表面材料 4替换为聚氨酯薄膜,面积为1cm×1cm,厚度为0.05mm,表面图案为六方密堆积的直径为5μm的半球形凸起。玻璃基底3的厚度为0.17mm。The in-situ characterization device for the interaction between microorganisms and solid surfaces is the same as in Example 1, except that the
微生物与固体表面相互作用的原位表征方法如下:In situ characterization methods for the interaction of microorganisms with solid surfaces are as follows:
将大肠杆菌置于LB培养液中,在180rpm、37℃条件下摇菌培养12h后,稀释到106CFU/ml,取2ml加入到微生物培养池2中,调节到37℃,打开倒置显微镜7,调整倒置显微镜7的物镜高度直至聚焦到固体表面4,打开图像传感器8及上位机9,上位机9对接收的数字信号进行处理,获得微生物在固体表面材料(4)上的行为的实时画面,并对画面进行分析。Put E. coli in the LB medium, shake the bacteria at 180rpm and 37°C for 12h, then dilute to 10 6 CFU/ml, add 2ml to the
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. However, the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011519640.5A CN112683904B (en) | 2020-12-21 | 2020-12-21 | An in-situ characterization device and characterization method for the interaction between microorganisms and solid surfaces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011519640.5A CN112683904B (en) | 2020-12-21 | 2020-12-21 | An in-situ characterization device and characterization method for the interaction between microorganisms and solid surfaces |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112683904A CN112683904A (en) | 2021-04-20 |
CN112683904B true CN112683904B (en) | 2022-04-26 |
Family
ID=75449892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011519640.5A Active CN112683904B (en) | 2020-12-21 | 2020-12-21 | An in-situ characterization device and characterization method for the interaction between microorganisms and solid surfaces |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112683904B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113376191B (en) * | 2021-06-08 | 2022-09-16 | 中国科学院上海应用物理研究所 | In-situ-based device and method for high-throughput crystal culture and rapid sample loading |
CN114112920B (en) * | 2021-12-10 | 2024-10-11 | 中国科学院长春应用化学研究所 | Fluorescence detection sample cell capable of intelligently and accurately regulating and controlling concentration of solution on line and control method |
CN115585741A (en) * | 2022-09-27 | 2023-01-10 | 中国科学院地理科学与资源研究所 | Method for in-situ observation of dynamic of hyphae outside symbiotic mycorrhiza |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5552321A (en) * | 1993-08-24 | 1996-09-03 | Bioptechs Inc. | Temperature controlled culture dish apparatus |
US7190449B2 (en) * | 2002-10-28 | 2007-03-13 | Nanopoint, Inc. | Cell tray |
CN1208739C (en) * | 2003-04-16 | 2005-06-29 | 浙江大学 | Computer Controlled Low Temperature Biological Microscopy System |
CN100478436C (en) * | 2003-11-12 | 2009-04-15 | 艾森生物(杭州)有限公司 | Real time electronic cell sensing systems and applications for cell-based assays |
ITNA20040016A1 (en) * | 2004-04-02 | 2004-07-02 | High Tech Consulting S R L In | MICROSCOPE CO2 INCUBATOR WITH INTERNAL CIRCULATION OF WATER OR OTHER FLUID AT CONTROLLED TEMPERATURE |
CN205635608U (en) * | 2016-05-24 | 2016-10-12 | 苏州承美生物科技有限公司 | Microbiological detection pool |
CN207457598U (en) * | 2017-05-21 | 2018-06-05 | 广东工业大学 | A kind of biomicroscope warm table |
CN111205980B (en) * | 2020-01-20 | 2024-01-26 | 河海大学常州校区 | Cell culture device for single cell in-situ real-time microscopic observation and operation method thereof |
CN111411064B (en) * | 2020-03-11 | 2021-06-04 | 福建农林大学 | Method for in-situ fluorescence labeling of geobacillus |
-
2020
- 2020-12-21 CN CN202011519640.5A patent/CN112683904B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112683904A (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112683904B (en) | An in-situ characterization device and characterization method for the interaction between microorganisms and solid surfaces | |
RU2573922C2 (en) | Device for cultivation of cell cultures | |
US6521451B2 (en) | Sealed culture chamber | |
US7713734B2 (en) | Device for culturing and transporting cells | |
CN102782561A (en) | System and method for time-related microscopy of biological organisms | |
CN105247035A (en) | System for analyzing cells and monitoring cell culture and method for analyzing cells and monitoring cell culture using the system | |
CN102483518B (en) | Sample Imaging System And Method For Transmitting An Image Of Cells Or Tissues Located In A Culturing Space To Data Processing Means | |
CN1934435A (en) | Method and device for detecting biofilm formation and growth in culture medium | |
JP2019511230A (en) | Container for culturing cells | |
CN106255745A (en) | Cultivate and detection equipment | |
NL2012922B1 (en) | Container for culturing organisms, method for monitoring the culturing of organisms inside said container, and monitoring system. | |
Charwat et al. | The third dimension in cell culture: From 2D to 3D culture formats | |
CN107955784B (en) | A three-dimensional cell spheroid migration monitoring method based on microfluidic chip technology | |
JP6452853B2 (en) | Thin film culture device with carbon dioxide generator | |
JPH0278444A (en) | Apparatus for observing and cultivating cell | |
JP2010011814A (en) | Cultured cell observation chamber and use thereof | |
CN102706841A (en) | Indoor cultivation and observation method for bio-flocculation sediment | |
JP2001061464A (en) | Biological sample culture vessel | |
CN1249217C (en) | Cell culture incubator | |
JP2009153500A (en) | Microorganism-culturing sheet | |
US8163556B2 (en) | Method of cell culture observation, carbon substrate for cell culture observation, and method for manufacture thereof | |
EP4004183A1 (en) | A portable incubator platform integrated into a portable imaging device | |
Pearce et al. | New Techniques for the Study of Growin? Micro-or? anisms | |
WO2011125792A1 (en) | Method for producing microbial aggregate film | |
CN110004204B (en) | A method for observing living plant cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |