CN112666047B - 一种液体粘度检测方法 - Google Patents
一种液体粘度检测方法 Download PDFInfo
- Publication number
- CN112666047B CN112666047B CN202110046283.3A CN202110046283A CN112666047B CN 112666047 B CN112666047 B CN 112666047B CN 202110046283 A CN202110046283 A CN 202110046283A CN 112666047 B CN112666047 B CN 112666047B
- Authority
- CN
- China
- Prior art keywords
- viscosity
- image
- liquid
- solution
- vector machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 98
- 238000001514 detection method Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 238000012706 support-vector machine Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000007637 random forest analysis Methods 0.000 claims description 6
- 238000003708 edge detection Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 1
- 238000004891 communication Methods 0.000 abstract description 8
- 238000000691 measurement method Methods 0.000 abstract description 2
- 238000003860 storage Methods 0.000 description 15
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
一种液体粘度检测方法,本发明可调水平底座平台上由左到右依次固定安装有LED背光光源、气泡发生装置、溶液收集槽、支架、CCD高速摄像机,支架上安装常压供液装置;常压供液装置下方平台固定安装有溶液收集槽;控制器安装在CCD高速摄像机上方,常压供液装置、气泡发生槽通过通讯线缆与控制器相连;上位PC机安装在整个装置的侧旁,CCD高速摄像机和控制器通过通讯线缆与其相连。通过控制检测装置对待测溶液液滴和溶液中汽泡生成过程进行视频采集,经过视频图像处理和特征提取获得待测溶液的特征数据,采用软测量方法识别待测液体的粘度,提高了工业场景中在线粘度检测的准确性与实时性。
Description
技术领域
本发明涉及检测设备领域,具体涉及一种液体粘度检测方法。
背景技术
粘度是流体分子间的作用力的宏观表现,它是流体的一种重要物性参数,常作为评价流体品质的关键指标。粘度测量在工业生产过程控制、心血管疾病分析、食品饮料质量检测、金属颗粒检测中应用广泛。传统的粘度测量方法根据检测原理的不同,主要包括流体法和运动法两种,其中流体法的测量装置包括流出杯粘度计、毛细管粘度计和落球式粘度计等;运动法的测量装置包括振动式粘度计、旋转式粘度计等。这些粘度测量装置往往十分庞大复杂,检测精度不高,且对外界环境要求较高。随着生产工艺水平的不断提高,在工业生产过程中对测量精度、测量效率以及测量的自动化程度要求越来越高。这些传统的检测技术往往不能满足在线检测场景下精准简便快捷高效的要求。
发明内容
针对传统粘度测量设备庞大复杂难以现场部署、检测精度不高且对外界环境要求较高等问题,本发明提出一种液体粘度检测方法,通过搭建实验平台获得不同粘度液体在相同条件下液滴生长过程的轮廓特征数据,结合软测量技术利用改进的支持向量机回归方法训练识别目标液体的运动粘度,从而利用机器视觉的技术检测、控制生产过程,实现粘度的在线监测,该方法利用机器视觉技术对液体粘度进行非接触检测,便于设备在工业现场的安装且在一定粘度范围内识别精度较高,满足在线检测场景下精准简便快捷高效的要求。
本发明涉及一种液体粘度检测装置,包括可调水平底座1、LED背光光源2、支架3、常压供液装置4、气泡发生装置5、溶液收集槽6、控制器7、CCD高速摄像机8、上位PC机9。
所述可调水平底座1平台上由左到右依次固定安装有LED背光光源2、气泡发生装置5、溶液收集槽6、支架3、CCD高速摄像机8,所述支架3上安装常压供液装置4;所述常压供液装置4下方平台固定安装有溶液收集槽6;所述控制器7安装在CCD高速摄像机8上方,常压供液装置4、气泡发生槽5通过通讯线缆与控制器7相连;所述上位PC机9安装在整个装置的侧旁,CCD高速摄像机8和控制器7通过通讯线缆与其相连。
所述可调水平底座1包括可调脚垫111、平台112、水平仪113;所述可调脚垫111安装在平台112底部,所述水平仪113安装在平台112上表面。
所述常压供液装置4包括储液槽411、供液槽412、供液口413、调节阀门414、溢流口415、可拆毛细滴口416、加压排液阀417、液位传感器418;所述供液槽412通过管道连接在储液槽411的左下方;所述调节阀门414安装在供液口413的管道中,所述供液口413和溢流口415分别开设于供液槽412槽壁两侧一定高度处,溢流口415与槽壁呈向下倾斜45度的机械角度;所述可拆毛细滴口416垂直安装于供液槽412底部;所述加压排液阀417位于供液槽412正上方,固定安装在储液槽411外部;所述控制器7通过通讯线缆与调节阀门414、液位传感器418和加压排液阀电机相连。
所述气泡发生装置5包括透明储液槽511、微流泵512、气泡发生管513;所述气泡发生管安装与透明储液槽511内;所述微流泵512安装于透明储液槽511顶部由软管连接气泡发生管513,微流泵512通过通讯线缆与控制器7相连。
本发明涉及一种液体粘度检测方法,包括以下步骤:
(1)收集不同溶液粘度数据,使用本发明中所述的粘度检测装置对不同粘度溶液液滴生长过程和溶液中气泡生长过程采集视频;
(2)对所述液滴生长视频和气泡生长视频的目标区域进行分割,得到气泡生长过程和液滴生长过程的图像序列;
(3)将所述图像序列由RGB色彩空间转换为单通道灰度图像,并进行图像预处理;
(4)使用自适应阈值将所述灰度图像进行二值化处理,将图像转化为二值图像;
(5)对所述二值图像进行边缘检测和轮廓提取,并计算提取相关轮廓特征;所述轮廓特征包括:宽度W、长度H、周长L、面积A、圆形度C、矩形度R、伸长度Q等;
(6)根据所述轮廓特征判断液滴生长周期,记录一个液滴生长周期的视频帧数F,并依据一定频率采样至最大液滴即液滴生长至断裂前一帧图像的轮廓特征。保存后n个特征序列并与液滴生长周期的视频帧数F组合,记为S=[F,T1,T2,…,Tn],其中Ti=[Wi, Hi, Li,Ai, Ci, Qi];
(7)将所述特征序列T与其对应的溶液粘度V组合作为一个样本点,记为Di={(Si,Vi)};将收集的所有视频求出特征序列,与其对应的溶液粘度组合,求出所有的样本集合D={(S1,V1),(S2,V2),…,(SN,VN)};
(8)对所述样本集合D所有特征进行标准化处理;
(9)利用随机森林特征选择RFFS对所述样本集合D进行特征选择,利用随机森林算法的变量重要性度量对特征进行排序,然后采用序列后向搜索方法,每次从特征集合中去掉一个最不重要的特征,逐次进行迭代,并计算正确率,最终得到变量个数最少、正确率最高的特征子集集合作为特征选择结果;
(10)建立支持向量机回归SVR模型,并使用二次规划算法SMO对目标进行优化;将所述特征子集选作输入变量;溶液粘度作为目标变量是支持向量机回归SVR模型的期望输出,记为yo;支持向量机回归SVR模型的实际输出为Op;溶液粘度利用粒子群算法优化所述支持向量机回归SVR模型的超参数,将最小化实际输出与期望输出间的均方误差作为优化目标,其适应度函数为:
(11)对测试样本进行检测,利用测试样本对训练好的支持向量机回归SVR模型进行测试,支持向量机回归SVR模型的输出即溶液粘度的识别结果。
本发明的有益效果是:本发明通过搭建检测装置控制溶液液滴和溶液中气泡的生成过程并采集其视频图像,并利用视频图像处理方法提取其轮廓特征,利用其溶液轮廓与真实溶液粘度确定软测量模型及优化目标,使用支持向量机回归SVR模型的二次规划算法SMO对目标进行优化;其中软测量模型根据已有数据训练建立。首先,通过向量机回归SVR模型对历史数据进行训练,利用粒子群算法对支持向量机回归SVR模型超参数进行寻优,进一步提高建模的准确性。最后,采用优化后的软测量模型进行溶液粘度拟合,通过与真实粘度的误差分析验证了本发明设计的有效性。该方法解决了传统粘度检测装置体积庞大,实时性差难以实现在线测量的技术问题,提高了工业场景中在线粘度检测的准确性与实时性,使加工、检测和控制过程更好的结合到一起。
附图说明
图1为本发明的一种液体粘度检测装置系统图。
图2为本发明的一种液体粘度检测装置的常压供液装置示意图。
图3为本发明的一种液体粘度检测装置的气泡生成装置示意图。
图4为本发明的一种液体粘度检测方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“顶部”、“底部”、“一侧”、“另一侧”、“前面”、“后面”、“中间部位”、“内部”、“顶端”、“底端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1所示的一种液体粘度检测装置,包括可调水平底座1、LED背光光源2、支架3、常压供液装置4、气泡发生装置5、溶液收集槽6、控制器7、CCD高速摄像机8、上位PC机9;所述可调水平底座1平台上由左到右依次固定安装有LED背光光源2、气泡发生装置5、溶液收集槽6、支架3、CCD高速摄像机8,通过观察可调水平底座1上水平仪113调节三个可调脚垫111的高度,以保证平台112保持水平状态;所述LED背光光源2的LED光珠发出的光线经过矩形漫反射板变为发光均匀的面光源,以提高图像采集的质量;其光线先后经过气泡发生装置5、常压供液装置4在CCD高速摄像机8的CCD图像传感器上成像,通过调整CCD高速摄像机8的焦距获得不同粘度溶液液滴生长过程和溶液中气泡生长过程的视频图像;所述控制器7安装在CCD高速摄像机8上,常压供液装置4、气泡发生槽5通过通讯线缆与控制器7相连,以控制视频数据采集过程,所述控制器7为可编程逻辑控制器;所述上位PC机9安装在整个装置的侧旁,CCD高速摄像机8和控制器7通过通讯线缆与其相连,对整个系统起总控作用并对采集的视频图像数据处理分析识别溶液粘度。
如图2所示的液滴视频图像采集装置的常压供液装置,其中所述常压供液装置4包括储液槽411、供液槽412、供液口413、调节阀门414、溢流口415、可拆毛细滴口416、加压排液阀417、液位传感器418;所述供液槽412通过管道连接在储液槽411的左下方,储液槽411中溶液在重力作用下通过供液口413持续向供液槽412中供液,多余液体则从溢流口415溢出;所述供液口413和溢流口415分别开设于供液槽412槽壁两侧一定高度处,溢流口415与槽壁呈向下倾斜45度的机械角度,液滴生成频率与溢流口415到可拆毛细滴口416高度相关,可通过提取不同粘度溶液在相同液位高度下由垂直向下的毛细滴口形成的轴对称液滴从形成到断裂过程中形状随时间变化的图像特征,进而分析液滴轮廓特征变化的规律;所述可拆毛细滴口416垂直安装于供液槽412底部,可通过更换不同口径的毛细滴口改变粘度测量量程;所述液位传感器418安设在供液槽412腔体内,通过检测供液槽412内液位以调节调节阀门414开度,以控制供液口413供液流量;所述调节阀门414安装在供液口413的管道中,当检测开始时调节阀门414处于全开状态,供液槽412内液位快速上升,调节阀门414开度根据液位传感器418监测的液位上升速度逐渐减小,当液位到达溢流口415高度时供液口413以略大于可拆毛细滴口416流量的速度向供液槽412供液,以减少检测待测溶液的损耗;所述加压排液阀414位于供液槽412正上方,固定安装在储液槽411外部,当视频采集结束调节阀门414以最大开度排空储液槽411溶液后关闭,加压排液阀417的电机启动,辅助清空供液槽412内剩余溶液,以便快速开始下次测量。
如图3所示的液滴视频图像采集装置的气泡生成装置,其中所述气泡发生装置5包括透明储液槽511、微流泵512、气泡发生管513;其中所述微流泵512安装于透明储液槽511顶部由软管连接气泡发生管513,微流泵512以恒定速度向充满待测溶液的透明储液槽内注入空气,使气泡发生管末端缓慢稳定生成气泡;所述气泡发生管513垂直安装于透明储液槽511内,通过提取不同粘度溶液中相同孔径气泡发生管513以恒定流量空气生成气泡过程中气泡形状随时间变化的图像特征,分析学习其轮廓特征与溶液粘度的关系。
如图4所示,为本发明实施例的一种液体粘度检测方法的流程图,该方法包括如下步骤:
(1)使用检测装置对不同粘度溶液液滴生长过程和溶液中气泡生长过程采集视频;收集不同浓度溶液粘度数据,实验数据来自于ASHRAE手册,共采集整理100组数据;
(2)对所述液滴生长视频和气泡生长视频的目标区域进行分割,得到气泡生长过程和液滴生长过程的图像序列;
(3)将所述图像序列由RGB色彩空间转换为单通道灰度图像;
(4)使用阈值法将所述灰度图像进行二值化处理,将图像转化为二值图像记为:A,
经过多次试验 ,认为阈值为灰度级数为200时效果最好,其表达式为 ;采用3*3结构体,记为:B,对所述二值图像进行形
态学闭操作,它能够填充图像中的细小空洞,在起到图像降噪作用的同时保留图像中液滴
断裂时颈缩线、卫星液滴等细节信息,以便提取液滴完整的轮廓信息;所述形态学闭操作是
先对二值图像进行膨胀处理后再进行腐蚀处理,其表达式如下:
(5)对处理后的二值图像进行边缘检测和轮廓提取,对图像中所有轮廓位置进行排序,选择最顶部液滴滴口处的液滴轮廓,即为目标轮廓,并计算提取相关轮廓特征;由于不同溶液样本的组成成分、浓度各不相同,导致其物理、化学特性也各不相同,所以在条件一定的情况下,经由相同口径液滴滴头的液滴生长轮廓特征也是不同的,通过图像处理提取出液滴图像具有代表性的轮廓特征;所述轮廓特征包括:宽度W、长度H、周长L、面积A、圆形度C、矩形度R、伸长度Q等,其中圆形度用来刻画目标接近圆的程度,目标为圆形时,圆形度最大(C=1),C=(4π*A)/L2 。矩形度R反映了图像对于外接矩形的充满程度,也就是液滴的饱满程度,R值越大,液滴越饱满R=(A/W*H)。延伸度反映了目标在竖直方向的拉伸程度,目标越细长,延伸度越大;
(6)根据所述轮廓特征判断液滴生长周期,当液滴断裂时液滴面积A突变即可判断液滴生长周期,记录一个液滴生长周期的视频帧数F,并依据一定频率采样至最大液滴即液滴生长至断裂前一帧图像的轮廓特征。保存后n个特征序列并与液滴生长周期的视频帧数F组合,记为S=[F,T1,T2,…,Tn],其中Ti=[Wi, Hi, Li, Ai, Ci, Qi];
(7)将所述特征序列T与其对应的溶液粘度V组合在一起作为一个样本点,记为Di={(Si,Vi)};将收集的所有视频求出特征序列,与其对应的溶液粘度组合,求出所有的样本集合D={(S1,V1),(S2,V2),…,(SN,VN)};
(9)利用随机森林特征选择RFFS对所述样本集合D进行特征选择,利用随机森林算法的变量重要性度量对特征进行排序,然后采用序列后向搜索方法,每次从特征集合中去掉一个最不重要的特征,逐次进行迭代,并计算正确率,最终得到变量个数最少、准确率最高的特征子集作为特征选择结果,使用特征选择的方法可以筛选掉与目标无关或冗余的特征以提高模型性能;
(10)建立支持向量机回归SVR模型,将所述特征子集选作输入变量,记为xi;溶液
粘度标记作为目标变量是支持向量机回归SVR模型的期望输出,记为yi;支持向量机回归
SVR模型是将所述特征子集的特征值矩阵xi和其对应粘度标记yi,通过一个非线性映射函数
ϕ(x)映射到高维特征空间上。xi输入数据与 f(x)输出数据之间的非线性关系为:;支持向量机回归SVR模型的重点在于获得最优超平面并最小化训
练样本与损失函数之间的误差,然后将整体误差最小化。因此 SVR 可以写成如下需要优化
的目标函数:
其中: C 是公式的第一和第二项的调整参数;ξi *和ξi是松弛因子。上式中的第一项用于调整权重大小以保持回归函数平坦性并惩罚大权重,并且通过使用最大化两个相互分离的训练样本之间距离的思想来调节它们;第二项用于惩罚通过采用不敏感损失来训练f(x)与yi之间的误差约束条件,其约束条件如下所示:
代入原式得到新的 SVR 回归公式为:
其中: βi *、βi 为拉格朗日乘子;K(xi,xj)为核函数,在识别目标溶液粘度的模型中RBF核函数训练的模型相较于其他核函数训练的模型有更好的总体性能,RBF( radialbasis function)核函数表示为:
(11)利用粒子群算法优化所述支持向量机回归SVR模型的超参数, 使用该
算法能够快速准确在张量空间中找到向量机回归SVR模型的最优超参数,增强向量机回归
SVR模型的性能,提高粘度的识别精度。以下是该算法的实现过程:
a) 初始化相关参数;
c) 将初始适应值作为当前每个粒子的最优值并记录;
d) 当前位置作为局部最优位置(Pbest);
e) 将最佳初始适应值作为当前全局最优值,并记录当前位置(Gbest);
f) 按照下式计算速度和位置,并限制最大速度幅度,
其中: w是惯性因子;c1和c2是加速常数;r1和r2是[0,1]内的随机数;a为约束因子,控制速度权重;
(12)对测试样本进行检测。利用测试样本对训练好的支持向量机回归SVR模型进行测试,支持向量机回归SVR模型的输出即溶液粘度的识别结果。
Claims (1)
1.一种液体粘度检测方法,包括以下步骤:
(1)收集不同浓度溶液粘度数据,对不同粘度溶液液滴生长过程和溶液中气泡生长过程采集视频;
(2)对所述液滴生长视频和气泡生长视频的目标区域进行分割,得到气泡生长过程和液滴生长过程的图像序列;
(3)将所述图像序列由RGB色彩空间转换为单通道灰度图像,并进行图像预处理;
(4)使用自适应阈值将所述灰度图像进行二值化处理,将图像转化为二值图像;
(5)对所述二值图像进行边缘检测和轮廓提取,并计算提取相关轮廓特征;所述轮廓特征包括:宽度W和长度H和周长L和面积A和圆形度C和矩形度R和伸长度Q;
(6)根据所述轮廓特征判断液滴生长周期,记录一个液滴生长周期的视频帧数F,并依据一定频率采样至最大液滴即液滴生长至断裂前一帧图像的轮廓特征,保存后n个特征序列并与液滴生长周期的视频帧数F组合,记为S=[F,T1,T2,…,Tn],其中Ti=[Wi, Hi, Li, Ai,Ci, Qi];
(7)将所述特征序列T与其对应的溶液粘度V组合在一起作为一个样本点,记为Di={(Si,Vi)};将收集的所有视频求出特征序列,与其对应的溶液粘度组合,求出所有的样本集合D={(S1,V1),(S2,V2),…,(SN,VN)};
(8)对所述样本集合D所有特征进行标准化处理;
(9)利用随机森林特征选择RFFS对所述样本集合D进行特征选择,利用随机森林算法的变量重要性度量对特征进行排序,然后采用序列后向搜索方法,每次从特征集合中去掉一个最不重要的特征,逐次进行迭代,并计算正确率,最终得到变量个数最少、正确率最高的特征子集集合作为特征选择结果;
(10)建立支持向量机回归SVR模型,并使用二次规划算法SMO对目标进行优化;将所述特征子集选作输入变量;溶液粘度作为目标变量是支持向量机回归SVR模型的期望输出,记为yo;支持向量机回归SVR模型的实际输出为Op;利用粒子群算法优化所述支持向量机回归SVR模型的超参数,将最小化均方误差作为优化目标,其适应度函数为:
(11)对测试样本进行检测;利用测试样本对训练好的支持向量机回归SVR模型进行测试,支持向量机回归SVR模型的输出即溶液粘度的识别结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110046283.3A CN112666047B (zh) | 2021-01-14 | 2021-01-14 | 一种液体粘度检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110046283.3A CN112666047B (zh) | 2021-01-14 | 2021-01-14 | 一种液体粘度检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112666047A CN112666047A (zh) | 2021-04-16 |
CN112666047B true CN112666047B (zh) | 2022-04-29 |
Family
ID=75415078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110046283.3A Active CN112666047B (zh) | 2021-01-14 | 2021-01-14 | 一种液体粘度检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112666047B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116474157B (zh) * | 2023-04-28 | 2023-09-15 | 广州迅合医疗科技有限公司 | 一种湿环境持续粘合的硬组织生物粘合剂制备方法及系统 |
CN116589652B (zh) * | 2023-04-28 | 2023-10-27 | 广州迅合医疗科技有限公司 | 一种基于聚氨酯的软组织生物粘合剂制备方法及系统 |
CN117606980B (zh) * | 2023-09-22 | 2024-07-09 | 中煤科工开采研究院有限公司 | 测量液体流动性能的方法和用于观察液滴的装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102301269A (zh) * | 2008-12-05 | 2011-12-28 | 优尼森索股份公司 | 样品的光学切片以及样品中颗粒的检测 |
CN102998316A (zh) * | 2012-12-20 | 2013-03-27 | 山东大学 | 一种透明液体杂质检测系统及其检测方法 |
CN103797131A (zh) * | 2011-06-16 | 2014-05-14 | 卡里斯生命科学卢森堡控股有限责任公司 | 生物标志物组合物和方法 |
CN108475328A (zh) * | 2015-12-30 | 2018-08-31 | 文塔纳医疗系统公司 | 用于实时化验监测的系统和方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1528728A (fr) * | 1967-04-24 | 1968-06-14 | Rhodiaceta | Viscosimètre automatique |
RU2059221C1 (ru) * | 1992-07-15 | 1996-04-27 | Уфимский государственный нефтяной технический университет | Способ изучения реологических свойств жидкостей и газов |
CN2903971Y (zh) * | 2006-05-18 | 2007-05-23 | 宁波迅高智能科技有限公司 | 基于高速图像处理的液体表界面动态特性测量分析仪 |
CN101156705A (zh) * | 2007-11-09 | 2008-04-09 | 新疆大学 | 一种红枣、酒花发酵饮品及其制备方法 |
JP5272524B2 (ja) * | 2008-06-04 | 2013-08-28 | 株式会社リコー | 画像形成装置 |
CN103827671B (zh) * | 2011-05-03 | 2017-05-03 | 联邦科学与工业研究组织 | 用于检测神经疾病的方法 |
CN102298706B (zh) * | 2011-08-12 | 2014-05-07 | 河海大学 | 限制条件下内河航道船舶大型化预测方法 |
JP5958270B2 (ja) * | 2012-10-22 | 2016-07-27 | 富士ゼロックス株式会社 | 画像処理装置及び画像処理プログラム |
DE102013217149A1 (de) * | 2013-08-28 | 2015-03-05 | Kuchenmeister Gmbh | Verfahren und Vorrichtung zur Prozesssteuerung einer Anlage zur kontinuierlichen Herstellung von Schäumen |
CA2914354C (en) * | 2015-12-10 | 2022-11-08 | Nova Chemicals Corp. | Hot fill process with closures made frm bimodal polyethylene compositions |
BR112020007322A2 (pt) * | 2017-10-13 | 2020-09-29 | Autem Medical, Llc | sistema para diagnosticar uma condição de saúde de um paciente, sistema de monitoramento de eletrocardiograma, sistema para tratar câncer de um paciente, método para diagnosticar uma condição de saúde de um paciente, método para tratar câncer e gerador programável |
JP2021503899A (ja) * | 2017-11-22 | 2021-02-15 | ジェルター, インコーポレイテッド | コラーゲンを操作するための方法およびシステム |
CN119252137A (zh) * | 2018-06-12 | 2025-01-03 | 三星显示有限公司 | 窗以及包括其的显示装置 |
CN108507905A (zh) * | 2018-06-29 | 2018-09-07 | 华中科技大学 | 一种利用液滴喷射的微量流体粘度测量技术 |
CN109668858A (zh) * | 2019-02-14 | 2019-04-23 | 大连理工大学 | 基于近红外光谱检测发酵过程生物量和组分浓度的方法 |
CN111089632A (zh) * | 2019-12-09 | 2020-05-01 | 中北大学 | 一种树脂溶液罐液位检测方法与装置 |
CN111738482B (zh) * | 2020-04-20 | 2022-04-29 | 东华大学 | 一种聚酯纤维聚合过程中的工艺参数的调节方法 |
CN111598305B (zh) * | 2020-04-21 | 2023-07-18 | 汉谷云智(武汉)科技有限公司 | 一种轻烃分离装置运行状态优化及预测方法 |
CN112098272B (zh) * | 2020-09-04 | 2024-09-27 | 浙江大学 | 一种液体表面张力与粘度同时在线测量的方法及装置 |
CN112036090B (zh) * | 2020-09-10 | 2024-04-02 | 浙江工业大学 | 一种线性液动压抛光波纹度预测优化方法 |
CN214472543U (zh) * | 2021-01-14 | 2021-10-22 | 新疆大学 | 一种液体粘度检测系统 |
CN112611680B8 (zh) * | 2021-01-14 | 2025-01-03 | 新疆大学 | 一种液体粘度检测装置 |
-
2021
- 2021-01-14 CN CN202110046283.3A patent/CN112666047B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102301269A (zh) * | 2008-12-05 | 2011-12-28 | 优尼森索股份公司 | 样品的光学切片以及样品中颗粒的检测 |
CN103797131A (zh) * | 2011-06-16 | 2014-05-14 | 卡里斯生命科学卢森堡控股有限责任公司 | 生物标志物组合物和方法 |
CN102998316A (zh) * | 2012-12-20 | 2013-03-27 | 山东大学 | 一种透明液体杂质检测系统及其检测方法 |
CN108475328A (zh) * | 2015-12-30 | 2018-08-31 | 文塔纳医疗系统公司 | 用于实时化验监测的系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112666047A (zh) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112666047B (zh) | 一种液体粘度检测方法 | |
CN109460753B (zh) | 一种检测水上漂浮物的方法 | |
CN107506798B (zh) | 一种基于图像识别的水位监测方法 | |
CN111815572A (zh) | 一种基于卷积神经网络对锂电池焊接质量的检测方法 | |
CN110853015A (zh) | 基于改进Faster-RCNN的铝型材缺陷检测方法 | |
CN102221559A (zh) | 基于机器视觉的织物疵点在线自动检测方法及其装置 | |
CN111179262B (zh) | 一种结合形状属性的电力巡检图像金具检测方法 | |
CN102879393A (zh) | 一种基于图像处理的ph值检测方法和装置 | |
CN214472543U (zh) | 一种液体粘度检测系统 | |
CN111881970A (zh) | 一种基于深度学习的外破图像智能识别方法 | |
CN108647722A (zh) | 一种基于过程尺寸特征的锌矿品位软测量方法 | |
CN108931621B (zh) | 一种基于过程纹理特征的锌矿品位软测量方法 | |
CN117805348A (zh) | 一种基于油液监测的设备故障检测系统及方法 | |
CN116205969A (zh) | 样本液体积识别方法、系统和介质 | |
CN104330336B (zh) | 基于ica和svm的气液两相流型识别方法 | |
CN117932313B (zh) | 基于人工智能的皮划艇技术动作预测方法及系统 | |
CN118799314A (zh) | 一种用于风电及光伏发电设备的检测信息处理方法 | |
CN117934404A (zh) | 一种石材表面缺陷检测方法及系统 | |
CN112215264A (zh) | 一种基于钢轨光带图像的钢轨磨耗检测方法 | |
CN112611680B (zh) | 一种液体粘度检测装置 | |
CN114943707B (zh) | 基于像素级角膜生物力学参数的细微角膜形变识别方法及装置 | |
CN112149536B (zh) | 一种飑线风风速预测方法 | |
CN112183163A (zh) | 一种基于全卷积残差网络的自然场景文本检测方法 | |
CN112861957B (zh) | 一种油井运行状态检测方法及装置 | |
CN116503783A (zh) | 一种中学测量物质密度实验智能评分系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |