Nothing Special   »   [go: up one dir, main page]

CN112645708B - 一种抗还原bme瓷介电容器及电容器用陶瓷材料 - Google Patents

一种抗还原bme瓷介电容器及电容器用陶瓷材料 Download PDF

Info

Publication number
CN112645708B
CN112645708B CN202011546965.2A CN202011546965A CN112645708B CN 112645708 B CN112645708 B CN 112645708B CN 202011546965 A CN202011546965 A CN 202011546965A CN 112645708 B CN112645708 B CN 112645708B
Authority
CN
China
Prior art keywords
nitrate
bme
ceramic
reduction
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011546965.2A
Other languages
English (en)
Other versions
CN112645708A (zh
Inventor
洪志超
陈本夏
喻巧
陈永虹
宋运雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Torch Electron Technology Co ltd
Original Assignee
Fujian Torch Electron Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Torch Electron Technology Co ltd filed Critical Fujian Torch Electron Technology Co ltd
Priority to CN202011546965.2A priority Critical patent/CN112645708B/zh
Publication of CN112645708A publication Critical patent/CN112645708A/zh
Application granted granted Critical
Publication of CN112645708B publication Critical patent/CN112645708B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

一种抗还原BME瓷介电容器及电容器用陶瓷材料,一种抗还原BME瓷介电容器用陶瓷材料,由以下原料组成:钛酸钡、草酸氧钒、硝酸锰、硝酸镁、硝酸锶、稀土A硝酸盐、稀土B硝酸盐、硝酸铬、硝酸钡、碳酸氢钙、纳米二氧化硅、纳米二氧化铪,通过添加草酸氧钒、硝酸钡、碳酸氢钙、纳米二氧化硅、纳米二氧化铪等添加剂,降低损耗,提高绝缘电阻,提高介质耐电压,获得良好的电性能。

Description

一种抗还原BME瓷介电容器及电容器用陶瓷材料
技术领域
本发明属于瓷介电容器制备领域,具体涉及一种抗还原BME瓷介电容器及电容器用陶瓷材料。
背景技术
随着电子产品小型化、多功能化的发展,表面贴装技术得到了广泛的应用与发展。多层陶瓷电容器(Multilayer Ceramic Capacitor)简称MLCC,是表面贴装技术中应用最广泛的一类片式元器件之一。伴随着尺寸更小、性能更高的电子设备日益增长的需求,对多层陶瓷电容器在更小体积、更大容量、更高可靠性以及更低成本等方面提出了更高的要求。
多层陶瓷电容器采用流延-共烧工艺,通过流延、印刷、叠压将电极层与介电层相互叠加,再通过脱脂、烧结、端电极,从而制成多层陶瓷电容器。传统的多层陶瓷电容器采用钯或钯银合金等贵金属作为内电极,生产成本高。为降低成本,可以通过采用镍、铜等贱金属替代贵金属作为内电极。由于贱金属在空气气氛中烧结会发生氧化,所以需要再还原性气氛下进行烧制。另一方面,纯钛酸钡材料在还原气氛下烧结会被还原,发生半导体化,导致绝缘电阻降低,所以要在钛酸钡中加入锰、镁、稀土等元素以使陶瓷材料适合于还原气氛中烧结,得到高绝缘电阻和高可靠性的多层陶瓷电容器。
更高的介电常数、更薄的介质层厚度有利于多层陶瓷电容器的小型化、大容量化。因此,如何得到具有良好电容温度特性、高介电常数、低损耗,同时具备抗还原特性,且适合于超薄介质层多层陶瓷电容器制造的介电陶瓷材料,是研究的方向。在专利CN101183610B中,其粉体粒径为100~150nm,介电常数为2000-2500,但其采用化学包覆法,工艺复杂,生产效率低,不适用于大批量工业化生产。因此,如何更加均匀、高效地进行掺杂,获得具有超细晶粒、粒度均匀且性能优异的介电陶瓷材料,并能应用于贱金属、超薄介质层、大容量的多层陶瓷电容器是本发明所要解决的问题。
发明内容
本发明的目的是克服现有技术的缺点,提供一种抗还原BME瓷介电容器用陶瓷材料,另一目的是提供一种采用上述陶瓷材料制备的抗还原BME瓷介电容器。
本发明采用如下技术方案:
一种抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.01-0.07份、硝酸锰0.15-0.46份、硝酸镁0.12-0.64份、硝酸锶0.18-1.00份、稀土A硝酸盐0.94-4.62份、稀土B硝酸盐0.15-1.51份、硝酸铬0.10-0.41份、硝酸钡0.22-0.68份、碳酸氢钙0.13-0.42份、纳米二氧化硅0.12-0.52份、纳米二氧化铪0.18-0.50份;
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌使添加剂完全溶剂;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和纳米二氧化铪,球墨搅拌,同时伴以超声波分散,超声频率20-40kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率2-5MHz,热分解室温度400-600℃,烧结温度800-1100℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
进一步的,所述稀土A硝酸盐选择硝酸钇、硝酸镱中的一种或两种;所述稀土B硝酸盐选择硝酸镝、硝酸钬、硝酸铒中的一种或多种。
进一步的,所述纳米二氧化硅、纳米二氧化铪的粒径小于50nm。
进一步的,所述碳酸钡的粒径小于300nm。
进一步的,所述步骤二中,可溶性盐添加剂与去离子水按重量比为1:1-2。
一种抗还原BME瓷介电容器,采用以上任一项所述的抗还原BME瓷介电容器用陶瓷材料经瓷浆精练、涂布、印刷、叠压、切片、脱脂、烧结、端附等工序制得,所述烧结的条件为:在还原气氛下烧结,烧结过程中通入H2/N2为1:30-70,同时加湿,在1180-1250℃保温1-4h,然后降温至800-1000℃回氧,氧气含量5-20ppm,保温2-6h,再冷却至室温。
进一步的,所述瓷浆精练具体为:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:15-30:15-30:0.5-2分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨1-8h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3-10:5-20加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨1-8h,获得流延浆料。
根据权利要求6所述的一种抗还原BME瓷介电容器,其特征在于:所述涂布工序中,涂布的厚度为≦8um。
进一步的,所述印刷工序中,使用的内电极为镍金属电极。
进一步的,所述端附工序中,使用的端附外电极为铜金属电极。
由上述对本发明的描述可知,与现有技术相比,本发明的有益效果是:
第一,本申请的抗还原BME瓷介电容器用陶瓷材料,通过添加草酸氧钒、硝酸钡、碳酸氢钙、纳米二氧化硅、纳米二氧化铪等添加剂,降低损耗,提高绝缘电阻,提高介质耐电压,获得良好的电性能;其中添加硝酸锶与硝酸锰、碳酸氢钙配合,能够在烧结过程中减少材料的氧空位,提高材料抗还原性,降低损耗;添加纳米二氧化铪与硝酸锶、硝酸铬配合,可以对钛酸钡同时进行A/B位的取代,提高体系的介电常数并进一步提高抗还原性、降低损耗,同时,纳米二氧化铪与纳米二氧化硅配合,可以控制晶界成分及晶粒尺寸,提高绝缘电阻和耐压,提升产品可靠性;
第二,通过限定陶瓷原料的组成,以钛酸钡为基础,以硝酸镁和稀土硝酸盐为主体系,在烧结时形成良好的“壳-芯”结构,得到平稳的介温特性曲线;添加硝酸锶、硝酸锰、硝酸铬等抗还原添加剂,使得材料适于还原气氛中烧结;且由于较少的添加剂总含量,可以在使电容温度变化率保持在±15%范围内的同时,获得3000-3500的高介电常数;
第三,采用超声喷雾热分解造粒的方法,使前驱体混合液经过雾化、干燥、热分解、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,同时,选用的钛酸钡粒径小于300nm、选用的纳米二氧化硅/纳米二氧化铪粒径小于50nm,由此方法制备的材料具有分散均匀、粒度超细的优点,使得其可以应用于超薄介质层高容MLCC产品中;
第四,制备时,限定各原料的加料顺序和球磨时间,将除钛酸钡和纳米二氧化硅以外的原料先溶解于去离子水中后,再添加钛酸钡和纳米二氧化硅、纳米二氧化铪,同时进行超声波分散,使添加的各元素分布均匀,有利于超声喷雾热分解造粒时得到成分、粒度分布均匀的粉体,并在烧结形成均匀性良好的“壳-芯”结构。
附图说明
图1为本发明提供的超声喷雾热分解造粒装置的示意图;
图2为瓷介电容器陶瓷材料组织结构示意图;
图3为本发明的瓷介电容器内部结构示意图;
图4为实施例1样品介电常数随温度变化曲线;
图5为实施例1样品电容温度变化率随温度变化曲线;
图中,1-陶瓷材料、2-镍金属内极、3-铜金属电极、4-超声雾化器、5-热分解室、6-烧结室、7-旋风集粉器、8-尾气处理装置、41-进液管、42-进气管、51-温控炉。
具体实施方式
以下通过具体实施方式对本发明作进一步的描述。
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:15-30:15-30:0.5-2分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨1-8h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3-10:5-20加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨1-8h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:30-70,同时加湿,在1180-1250℃保温1-4h,然后降温至800-1000℃回氧,氧气含量5-20ppm,保温2-6h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为700-900℃,采用氮气保护,保温0.5-2h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.01-0.07份、硝酸锰0.15-0.46份、硝酸镁0.12-0.64份、硝酸锶0.18-1.00份、稀土A硝酸盐0.94-4.62份、稀土B硝酸盐0.15-1.51份、硝酸铬0.10-0.41份、硝酸钡0.22-0.68份、碳酸氢钙0.13-0.42份、纳米二氧化硅0.12-0.52份、纳米二氧化铪0.18-0.50份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌4-8h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1-2;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和纳米二氧化铪,球墨搅拌,同时伴以超声波分散,超声频率20-40kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率2-5MHz,热分解室温度400-600℃,烧结温度800-1100℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,稀土A硝酸盐选择硝酸钇、硝酸镱中的一种或两种,稀土B硝酸盐选择硝酸镝、硝酸钬、硝酸铒中的一种或多种。
其中,纳米二氧化硅、纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
其中,步骤四中,前驱体混合液采用如图1所示的装置烧制成抗还原BME陶瓷用陶瓷材料,该装置包括依次连接的超声雾化器4、热分解室5、烧结室6、旋风集粉器7和尾气处理装置8,具体的,超声雾化器4包括供前驱体混合液进入的进液管41和供压缩空气进入的进气管42;热分解室5上设置有温控炉51。
实施例1
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.027份、硝酸锰0.307份、硝酸镁0.318份、硝酸锶0.454份、硝酸镱1.847份、硝酸钬0.301份、硝酸铬0.204份、硝酸钡0.336份、碳酸氢钙0.208份、纳米二氧化硅0.309份、纳米二氧化铪0.271份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,稀土A硝酸盐选择硝酸钇、硝酸镱中的一种或两种,稀土B硝酸盐选择硝酸镝、硝酸钬、硝酸铒中的一种或多种。
其中,纳米二氧化硅、纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
实施例2
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:15:15:0.5分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨1h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3:20加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨1h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:30,同时加湿,在1180℃保温4h,然后降温至800℃回氧,氧气含量5ppm,保温6h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为700℃,采用氮气保护,保温2h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.010份、硝酸锰0.150份、硝酸镁0.120份、硝酸锶0.180份、硝酸镱0.940份、硝酸钬0.150份、硝酸铬0.100份、硝酸钡0.220份、碳酸氢钙0.120份、纳米二氧化硅0.120份、纳米二氧化铪0.180份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌8h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率40kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率5MHz,热分解室温度400℃,烧结温度1100℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化硅、纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
实施例3
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:30:30:2分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨8h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:10:5加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨8h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:70,同时加湿,在1250℃保温1h,然后降温至1000℃回氧,氧气含量20ppm,保温2h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为900℃,采用氮气保护,保温0.5h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.070份、硝酸锰0.460份、硝酸镁0.640份、硝酸锶1.000份、硝酸镱4.620份、硝酸钬1.510份、硝酸铬0.410份、硝酸钡0.680份、碳酸氢钙0.420份、纳米二氧化硅0.520份、纳米二氧化铪0.500份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:2;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率20kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率2MHz,热分解室温度600℃,烧结温度800℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化硅、纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例1
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、硝酸锰0.307份、硝酸镁0.318份、硝酸锶0.454份、硝酸镱1.847份、硝酸钬0.301份、硝酸钡0.336份、碳酸氢钙0.208份、纳米二氧化硅0.309份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化硅均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化硅的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例2
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.013份、硝酸锰0.153份、硝酸镁0.127份、硝酸镱0616份、硝酸镝0.149份、硝酸钡0.224份、碳酸氢钙0.139份、纳米二氧化硅0.129份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化硅均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化硅的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例3
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.066份、硝酸锰0.460份、硝酸镁0.636份、硝酸锶0.907份、硝酸钇1.650、硝酸镱2.155、硝酸镝0.448、硝酸钬0.602、硝酸铒0.454、硝酸铬0.408份、硝酸钡0.672份、碳酸氢钙0.417份、纳米二氧化硅0.515份、纳米二氧化铪0.451份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化硅、纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例4
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.027份、硝酸锰0.307份、硝酸镁0.318份、硝酸镱1.847份、硝酸钬0.301份、硝酸钡0.336份、碳酸氢钙0.208份、纳米二氧化硅0.309份、纳米二氧化铪0.271份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化硅、纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例5
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.027份、硝酸锰0.307份、硝酸镁0.318份、硝酸镱1.847份、硝酸钬0.301份、硝酸钡0.336份、碳酸氢钙0.208份、纳米二氧化铪0.271份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例6
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.027份、硝酸锰0.307份、硝酸镁0.318份、硝酸锶0.454份、硝酸镱1.847份、硝酸钬0.301份、硝酸钡0.336份、碳酸氢钙0.208份、纳米二氧化铪0.271份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
对比例7
一种抗还原BME瓷介电容器,采用抗还原BME瓷介电容器用陶瓷材料1经以下步骤制得:
步骤一,瓷浆精练:按重量比陶瓷材料:乙醇:甲苯:分散剂=100:20:20:1分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨5h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:5:10加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨5h,获得流延浆料;
步骤二,涂布:将制得的流延浆料,涂布成介电层,涂布的厚度为≦8um;
步骤三,印刷:将镍金属内极2印刷至介电层,并将介电层与介电层相互叠加,再经水压、切片,制造出生坯;
步骤四,脱脂:将生坯置于270℃的空气气氛下,保温4h进行脱脂;
步骤五,烧结:在还原气氛下烧结,烧结过程中通入H2/N2为1:50,同时加湿,在1220℃保温2h,然后降温至900℃回氧,氧气含量12ppm,保温4h,再冷却至室温;
步骤六,端附:端附外电极为铜金属电极3,烧附温度为850℃,采用氮气保护,保温1h,冷却后,得到BME瓷介电容器。
采用的抗还原BME瓷介电容器用陶瓷材料,由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.027份、硝酸锰0.307份、硝酸镁0.318份、硝酸镱1.847份、硝酸钬0.301份、硝酸铬0.204份、硝酸钡0.336份、碳酸氢钙0.208份、纳米二氧化铪0.271份。
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌6h,使添加剂完全溶剂,其中,可溶性盐添加剂与去离子水按重量比为1:1.5;
步骤三,向步骤二得到的溶液中加入钛酸钡和二氧化铪,球墨搅拌2h,同时伴以超声波分散,超声频率30kHz,使钛酸钡和纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率4MHz,热分解室温度500℃,烧结温度950℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料。
其中,纳米二氧化铪的粒径小于50nm,碳酸钡的粒径小于300nm。
将实施1与对比例1-7制备的样品经测试获得如下数据,其结果如下表:
表1各样品的测试参数
Figure BDA0002856626830000221
Figure BDA0002856626830000231
通过上述表格可知,本申请的抗还原BME瓷介电容器用陶瓷材料,通过添加草酸氧钒、硝酸钡、碳酸氢钙、纳米二氧化硅、纳米二氧化铪等添加剂,降低损耗,提高绝缘电阻,提高介质耐电压,获得良好的电性能;其中添加硝酸锶与硝酸锰、碳酸氢钙配合,能够在烧结过程中减少材料的氧空位,提高材料抗还原性,降低损耗;添加纳米二氧化铪与硝酸锶、硝酸铬配合,可以对钛酸钡同时进行A/B位的取代,提高体系的介电常数并进一步提高抗还原性、降低损耗,同时,纳米二氧化铪与纳米二氧化硅配合,可以控制晶界成分及晶粒尺寸,提高绝缘电阻和耐压,提升产品可靠性。
通过实施例1与对比例2、4、5、6、7对比可知,通过限定纳米二氧化铪与硝酸锶、硝酸铬及纳米二氧化硅之间的相互配合,可以得到极高的介电常数(3481),极低的损耗(0.7%)以及高绝缘电阻和高击穿强度的优异性能。
通过实施例1与对比例1对比可知,通过添加草酸氧钒与纳米二氧化硅、纳米二氧化铪、硝酸锶、硝酸铬配合,在烧结时形成良好的“壳-芯”结构,具有高介电常数,低损耗,在工作温度范围(-55℃~125℃)内具有良好的温度稳定性,符合X7R要求;同时具有良好的绝缘电阻(25℃RC>2000MΩ·μF,125℃RC>1000MΩ·μF)和很高的击穿强度(BDV>90V/μm),且可与贱金属内电极良好匹配,具有良好的抗还原性,适应于还原气氛中烧结。
通过实施例1与对比例3对比可知,本发明通过限定各组分的含量,以保证各物质之间的相互配合,可以得到极高的介电常数(3481),极低的损耗(0.7%)以及高绝缘电阻和高击穿强度的优异性能。
以上所述,仅为本发明的较佳实施例而已,故不能以此限定本发明实施的范围,即依本发明申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。

Claims (8)

1.一种抗还原BME瓷介电容器用陶瓷材料,其特征在于:由以下重量份的原料组成:钛酸钡100份、草酸氧钒0.01-0.07份、硝酸锰0.15-0.46份、硝酸镁0.12-0.64份、硝酸锶0.18-1.00份、稀土A硝酸盐0.94-4.62份、稀土B硝酸盐0.15-1.51份、硝酸铬0.10-0.41份、硝酸钡0.22-0.68份、碳酸氢钙0.13-0.42份、纳米二氧化硅0.12-0.52份、纳米二氧化铪0.18-0.50份;
其制备方法,包括如下步骤:
步骤一,将抗还原BME瓷介电容器用陶瓷材料中除钛酸钡、纳米二氧化硅及纳米二氧化铪以外的原料按其比例称重、混合,得到可溶性盐添加剂;
步骤二,向步骤一得到的可溶性盐添加剂中加入去离子水,搅拌使添加剂完全溶剂;
步骤三,向步骤二得到的溶液中加入钛酸钡、纳米二氧化硅和纳米二氧化铪,球墨搅拌,同时伴以超声波分散,超声频率20-40kHz,使钛酸钡和纳米二氧化硅、纳米二氧化铪均匀分散在溶液中,形成前驱体混合液;
步骤四,将步骤三制得的前驱体混合液进行超声喷雾热分解造粒,超声波雾化器工作频率2-5MHz,热分解室温度400-600℃,烧结温度800-1100℃,使前驱体混合液经过雾化、干燥、热风机、烧结的过程,形成纳米级氧化物均匀分散在钛酸钡颗粒上的粉体,即得抗还原BME陶瓷用陶瓷材料;
所述稀土A硝酸盐选择硝酸钇、硝酸镱中的一种或两种;所述稀土B硝酸盐选择硝酸镝、硝酸钬、硝酸铒中的一种或多种。
2.根据权利要求1所述的一种抗还原BME瓷介电容器用陶瓷材料,其特征在于:所述纳米二氧化硅、纳米二氧化铪的粒径小于50nm。
3.根据权利要求1所述的一种抗还原BME瓷介电容器用陶瓷材料,其特征在于:所述步骤二中,可溶性盐添加剂与去离子水按重量比为1:1-2。
4.一种抗还原BME瓷介电容器,其特征在于:采用如权利要求1至3任一项所述的抗还原BME瓷介电容器用陶瓷材料经瓷浆精练、涂布、印刷、叠压、切片、脱脂、烧结、端附工序制得,所述烧结的条件为:在还原气氛下烧结,烧结过程中通入H2/N2为1:30-70,同时加湿,在1180-1250℃保温1-4h,然后降温至800-1000℃回氧,氧气含量5-20ppm,保温2-6h,再冷却至室温。
5.根据权利要求4所述的一种抗还原BME瓷介电容器,其特征在于:所述瓷浆精练具体为:按重量比陶瓷材料:乙醇:甲苯:分散剂=100: 15-30 : 15-30:0.5-2分别加入陶瓷材料、乙醇、甲苯、分散剂,球磨1-8h后,再按重量比陶瓷材料:邻苯二甲酸二辛酯:聚乙烯醇缩丁醛酯=100:3-10:5-20加入邻苯二甲酸二辛酯和聚乙烯醇缩丁醛酯,继续球磨1-8h,获得流延浆料。
6.根据权利要求4所述的一种抗还原BME瓷介电容器,其特征在于:所述涂布工序中,涂布的厚度为≦8um。
7.根据权利要求4所述的一种抗还原BME瓷介电容器,其特征在于:所述印刷工序中,使用的内电极为镍金属电极。
8.根据权利要求4所述的一种抗还原BME瓷介电容器,其特征在于:所述端附工序中,使用的端附外电极为铜金属电极。
CN202011546965.2A 2020-12-24 2020-12-24 一种抗还原bme瓷介电容器及电容器用陶瓷材料 Active CN112645708B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011546965.2A CN112645708B (zh) 2020-12-24 2020-12-24 一种抗还原bme瓷介电容器及电容器用陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011546965.2A CN112645708B (zh) 2020-12-24 2020-12-24 一种抗还原bme瓷介电容器及电容器用陶瓷材料

Publications (2)

Publication Number Publication Date
CN112645708A CN112645708A (zh) 2021-04-13
CN112645708B true CN112645708B (zh) 2022-07-15

Family

ID=75360040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011546965.2A Active CN112645708B (zh) 2020-12-24 2020-12-24 一种抗还原bme瓷介电容器及电容器用陶瓷材料

Country Status (1)

Country Link
CN (1) CN112645708B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113800902B (zh) * 2021-09-18 2022-08-09 福建火炬电子科技股份有限公司 一种具有高介电常数的bme瓷介电容器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330371A (zh) * 2000-06-20 2002-01-09 Tdk株式会社 介质陶瓷和电子元件
CN1461023A (zh) * 2003-06-27 2003-12-10 清华大学 超细温度稳定型多层陶瓷电容器介电材料及其烧结工艺
JP2011079717A (ja) * 2009-10-09 2011-04-21 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
CN106747418A (zh) * 2016-12-09 2017-05-31 北京元六鸿远电子科技股份有限公司 一种具有抗还原性的高介瓷介电容器材料
CN106915958A (zh) * 2015-12-24 2017-07-04 华新科技股份有限公司 积层电子陶瓷元件及其无压共烧结制法
CN107840654A (zh) * 2017-10-13 2018-03-27 山东国瓷功能材料股份有限公司 一种用于陶瓷电容器的介质材料及其制备方法
CN111646792A (zh) * 2020-06-22 2020-09-11 福建火炬电子科技股份有限公司 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567759B2 (ja) * 1998-09-28 2004-09-22 株式会社村田製作所 誘電体セラミック組成物および積層セラミックコンデンサ
CN1252755C (zh) * 2002-10-14 2006-04-19 清华大学 温度稳定型的贱金属内电极多层陶瓷电容器介电材料
US6828266B1 (en) * 2003-05-16 2004-12-07 Ferro Corporation X7R dielectric composition
US7923497B2 (en) * 2005-11-23 2011-04-12 General Electric Company Antiferroelectric polymer composites, methods of manufacture thereof, and articles comprising the same
TWI573775B (zh) * 2015-07-16 2017-03-11 Ceramic capacitor dielectric material
CN106045498A (zh) * 2016-05-31 2016-10-26 福建火炬电子科技股份有限公司 一种bme瓷介电容器陶瓷材料及其制备方法
CN106631005B (zh) * 2017-01-10 2020-01-14 北京元六鸿远电子科技股份有限公司 中温烧结的无铅高压电容器介质瓷料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330371A (zh) * 2000-06-20 2002-01-09 Tdk株式会社 介质陶瓷和电子元件
CN1461023A (zh) * 2003-06-27 2003-12-10 清华大学 超细温度稳定型多层陶瓷电容器介电材料及其烧结工艺
JP2011079717A (ja) * 2009-10-09 2011-04-21 Murata Mfg Co Ltd 誘電体セラミックおよび積層セラミックコンデンサ
CN106915958A (zh) * 2015-12-24 2017-07-04 华新科技股份有限公司 积层电子陶瓷元件及其无压共烧结制法
CN106747418A (zh) * 2016-12-09 2017-05-31 北京元六鸿远电子科技股份有限公司 一种具有抗还原性的高介瓷介电容器材料
CN107840654A (zh) * 2017-10-13 2018-03-27 山东国瓷功能材料股份有限公司 一种用于陶瓷电容器的介质材料及其制备方法
CN111646792A (zh) * 2020-06-22 2020-09-11 福建火炬电子科技股份有限公司 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法

Also Published As

Publication number Publication date
CN112645708A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN113582683B (zh) 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
JP5146475B2 (ja) 誘電体磁器組成物およびセラミック電子部品
CN107500754B (zh) 一种用于高容高压mlcc的陶瓷介质材料及其制备方法
JP4255448B2 (ja) 誘電体セラミック用ゾル組成物と、これを利用した誘電体セラミック及び積層セラミックキャパシタ
JPH03174711A (ja) 多層セラミックコンデンサ及びその製造方法
CN114188155A (zh) 一种适用于超薄层贱金属内电极多层陶瓷电容器的x7r/x8r介质粉体及制备方法
CN112645708B (zh) 一种抗还原bme瓷介电容器及电容器用陶瓷材料
CN111410530B (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN114230335B (zh) 一种巨介电常数、低损耗和高电阻率的BaTiO3基细晶陶瓷及其制备方法
CN111646792B (zh) 一种bme多层陶瓷电容器、bme瓷介电容器陶瓷材料及制备方法
CN113800902B (zh) 一种具有高介电常数的bme瓷介电容器及其制备方法
JP5541318B2 (ja) 誘電体磁器組成物およびセラミック電子部品
JP4152841B2 (ja) セラミックスラリーの製造方法、グリーンシートおよび積層セラミック部品
CN107739204B (zh) 一种偏压特性优良的陶瓷介质材料及其制备方法
JP4863007B2 (ja) 誘電体磁器組成物および電子部品
TWI748483B (zh) 電容器應用的介電陶瓷材料組成
CN1461022A (zh) 贱金属电极多层陶瓷电容器介质材料及其制备方法
JP2015083714A (ja) 複合粉末の製造方法およびこの製造方法により得られた複合粉末を用いた導電性厚膜ペーストおよび積層セラミック電子部品
JP5488118B2 (ja) 誘電体磁器組成物および電子部品
JP3791264B2 (ja) 耐還元性誘電体組成物の製造方法及び積層セラミックコンデンサの製造方法
CN101037328A (zh) B位先驱体掺杂改性的钛酸钡基金属复合陶瓷及制备方法
JP5029717B2 (ja) セラミック電子部品およびセラミック原料粉体の製造方法
CN114573336A (zh) 一种陶瓷介电材料、陶瓷电容器及其制备方法
JP4660940B2 (ja) 耐還元性誘電体セラミック及びその製造方法、それを用いた積層セラミックコンデンサ
CN114057483A (zh) 一种适用于耐高压、高可靠性的x8r型bczt基bme-mlcc介质材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant