CN112626057B - Chimeric plant nitrilase mutant, coding gene and application thereof - Google Patents
Chimeric plant nitrilase mutant, coding gene and application thereof Download PDFInfo
- Publication number
- CN112626057B CN112626057B CN202110054581.7A CN202110054581A CN112626057B CN 112626057 B CN112626057 B CN 112626057B CN 202110054581 A CN202110054581 A CN 202110054581A CN 112626057 B CN112626057 B CN 112626057B
- Authority
- CN
- China
- Prior art keywords
- gly
- ala
- nitrilase
- val
- asp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108010033272 Nitrilase Proteins 0.000 title claims abstract description 92
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 26
- 241000196324 Embryophyta Species 0.000 claims abstract description 25
- KOINRLSRVTULIE-UHFFFAOYSA-N 2-(2-methylpropyl)butanedinitrile Chemical compound CC(C)CC(C#N)CC#N KOINRLSRVTULIE-UHFFFAOYSA-N 0.000 claims abstract description 18
- 240000008100 Brassica rapa Species 0.000 claims abstract description 13
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 13
- 241000219195 Arabidopsis thaliana Species 0.000 claims abstract description 11
- 230000035772 mutation Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 9
- MGWZYUMZVZMKTN-ZETCQYMHSA-N (3s)-3-cyano-5-methylhexanoic acid Chemical compound CC(C)C[C@H](C#N)CC(O)=O MGWZYUMZVZMKTN-ZETCQYMHSA-N 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 41
- 210000004027 cell Anatomy 0.000 claims description 26
- 239000013612 plasmid Substances 0.000 claims description 23
- 230000014509 gene expression Effects 0.000 claims description 17
- 239000012634 fragment Substances 0.000 claims description 16
- 241000894006 Bacteria Species 0.000 claims description 14
- 239000002773 nucleotide Substances 0.000 claims description 14
- 125000003729 nucleotide group Chemical group 0.000 claims description 14
- 102000004190 Enzymes Human genes 0.000 claims description 13
- 108090000790 Enzymes Proteins 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 10
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 8
- 235000011293 Brassica napus Nutrition 0.000 claims description 8
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 claims description 8
- 241001052560 Thallis Species 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 239000000872 buffer Substances 0.000 claims description 6
- 238000012216 screening Methods 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000012408 PCR amplification Methods 0.000 claims description 5
- 238000012217 deletion Methods 0.000 claims description 5
- 230000037430 deletion Effects 0.000 claims description 5
- 238000002741 site-directed mutagenesis Methods 0.000 claims description 5
- 239000007853 buffer solution Substances 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- 238000002703 mutagenesis Methods 0.000 claims description 4
- 231100000350 mutagenesis Toxicity 0.000 claims description 4
- 239000012429 reaction media Substances 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 4
- 108010093096 Immobilized Enzymes Proteins 0.000 claims description 3
- 238000006555 catalytic reaction Methods 0.000 claims description 3
- 238000000855 fermentation Methods 0.000 claims description 3
- 230000004151 fermentation Effects 0.000 claims description 3
- 210000001822 immobilized cell Anatomy 0.000 claims description 3
- 238000007857 nested PCR Methods 0.000 claims description 3
- 239000002299 complementary DNA Substances 0.000 claims description 2
- -1 isobutylsuccinonitrile (S) -3-cyano-5-methylhexanoic acid Chemical compound 0.000 claims description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 14
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 11
- 235000011292 Brassica rapa Nutrition 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 abstract description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 abstract description 2
- 241000588724 Escherichia coli Species 0.000 description 36
- 108020004414 DNA Proteins 0.000 description 29
- 239000000047 product Substances 0.000 description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 229930027917 kanamycin Natural products 0.000 description 9
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 9
- 229960000318 kanamycin Drugs 0.000 description 9
- 229930182823 kanamycin A Natural products 0.000 description 9
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 description 8
- MQIGTEQXYCRLGK-BQBZGAKWSA-N Ala-Gly-Pro Chemical compound C[C@H](N)C(=O)NCC(=O)N1CCC[C@H]1C(O)=O MQIGTEQXYCRLGK-BQBZGAKWSA-N 0.000 description 8
- LNNSWWRRYJLGNI-NAKRPEOUSA-N Ala-Ile-Val Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O LNNSWWRRYJLGNI-NAKRPEOUSA-N 0.000 description 8
- HHRAXZAYZFFRAM-CIUDSAMLSA-N Ala-Leu-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O HHRAXZAYZFFRAM-CIUDSAMLSA-N 0.000 description 8
- VHVVPYOJIIQCKS-QEJZJMRPSA-N Ala-Leu-Phe Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 VHVVPYOJIIQCKS-QEJZJMRPSA-N 0.000 description 8
- FFZJHQODAYHGPO-KZVJFYERSA-N Ala-Pro-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](C)N FFZJHQODAYHGPO-KZVJFYERSA-N 0.000 description 8
- WQKAQKZRDIZYNV-VZFHVOOUSA-N Ala-Ser-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O WQKAQKZRDIZYNV-VZFHVOOUSA-N 0.000 description 8
- KUFVXLQLDHJVOG-SHGPDSBTSA-N Ala-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](C)N)O KUFVXLQLDHJVOG-SHGPDSBTSA-N 0.000 description 8
- OTOXOKCIIQLMFH-KZVJFYERSA-N Arg-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCN=C(N)N OTOXOKCIIQLMFH-KZVJFYERSA-N 0.000 description 8
- HJVGMOYJDDXLMI-AVGNSLFASA-N Arg-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCCNC(N)=N HJVGMOYJDDXLMI-AVGNSLFASA-N 0.000 description 8
- RCAUJZASOAFTAJ-FXQIFTODSA-N Arg-Asp-Cys Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N)CN=C(N)N RCAUJZASOAFTAJ-FXQIFTODSA-N 0.000 description 8
- XTGGTAWGUFXJSV-NAKRPEOUSA-N Arg-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCCN=C(N)N)N XTGGTAWGUFXJSV-NAKRPEOUSA-N 0.000 description 8
- ZZZWQALDSQQBEW-STQMWFEESA-N Arg-Gly-Tyr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O ZZZWQALDSQQBEW-STQMWFEESA-N 0.000 description 8
- GSUFZRURORXYTM-STQMWFEESA-N Arg-Phe-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=CC=C1 GSUFZRURORXYTM-STQMWFEESA-N 0.000 description 8
- INOIAEUXVVNJKA-XGEHTFHBSA-N Arg-Thr-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O INOIAEUXVVNJKA-XGEHTFHBSA-N 0.000 description 8
- FHETWELNCBMRMG-HJGDQZAQSA-N Asn-Leu-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O FHETWELNCBMRMG-HJGDQZAQSA-N 0.000 description 8
- RAUPFUCUDBQYHE-AVGNSLFASA-N Asn-Phe-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O RAUPFUCUDBQYHE-AVGNSLFASA-N 0.000 description 8
- QOVWVLLHMMCFFY-ZLUOBGJFSA-N Asp-Asp-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O QOVWVLLHMMCFFY-ZLUOBGJFSA-N 0.000 description 8
- QXHVOUSPVAWEMX-ZLUOBGJFSA-N Asp-Asp-Ser Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O QXHVOUSPVAWEMX-ZLUOBGJFSA-N 0.000 description 8
- SNDBKTFJWVEVPO-WHFBIAKZSA-N Asp-Gly-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(O)=O SNDBKTFJWVEVPO-WHFBIAKZSA-N 0.000 description 8
- UBPMOJLRVMGTOQ-GARJFASQSA-N Asp-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CC(=O)O)N)C(=O)O UBPMOJLRVMGTOQ-GARJFASQSA-N 0.000 description 8
- SPKCGKRUYKMDHP-GUDRVLHUSA-N Asp-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)O)N SPKCGKRUYKMDHP-GUDRVLHUSA-N 0.000 description 8
- GKWFMNNNYZHJHV-SRVKXCTJSA-N Asp-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC(O)=O GKWFMNNNYZHJHV-SRVKXCTJSA-N 0.000 description 8
- PWAIZUBWHRHYKS-MELADBBJSA-N Asp-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CC(=O)O)N)C(=O)O PWAIZUBWHRHYKS-MELADBBJSA-N 0.000 description 8
- PDIYGFYAMZZFCW-JIOCBJNQSA-N Asp-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)O)N)O PDIYGFYAMZZFCW-JIOCBJNQSA-N 0.000 description 8
- NWAHPBGBDIFUFD-KKUMJFAQSA-N Asp-Tyr-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(O)=O NWAHPBGBDIFUFD-KKUMJFAQSA-N 0.000 description 8
- SDWZYDDNSMPBRM-AVGNSLFASA-N Cys-Gln-Phe Chemical compound SC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 SDWZYDDNSMPBRM-AVGNSLFASA-N 0.000 description 8
- YYLBXQJGWOQZOU-IHRRRGAJSA-N Cys-Phe-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CS)N YYLBXQJGWOQZOU-IHRRRGAJSA-N 0.000 description 8
- CGVWDTRDPLOMHZ-FXQIFTODSA-N Gln-Glu-Asp Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O CGVWDTRDPLOMHZ-FXQIFTODSA-N 0.000 description 8
- UTKUTMJSWKKHEM-WDSKDSINSA-N Glu-Ala-Gly Chemical compound OC(=O)CNC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O UTKUTMJSWKKHEM-WDSKDSINSA-N 0.000 description 8
- FLLRAEJOLZPSMN-CIUDSAMLSA-N Glu-Asn-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N FLLRAEJOLZPSMN-CIUDSAMLSA-N 0.000 description 8
- OAGVHWYIBZMWLA-YFKPBYRVSA-N Glu-Gly-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)NCC(O)=O OAGVHWYIBZMWLA-YFKPBYRVSA-N 0.000 description 8
- IOUQWHIEQYQVFD-JYJNAYRXSA-N Glu-Leu-Tyr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O IOUQWHIEQYQVFD-JYJNAYRXSA-N 0.000 description 8
- OQXDUSZKISQQSS-GUBZILKMSA-N Glu-Lys-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O OQXDUSZKISQQSS-GUBZILKMSA-N 0.000 description 8
- AAJHGGDRKHYSDH-GUBZILKMSA-N Glu-Pro-Gln Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CCC(=O)O)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O AAJHGGDRKHYSDH-GUBZILKMSA-N 0.000 description 8
- PYTZFYUXZZHOAD-WHFBIAKZSA-N Gly-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)CN PYTZFYUXZZHOAD-WHFBIAKZSA-N 0.000 description 8
- KRRMJKMGWWXWDW-STQMWFEESA-N Gly-Arg-Phe Chemical compound NC(=N)NCCC[C@H](NC(=O)CN)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KRRMJKMGWWXWDW-STQMWFEESA-N 0.000 description 8
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 8
- MHXKHKWHPNETGG-QWRGUYRKSA-N Gly-Lys-Leu Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O MHXKHKWHPNETGG-QWRGUYRKSA-N 0.000 description 8
- IEGFSKKANYKBDU-QWHCGFSZSA-N Gly-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)CN)C(=O)O IEGFSKKANYKBDU-QWHCGFSZSA-N 0.000 description 8
- LYZYGGWCBLBDMC-QWHCGFSZSA-N Gly-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)CN)C(=O)O LYZYGGWCBLBDMC-QWHCGFSZSA-N 0.000 description 8
- RYAOJUMWLWUGNW-QMMMGPOBSA-N Gly-Val-Gly Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O RYAOJUMWLWUGNW-QMMMGPOBSA-N 0.000 description 8
- DZMVESFTHXSSPZ-XVYDVKMFSA-N His-Ala-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O DZMVESFTHXSSPZ-XVYDVKMFSA-N 0.000 description 8
- MWAJSVTZZOUOBU-IHRRRGAJSA-N His-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC1=CN=CN1 MWAJSVTZZOUOBU-IHRRRGAJSA-N 0.000 description 8
- VAXBXNPRXPHGHG-BJDJZHNGSA-N Ile-Ala-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)O)N VAXBXNPRXPHGHG-BJDJZHNGSA-N 0.000 description 8
- ZIPOVLBRVPXWJQ-SPOWBLRKSA-N Ile-Cys-Trp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N ZIPOVLBRVPXWJQ-SPOWBLRKSA-N 0.000 description 8
- PFPUFNLHBXKPHY-HTFCKZLJSA-N Ile-Ile-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)O)N PFPUFNLHBXKPHY-HTFCKZLJSA-N 0.000 description 8
- AUIYHFRUOOKTGX-UKJIMTQDSA-N Ile-Val-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N AUIYHFRUOOKTGX-UKJIMTQDSA-N 0.000 description 8
- 241000880493 Leptailurus serval Species 0.000 description 8
- APFJUBGRZGMQFF-QWRGUYRKSA-N Leu-Gly-Lys Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN APFJUBGRZGMQFF-QWRGUYRKSA-N 0.000 description 8
- IRMLZWSRWSGTOP-CIUDSAMLSA-N Leu-Ser-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O IRMLZWSRWSGTOP-CIUDSAMLSA-N 0.000 description 8
- WFCKERTZVCQXKH-KBPBESRZSA-N Leu-Tyr-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(O)=O WFCKERTZVCQXKH-KBPBESRZSA-N 0.000 description 8
- PNPYKQFJGRFYJE-GUBZILKMSA-N Lys-Ala-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O PNPYKQFJGRFYJE-GUBZILKMSA-N 0.000 description 8
- AAORVPFVUIHEAB-YUMQZZPRSA-N Lys-Asp-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O AAORVPFVUIHEAB-YUMQZZPRSA-N 0.000 description 8
- DTUZCYRNEJDKSR-NHCYSSNCSA-N Lys-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN DTUZCYRNEJDKSR-NHCYSSNCSA-N 0.000 description 8
- VUTWYNQUSJWBHO-BZSNNMDCSA-N Lys-Leu-Tyr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O VUTWYNQUSJWBHO-BZSNNMDCSA-N 0.000 description 8
- YSPZCHGIWAQVKQ-AVGNSLFASA-N Lys-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CCCCN YSPZCHGIWAQVKQ-AVGNSLFASA-N 0.000 description 8
- MEQLGHAMAUPOSJ-DCAQKATOSA-N Lys-Ser-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O MEQLGHAMAUPOSJ-DCAQKATOSA-N 0.000 description 8
- DLCAXBGXGOVUCD-PPCPHDFISA-N Lys-Thr-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O DLCAXBGXGOVUCD-PPCPHDFISA-N 0.000 description 8
- LXCSZPUQKMTXNW-BQBZGAKWSA-N Met-Ser-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O LXCSZPUQKMTXNW-BQBZGAKWSA-N 0.000 description 8
- DSZFTPCSFVWMKP-DCAQKATOSA-N Met-Ser-Lys Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN DSZFTPCSFVWMKP-DCAQKATOSA-N 0.000 description 8
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 8
- LZDIENNKWVXJMX-JYJNAYRXSA-N Phe-Arg-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC1=CC=CC=C1 LZDIENNKWVXJMX-JYJNAYRXSA-N 0.000 description 8
- FRPVPGRXUKFEQE-YDHLFZDLSA-N Phe-Asp-Val Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O FRPVPGRXUKFEQE-YDHLFZDLSA-N 0.000 description 8
- VZFPYFRVHMSSNA-JURCDPSOSA-N Phe-Ile-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC1=CC=CC=C1 VZFPYFRVHMSSNA-JURCDPSOSA-N 0.000 description 8
- MCIXMYKSPQUMJG-SRVKXCTJSA-N Phe-Ser-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O MCIXMYKSPQUMJG-SRVKXCTJSA-N 0.000 description 8
- RAGOJJCBGXARPO-XVSYOHENSA-N Phe-Thr-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 RAGOJJCBGXARPO-XVSYOHENSA-N 0.000 description 8
- LHALYDBUDCWMDY-CIUDSAMLSA-N Pro-Glu-Ala Chemical compound C[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CCCN1)C(O)=O LHALYDBUDCWMDY-CIUDSAMLSA-N 0.000 description 8
- WVOXLKUUVCCCSU-ZPFDUUQYSA-N Pro-Glu-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WVOXLKUUVCCCSU-ZPFDUUQYSA-N 0.000 description 8
- VPEVBAUSTBWQHN-NHCYSSNCSA-N Pro-Glu-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O VPEVBAUSTBWQHN-NHCYSSNCSA-N 0.000 description 8
- FXGIMYRVJJEIIM-UWVGGRQHSA-N Pro-Leu-Gly Chemical compound OC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H]1CCCN1 FXGIMYRVJJEIIM-UWVGGRQHSA-N 0.000 description 8
- CPRLKHJUFAXVTD-ULQDDVLXSA-N Pro-Leu-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CPRLKHJUFAXVTD-ULQDDVLXSA-N 0.000 description 8
- UOLGINIHBRIECN-FXQIFTODSA-N Ser-Glu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O UOLGINIHBRIECN-FXQIFTODSA-N 0.000 description 8
- GVMUJUPXFQFBBZ-GUBZILKMSA-N Ser-Lys-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O GVMUJUPXFQFBBZ-GUBZILKMSA-N 0.000 description 8
- FLMYSKVSDVHLEW-SVSWQMSJSA-N Ser-Thr-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O FLMYSKVSDVHLEW-SVSWQMSJSA-N 0.000 description 8
- YJCVECXVYHZOBK-KNZXXDILSA-N Thr-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H]([C@@H](C)O)N YJCVECXVYHZOBK-KNZXXDILSA-N 0.000 description 8
- NWECYMJLJGCBOD-UNQGMJICSA-N Thr-Phe-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O NWECYMJLJGCBOD-UNQGMJICSA-N 0.000 description 8
- DEGCBBCMYWNJNA-RHYQMDGZSA-N Thr-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O DEGCBBCMYWNJNA-RHYQMDGZSA-N 0.000 description 8
- GFRIEEKFXOVPIR-RHYQMDGZSA-N Thr-Pro-Lys Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O GFRIEEKFXOVPIR-RHYQMDGZSA-N 0.000 description 8
- AHERARIZBPOMNU-KATARQTJSA-N Thr-Ser-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O AHERARIZBPOMNU-KATARQTJSA-N 0.000 description 8
- AWYXDHQQFPZJNE-QEJZJMRPSA-N Trp-Gln-Ser Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N AWYXDHQQFPZJNE-QEJZJMRPSA-N 0.000 description 8
- NOFFAYIYPAUNRM-HKUYNNGSSA-N Trp-Gly-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC2=CNC3=CC=CC=C32)N NOFFAYIYPAUNRM-HKUYNNGSSA-N 0.000 description 8
- UMXSDHPSMROQRB-YJRXYDGGSA-N Tyr-Cys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC1=CC=C(C=C1)O)N)O UMXSDHPSMROQRB-YJRXYDGGSA-N 0.000 description 8
- RWOKVQUCENPXGE-IHRRRGAJSA-N Tyr-Ser-Arg Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O RWOKVQUCENPXGE-IHRRRGAJSA-N 0.000 description 8
- PWKMJDQXKCENMF-MEYUZBJRSA-N Tyr-Thr-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O PWKMJDQXKCENMF-MEYUZBJRSA-N 0.000 description 8
- ZMDCGGKHRKNWKD-LAEOZQHASA-N Val-Asn-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N ZMDCGGKHRKNWKD-LAEOZQHASA-N 0.000 description 8
- GMOLURHJBLOBFW-ONGXEEELSA-N Val-Gly-His Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N GMOLURHJBLOBFW-ONGXEEELSA-N 0.000 description 8
- OACSGBOREVRSME-NHCYSSNCSA-N Val-His-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(N)=O)C(O)=O OACSGBOREVRSME-NHCYSSNCSA-N 0.000 description 8
- WSUWDIVCPOJFCX-TUAOUCFPSA-N Val-Met-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N1CCC[C@@H]1C(=O)O)N WSUWDIVCPOJFCX-TUAOUCFPSA-N 0.000 description 8
- SJRUJQFQVLMZFW-WPRPVWTQSA-N Val-Pro-Gly Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O SJRUJQFQVLMZFW-WPRPVWTQSA-N 0.000 description 8
- RYHUIHUOYRNNIE-NRPADANISA-N Val-Ser-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N RYHUIHUOYRNNIE-NRPADANISA-N 0.000 description 8
- MIAZWUMFUURQNP-YDHLFZDLSA-N Val-Tyr-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N MIAZWUMFUURQNP-YDHLFZDLSA-N 0.000 description 8
- VTIAEOKFUJJBTC-YDHLFZDLSA-N Val-Tyr-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N VTIAEOKFUJJBTC-YDHLFZDLSA-N 0.000 description 8
- 108010008685 alanyl-glutamyl-aspartic acid Proteins 0.000 description 8
- 108010005233 alanylglutamic acid Proteins 0.000 description 8
- 108010047495 alanylglycine Proteins 0.000 description 8
- 108010011559 alanylphenylalanine Proteins 0.000 description 8
- 108010060035 arginylproline Proteins 0.000 description 8
- 108010092854 aspartyllysine Proteins 0.000 description 8
- 108010006664 gamma-glutamyl-glycyl-glycine Proteins 0.000 description 8
- 108010078144 glutaminyl-glycine Proteins 0.000 description 8
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 8
- 108010072405 glycyl-aspartyl-glycine Proteins 0.000 description 8
- 108010050848 glycylleucine Proteins 0.000 description 8
- 108010015792 glycyllysine Proteins 0.000 description 8
- 108010087823 glycyltyrosine Proteins 0.000 description 8
- 108010037850 glycylvaline Proteins 0.000 description 8
- 108010078274 isoleucylvaline Proteins 0.000 description 8
- 108010053037 kyotorphin Proteins 0.000 description 8
- 108010003700 lysyl aspartic acid Proteins 0.000 description 8
- 108010076718 lysyl-glutamyl-tryptophan Proteins 0.000 description 8
- 108010054155 lysyllysine Proteins 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 108010082795 phenylalanyl-arginyl-arginine Proteins 0.000 description 8
- 108010014614 prolyl-glycyl-proline Proteins 0.000 description 8
- 108700042769 prolyl-leucyl-glycine Proteins 0.000 description 8
- 108010031719 prolyl-serine Proteins 0.000 description 8
- 108010053725 prolylvaline Proteins 0.000 description 8
- 108010026333 seryl-proline Proteins 0.000 description 8
- 108010071635 tyrosyl-prolyl-arginine Proteins 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 108010073969 valyllysine Proteins 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000604 Hydrolases Proteins 0.000 description 5
- 102000004157 Hydrolases Human genes 0.000 description 5
- 238000004925 denaturation Methods 0.000 description 5
- 230000036425 denaturation Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- AYXYPKUFHZROOJ-ZETCQYMHSA-N pregabalin Chemical compound CC(C)C[C@H](CN)CC(O)=O AYXYPKUFHZROOJ-ZETCQYMHSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XBQSLMACWDXWLJ-GHCJXIJMSA-N Asp-Ala-Ile Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O XBQSLMACWDXWLJ-GHCJXIJMSA-N 0.000 description 4
- VEYGCDYMOXHJLS-GVXVVHGQSA-N Gln-Val-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O VEYGCDYMOXHJLS-GVXVVHGQSA-N 0.000 description 4
- VIPDPMHGICREIS-GVXVVHGQSA-N Glu-Val-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O VIPDPMHGICREIS-GVXVVHGQSA-N 0.000 description 4
- XINDHUAGVGCNSF-QSFUFRPTSA-N His-Ala-Ile Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O XINDHUAGVGCNSF-QSFUFRPTSA-N 0.000 description 4
- ZGFRMNZZTOVBOU-CIUDSAMLSA-N Ser-Met-Gln Chemical compound N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)O ZGFRMNZZTOVBOU-CIUDSAMLSA-N 0.000 description 4
- XNXRTQZTFVMJIJ-DCAQKATOSA-N Ser-Met-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O XNXRTQZTFVMJIJ-DCAQKATOSA-N 0.000 description 4
- 238000000246 agarose gel electrophoresis Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000012154 double-distilled water Substances 0.000 description 4
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 238000012257 pre-denaturation Methods 0.000 description 4
- 229960001233 pregabalin Drugs 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 102000004533 Endonucleases Human genes 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 239000012880 LB liquid culture medium Substances 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000011942 biocatalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 210000003000 inclusion body Anatomy 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RWOLDZZTBNYTMS-SSDOTTSWSA-N (2r)-2-(2-chlorophenyl)-2-hydroxyacetic acid Chemical compound OC(=O)[C@H](O)C1=CC=CC=C1Cl RWOLDZZTBNYTMS-SSDOTTSWSA-N 0.000 description 1
- ZECLJEYAWRQVIB-QMMMGPOBSA-N (2r)-2-(2-chlorophenyl)-2-hydroxyacetonitrile Chemical compound N#C[C@H](O)C1=CC=CC=C1Cl ZECLJEYAWRQVIB-QMMMGPOBSA-N 0.000 description 1
- IWYDHOAUDWTVEP-SSDOTTSWSA-N (R)-mandelic acid Chemical compound OC(=O)[C@H](O)C1=CC=CC=C1 IWYDHOAUDWTVEP-SSDOTTSWSA-N 0.000 description 1
- YXHVIDNQBMVYHQ-UHFFFAOYSA-N 1,5-dimethylpiperidin-2-one Chemical compound CC1CCC(=O)N(C)C1 YXHVIDNQBMVYHQ-UHFFFAOYSA-N 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- NMFITULDMUZCQD-UHFFFAOYSA-N 3-hydroxypentanedinitrile Chemical compound N#CCC(O)CC#N NMFITULDMUZCQD-UHFFFAOYSA-N 0.000 description 1
- 241000588813 Alcaligenes faecalis Species 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 108050009160 DNA polymerase 1 Proteins 0.000 description 1
- 102220642081 Lipoma-preferred partner_C40A_mutation Human genes 0.000 description 1
- 102220642147 Lipoma-preferred partner_C60N_mutation Human genes 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229940005347 alcaligenes faecalis Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000007073 chemical hydrolysis Effects 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 108091009175 chitosan binding proteins Proteins 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229940054441 o-phthalaldehyde Drugs 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical group O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
- C12N15/1031—Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/002—Nitriles (-CN)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/006—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/05—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in nitriles (3.5.5)
- C12Y305/05001—Nitrilase (3.5.5.1)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
The divisional application discloses a cruciferous mosaic type plant nitrilase mutant, belonging to the technical field of biological engineering. The method comprises the steps of embedding a 225-285-bit peptide segment of an amino acid sequence of the Arabidopsis thaliana nitrilase into the Brassica rapa nitrilase lacking a corresponding peptide segment to obtain a Brassica rapa/Arabidopsis thaliana nitrilase chimera BanIT, and further carrying out site-directed saturation mutation on a coding gene of the chimera BanIT to mutate Q at 279 th bit of the chimera BanIT into E, so as to obtain a chimeric plant nitrilase mutant BanIT-Q279E. The catalytic activity of the plant nitrilase mutant provided by the invention is improved by 1.41 times, the solubility of recombinant protein is improved, the value of the enantioselectivity E is kept above 400, and the mutant has a good application prospect in the synthesis of (S) -3-cyano-5-methylhexanoic acid by efficiently catalyzing racemic isobutyl succinonitrile.
Description
The application is a divisional application with the application number of 201810765047.5, application date of 2018, 7/12/h and the invention name of 'a plant nitrilase mutant, a coding gene and application thereof'.
Technical Field
The invention relates to the technical field of bioengineering, and particularly relates to a crucifer nitrilase mutant, a coding gene and application thereof in preparing pregabalin key chiral intermediate (S) -3-cyano-5-methylhexanoic acid by hydrolyzing racemic isobutylsuccinonitrile.
Background
Nitrile compounds are important intermediates for organic synthesis, can be used for synthesizing chemicals such as amide, carboxylic acid, hydroxamic acid and the like with higher added value and wider application range, and are widely applied to the industrial fields such as chemical industry, pesticides, medicines and the like. However, the chemical hydrolysis of nitrile usually requires strong acid (or strong base), high temperature, high pressure and other reaction conditions, and the environmental pollution is serious. The nitrilase biocatalysis has high chemical, regional and stereo selectivity, mild reaction conditions and little environmental pollution, meets the requirement of green sustainable development, and has wide application prospect in the field of organic chemical industry. Nitrilase has been successfully applied to the industrial production of fine and medicinal chemicals such as nicotinic acid, (R) -mandelic acid, 1, 5-dimethyl-2-piperidone and the like at present.
With the development of modern molecular biology technology and the demand of industrial production environment for biocatalysts, protein molecular modification has become a hot spot of current enzyme engineering research. The molecular modification technology plays an important role in the modification of application attributes such as nitrilase catalytic activity, substrate specificity, thermal stability and stereoselectivity.
Schreiner et al molecularly modify Alcaligenes faecalis nitrilase to obtain a mutant capable of efficiently catalyzing hydrolysis of (R) -2-chloro-mandelonitrile to synthesize (R) -2-chloro-mandelic acid (Enzyme Microb. Tech.,2010,47, 140-146). DeSantis et al, which have been used to modify nitrilase using DNA shuffling to obtain nitrilase mutants capable of catalyzing 3-hydroxyglutaronitrile to synthesize S-type and R-type products, respectively, have ee values greater than 95% and yields up to 98% (J.Am.chem.Soc.,2003,125, 11476-11477).
One challenge of exogenous gene expression in E.coli is that target proteins often form inactive inclusion bodies, which seriously affect the catalytic performance of the enzyme. The molecular modification technology can reduce the formation of inclusion bodies and improve the soluble expression of protein by replacing one or more amino acids. Xie et al successfully constructed a double mutant C40A/C60N (Biotechnol. Bioeng.,2009,102,20-28) with improved catalytic activity and protein soluble expression by 50% by replacing cysteine residues of the Lov D amino acid sequence.
Pregabalin (Pregabalin, PGB for short), chemically named (S) -3-aminomethyl-5-methylhexanoic acid, is an isobutyl substituent at position 3 of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) (angew. chem. int. ed.,2008,47,3500-3504), and is a main drug for treating diseases such as spinal cord injury, anxiety and epilepsy. The route for synthesizing pregabalin key chiral intermediate (S) -3-cyano-5-methylhexanoic acid ((S) -CMHA) through hydrolyzing racemic isobutyl succinonitrile (IBSN) in a nitrilase region in a stereoselective manner has the remarkable advantages of cheap raw materials, simple process, high atom economy and the like. However, the catalytic activity and stereoselectivity of nitrilase reported at present are low, and the requirement of industrial production cannot be met. Therefore, it is important to develop a novel and highly efficient nitrilase capable of efficiently separating IBSN.
Disclosure of Invention
The invention aims to provide a crucifer nitrilase mutant with improved solubility and catalytic activity, which meets the requirement of industrial production.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention embeds the 225-plus 285-bit peptide segment of the amino acid sequence of the Arabidopsis thaliana nitrilase (AaNIT) into the Brassica rapa nitrilase (BrNIT) lacking the corresponding peptide segment to obtain the Brassica rapa/Arabidopsis thaliana nitrilase chimera (BaNIT), and the amino acid sequence is shown as SEQ ID NO. 2. And then carrying out site-directed saturation mutation on the encoding gene of the chimera BanIT to mutate Q at position 279 of the chimera BanIT to E, thereby obtaining the chimeric plant nitrilase mutant BanIT-Q279E.
The amino acid sequence of the BanIT-Q279E (Q at position 279 is mutated into E) is shown as SEQ ID NO.8
Research shows that compared with wild nitrilase, the catalytic activity and stereoselectivity of the chimera (BanIT) to the substrate racemic IBSN are obviously improved. The solubility and catalytic activity of the plant nitrilase mutant are further improved compared with those of a chimera (BanIT).
Conservative substitution patterns for other amino acid positions of the plant nitrilase mutant, addition or deletion of one or more amino acids, amino terminal truncation, and carboxy terminal truncation are also included in the scope of the present invention.
The invention also provides a coding gene for coding the plant nitrilase mutant, and the nucleotide sequence of the coding gene is shown as SEQ ID NO. 7.
The invention also provides a recombinant vector containing the coding gene. Preferably, the original vector is pET28 b.
The invention also provides a recombinant gene engineering bacterium containing the recombinant vector. The recombinant vector transforms host cells to obtain recombinant genetic engineering bacteria, the host cells can be various conventional host cells in the field, and preferably, the host cells are Escherichia coli E.coli BL 21.
The invention also provides a preparation method for constructing the plant nitrilase mutant, which comprises the following steps:
(1) designing a PCR primer aiming at a sequence of a turnip nitrilase gene, and amplifying by using the PCR primer to obtain a DNA fragment I containing the nucleotide sequence 675-855 bit of the Arabidopsis thaliana nitrilase by using the cDNA of the Arabidopsis thaliana as a template;
(2) using a recombinant plasmid carrying a turnip nitrilase gene as a template, and obtaining a BrNIT plasmid fragment with the turnip nitrilase nucleotide sequence 678-858 bit deletion by utilizing reverse PCR amplification;
(3) recombining the DNA fragment I and the BrNIT plasmid fragment, then transforming the recombined product to host bacteria, and screening to obtain a recombined parent nitrilase expression strain, wherein the nucleotide sequence of the parent nitrilase is shown as SEQ ID NO. 1;
(4) designing a site-directed mutagenesis primer, and carrying out overlap extension PCR by using the recombinant plasmid carrying the parent nitrilase gene obtained in the step (3) as a template to obtain a single-site mutagenesis product of which the 279 rd site Q is mutated into E in the parent nitrilase;
(5) and transforming the single-site mutation product into host bacteria, screening to obtain a nitrilase mutant expression strain, and performing induced expression to obtain the plant nitrilase mutant.
In the steps (1) - (3), a one-step cloning method is adopted to embed the nucleotide sequence corresponding to the 225-285 th peptide segment of the Arabidopsis thaliana nitrilase (AaNIT) into the plasmid fragment of the Brassica rapa nitrilase (BrNIT) lacking the corresponding peptide segment, so as to obtain the parent nitrilase (BaNIT) engineering bacterium.
Wherein the primers required for amplifying the DNA fragment I:
an upstream primer: 5'-GAATGGCAGTCTTCTATGATGCACATCGC-3' (SEQ ID NO. 17);
a downstream primer: 5'-GAAGTTCGGACCAGCCAGAACCTGACCC-3' (SEQ ID NO. 18).
Primers required for amplification of BrNIT plasmid fragment:
an upstream primer: 5'-GCGATGTGCATCATAGAAGACTGCCATTC-3' (SEQ ID NO. 19);
a downstream primer: 5'-GGGTCAGGTTCTGGCTGGTCCGAACTTC-3' (SEQ ID NO. 20).
In step (4), saturation site-directed mutagenesis is performed on the parent nitrilase gene.
Wherein the mutation of Gln at position 279 to Glu requires a primer:
an upstream primer: 5'-CATCTCTCCGCTGGGTCAGGTTCTGGCTGG-3' (SEQ ID NO. 25);
a downstream primer: 5'-CCAGCCAGAACCTGACCCAGCGGAGAGATG-3' (SEQ ID NO. 26).
Further, the preparation method further comprises the following steps: in the step (5), the single-site mutation product is used as a template, a double-site mutation product with 263 th site H mutated into D is obtained by using a site-directed mutagenesis primer to perform overlapping extension PCR, the double-site mutation product is transformed into a host bacterium, a nitrilase mutant expression strain is obtained by screening, and expression is induced to obtain a plant nitrilase mutant BanIT-H263D/Q279E, specifically, the amino acid sequence of the mutant (with 263 th site H mutated into D, and 279 site Q mutated into E) is shown as SEQ ID NO. 14;
his 263 position mutated to Asp required primer:
an upstream primer: 5'-CAACCAGGAAGACGACGCTATCGTTTCTCAGGG-3' (SEQ ID NO. 23);
a downstream primer: 5'-CCCTGAGAAACGATAGCGTCGTCTTCCTGGTTG-3' (SEQ ID NO. 24).
Preferably, the original vector of the recombinant plasmid is pET28 b. The host bacterium is Escherichia coli E.coli BL 21.
Another purpose of the invention is to provide an application of the plant nitrilase mutant in preparing (S) -3-cyano-5-methylhexanoic acid by catalyzing racemic isobutyl succinonitrile.
The application is that wet thalli, wet thalli immobilized cells and enzyme or immobilized enzyme extracted after ultrasonic disruption of the wet thalli, which are obtained by carrying out fermentation culture on engineering bacteria containing plant nitrilase mutant coding genes, are used as catalysts, racemic isobutyl succinonitrile is used as a substrate, a buffer solution with the pH value of 6-10 is used as a reaction medium, water bath reaction is carried out at the temperature of 20-50 ℃ and the speed of 200-400rpm, and after the reaction is finished, the reaction liquid is separated and purified to obtain (S) -3-cyano-5-methylhexanoic acid.
The nitrilase mutant provided by the invention can be used in the form of whole cells of engineering bacteria, crude enzyme without purification, partially purified enzyme or completely purified enzyme. The nitrilase mutants of the invention may also be prepared as biocatalysts in the form of immobilized enzymes or immobilized cells using immobilization techniques known in the art.
Preferably, in the reaction system, the concentration of the substrate is 100-150g/L, and the dosage of the catalyst is 5-20g/L based on the weight of wet cells, wherein the water content of the wet cells is 70-90%.
Preferably, the reaction medium is Tris-HCl buffer solution with the pH value of 8.0, and the catalytic reaction temperature is 35 ℃.
Preferably, the wet thallus is a recombinant engineering bacterium E.coli BL21(DE3)/pET28b-BanIT-Q279E containing a coding gene of a plant nitrilase mutant.
The fermentation culture method comprises the following steps: the recombinant engineering bacteria are inoculated into LB liquid culture medium containing kanamycin (the final concentration is 50mg/L), and the shaking culture is carried out at the temperature of 37 ℃ and the speed of 200rpmCulturing for 8 h; the seed solution was inoculated into a fresh LB liquid medium containing 50mg/L kanamycin at a volume ratio of 2%, and cultured with shaking at 37 ℃ and 150rpm until the OD of the cells was reached6000.6-0.8, adding isopropyl-beta-D-thiogalactopyranoside (IPTG) with the final concentration of 0.1mM, performing induction culture at 28 ℃ and 150rpm for 10h, and centrifuging at 4 ℃ and 9000rpm for 10min to collect thalli cells. Washing twice with normal saline, and storing the thallus obtained by centrifugation in a refrigerator at-20 ℃.
The invention has the following beneficial effects:
compared with a parent nitrilase chimera (BanIT), the catalytic activity of the plant nitrilase mutant BanIT-Q279E is improved by more than 1.44 times, the solubility of recombinant protein is improved, the E value of enantiomer selectivity is kept to be more than 400, and the plant nitrilase mutant BanIT-Q279E has a good application prospect in the synthesis of (S) -3-cyano-5-methylhexanoic acid by efficiently catalyzing racemic isobutyl butanedinitrile.
Drawings
FIG. 1 shows soluble expression of nitrilase mutants (SDS-PAGE gel electrophoresis), where M is marker with band positions representing 50kD, Lane 1 BanIT, Lane 2 BanIT-L223Q, Lane 3 BanIT-H263D, Lane 4 BanIT-Q279E, and Lane 5 BanIT-L223Q/H263D/Q279E.
FIG. 2 is a graph comparing nitrilase mutant L223Q/H263D/Q279E with parent BanIT and wild type BrNIT whole cell catalytic IBSN.
FIG. 3 is a diagram showing the reaction progress of nitrilase mutant L223Q/H263D/Q279E whole cell (5g/L) catalysis of IBSN (100g/L) for preparing (S) -CMHA.
Detailed Description
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto:
example 1
Construction of parent nitrilase Gene
The key peptide segment 225-285 region is determined by comparing and analyzing nucleotide and amino acid sequences of nitrilase of cruciferous plants. The wild type turnip nitrilase (BrNIT) sequence is shown in GenBank accession number: ABM 55734.1; the wild type arabidopsis thaliana nitrilase (AaNIT) sequence is found in GenBank accession no: KFK 44999.
The nucleotide sequence corresponding to the peptide fragment of 225-285 bit of Arabidopsis thaliana nitrilase (AaNIT) is embedded into the plasmid fragment of the turnip nitrilase (BrNIT) with the deletion of the corresponding peptide fragment by adopting a one-step cloning method. Primers were designed as shown in Table 1.
Table 1: design table of primers for BanIT chimeric enzyme
The DNA fragment of the 225-285-bit peptide segment was cloned using the AaNIT nucleotide sequence as a template. PCR reaction System (50. mu.L) Template DNA<1μg,Master Mix, upstream and downstream primers 0.2. mu.M each, remaining ddH2O was made up to total volume. PCR reaction parameters: (1) pre-denaturation at 94 ℃ for 5 min; (2) denaturation at 94 ℃ for 30 s; (3) annealing at 58 ℃ for 30 s; (4) extension at 72 ℃ for 10s, and 30 cycles of steps (2) - (4); (5) re-extension at 72 deg.C for 10min, and storage at 4 deg.C. And (3) carrying out agarose gel electrophoresis analysis on the PCR product, cutting and recovering the gel, inactivating the gel for 10min at 65 ℃, and standing the gel for later use at 4 ℃.
Meanwhile, the recombinant plasmid containing the BrNIT nucleotide sequence is used as a template to design a primer to amplify the BrNIT plasmid fragment lacking the 226-position 286-position peptide segment.
The vector linearization is obtained by adopting a reverse PCR amplification mode. PCR reaction system (50. mu.L) template DNA 0.1ng-1ng, 2 XPphanta Max Buffer, dNTPs (10mM each)0.2mM, upstream and downstream primers 0.2. mu.M, Phanta Max Super-Fidelity DNA Polymerase 1U, and remaining ddH2O was made up to total volume. PCR reaction parameters: (1) pre-denaturation at 95 ℃ for 30 s; (2) denaturation at 95 ℃ for 15 s; (3) annealing at 63 ℃ for 15 s; (4) extension at 72 ℃ for 6.0min, and circulation of steps (2) - (4) for 30 times; (5) completely extending at 72 deg.C for 5min, and storing at 4 deg.C. After the PCR product is analyzed by agarose gel electrophoresis, endonuclease Dpn I is added to digest for 3h at 37 ℃, and then the product is inactivated for 10min at 65 ℃.
Linearizing the BrNIT vector sequence with the deleted corresponding peptide fragment gene fragment, and introducing the terminal sequence of the linearized vector into the 5 ' end of the insert forward/reverse PCR primer, so that the 5 ' and 3 ' extreme ends of the PCR product respectively have sequences consistent with the two terminals of the linearized vector.
The insert and linearized vector obtained above were used with NanoDropTMAnd measuring the gene concentration by using an One/OneC ultramicro ultraviolet spectrophotometer, and calculating the addition amount of the linearized vector of each inserted peptide segment and the corresponding deletion peptide segment. Connecting a reaction system: linearized vector 0.03pmol, insert 0.06pmol, 5 × CE II Buffer4 μ L, Exnase II2 μ L, ddH2Oto 20 μ L. After mixing the PCR samples, the mixture was left at 37 ℃ and kept at temperature for 30min, and then cooled to 4 ℃.
The ligated PCR products were heat shock transformed into e.coli BL21(DH5 α) competent cells, and plated on solid LB plates containing kanamycin resistance after recovery. And (4) selecting a single colony, inoculating the single colony into an LB liquid culture medium for incubation, and extracting plasmid for sequencing. The correct sequencing result is the nucleotide sequence of the parent nitrilase gene, namely SEQ ID NO.1 (the amino acid sequence is SEQ ID NO.2) in the sequence table. The parent nitrilase gene is transformed into competent cells of Escherichia coli E.coli BL21(DE3), and the competent cells are spread on an LB plate containing kanamycin and cultured overnight to obtain the parent nitrilase engineering bacteria E.coli BL21(DE3)/pET28 b-BanIT.
Example 2
Site-directed saturation mutagenesis of nitrilase sites 223, 263 and 279
Corresponding primers were designed for saturation mutagenesis of leu (l) at position 223, his (h) at position 263 and gln (q) at position 279 in the parent amino acid sequence, as shown in table 2.
Table 2: primer design sheet
Note: n is A/G/C/T, K is G/T, and M is A/C.
The recombinant plasmid pET28b-BanIT containing the target gene fragment is used as a template, and the whole plasmid amplification is carried out on the template according to the method of overlap extension PCR.
The PCR amplification system was (50. mu.L): template DNA 0.1ng-1ng, 2X Phanta Max Buffer 25. mu.L, dNTPs (10mM each) 1. mu.L, mutation primer upstream and downstream 1. mu.L each, Phanta Max Super-Fidelity DNA Polymerase 1U, and the rest ddH2O was made up to total volume.
PCR reaction parameters: (1) pre-denaturation at 95 ℃ for 30 s; (2) denaturation at 95 ℃ for 15 s; (3) annealing at 63 ℃ for 15 s; (4) extending for 6min at 72 ℃, and circulating the steps (2) to (4) for 30 times; (5) completely extending at 72 deg.C for 5min, and storing at 4 deg.C.
After the PCR product is analyzed to be positive by 0.9 percent agarose gel electrophoresis, 20 mu L of PCR reaction solution is taken, 1 mu L of endonuclease Dpn I is added to carry out enzyme digestion at 37 ℃ for 3h to remove the template plasmid DNA, and inactivation is carried out at 65 ℃ for 10 min. Coli bl21(DE3) competent cells were transformed by heat shock, plated on LB plates containing kanamycin after recovery and cultured overnight, and a library of about 300 clones of each plate was obtained.
Picking single colony to 96-hole culture plate with LB culture medium, culturing at 37 deg.C to thallus OD600When the concentration is about 0.6 to 0.8, IPTG (final concentration: 0.1mM) is added to the above LB liquid medium, and induction culture is carried out at 28 ℃ and 150rpm for 10 to 12 hours. Centrifuging with 96-well plate centrifuge at 4 deg.C and 3000rpm for 30min, discarding supernatant, adding 600 μ L sodium phosphate buffer (50mM, pH 7.4) into the collected thallus, and mixing.
200 μ L of the bacterial suspension was mixed with 10 μ L of IBSN (100mg/mL in N, N-dimethyl sulfoxide), reacted at 37 ℃ with shaking for 1h, and 30 μ L of 2M HCl was added to each well to stop the reaction. Sucking 10 μ L of reaction solution, mixing with 150 μ L of the composition of o-phthalaldehyde and mercaptoethanol, and incubating in a thermostat at 37 ℃ for 30 min; the fluorescence intensity of each sample was measured under a microplate reader, with the excitation wavelength set at 412nm and the emission wavelength set at 467 nm. According to the change of the fluorescence intensity, the catalytic activity of the mutant is judged, and then the clone with the change intensity far larger than that of a control strain (starting strain) is screened out.
After the screened positive clones are subjected to secondary screening verification, whole plasmids of mutant strains are extracted, introduced point mutation is determined through DNA sequencing, and the mutant strain DNA sequencing result with the highest activity of each site shows that Leu at position 223 is mutated into Gln (L223Q), His at position 263 is mutated into Asp (H263D) and Gln at position 279 is mutated into Glu (Q279E), so that nitrilase mutant engineering bacteria E.coli BL21(DE3)/pET28b-BanIT-L223Q, E.coli BL21(DE3)/pET28b-BanIT-H263D and E.coli BL21(DE3)/pET28b-BanIT-Q279E are obtained. The nucleotide sequences of mutants L223Q, H263D and Q279E are SEQ ID NO.3, SEQ ID NO.5 and SEQ ID NO.7, respectively (the corresponding amino acid sequences are SEQ ID NO.4, SEQ ID NO.6 and SEQ ID NO. 8).
Example 3
Construction of nitrilase combination mutants
Site-directed mutagenesis was performed by whole plasmid amplification using expression plasmid pET28b-BanIT-L223Q or pET28b-BanIT-H263D as template.
The PCR amplification system was (50. mu.L): template DNA 0.1ng-1ng, 2X Phanta Max Buffer 25. mu.L, dNTPs (10mM each) 1. mu.L, mutation primer upstream and downstream 1. mu.L each, Phanta Max Super-Fidelity DNA Polymerase 1. mu.L, and the rest ddH2O was made up to total volume.
PCR reaction parameters: (1) pre-denaturation at 95 ℃ for 30 s; (2) denaturation at 95 ℃ for 15 s; (3) annealing at 60 ℃ for 15 s; (4) extending for 6min at 72 ℃, and circulating the steps (2) to (4) for 30 times; (5) completely extending at 72 deg.C for 5min, and storing at 4 deg.C.
After the PCR product is analyzed to be positive by 0.9 percent agarose gel electrophoresis, 20 mu L of PCR reaction solution is taken, 1 mu L of endonuclease Dpn I is added to carry out enzyme digestion at 37 ℃ for 3h to remove the template plasmid DNA, and inactivation is carried out at 65 ℃ for 10 min. The plasmid was transformed into E.coli BL21(DE3) competent cells by heat shock, recovered, plated on LB plate containing kanamycin and cultured overnight, and single colonies were picked up and cultured in LB liquid medium containing kanamycin resistance (final concentration: 50mg/L) and extracted for plasmid sequencing.
The correct sequencing result is nitrilase combined mutant engineering strain E.coli BL21(DE3)/pET28b-BaNIT-L223Q/H263D, E.coli BL21(DE3)/pET28b-BaNIT-L223Q/Q279E, E.coli BL21(DE3)/pET28b-BaNIT-H263D/Q279E, E.coli BL21(DE3)/pET28b-BaNIT-L223Q/H263D/Q279E, and the corresponding nucleotide sequences of the combined mutant engineering strain are respectively SEQ ID NO.9, SEQ ID NO.11, SEQ ID NO.13 and SEQ ID NO.15 (the corresponding amino acid sequences are SEQ ID NO.10, SEQ ID NO.12, SEQ ID NO.14 and SEQ ID NO. 16).
Example 4
Expression of nitrilase mutants
The mutants of BaNIT-L223Q, BaNIT-H263D, BaNIT-Q279E obtained in examples 2 and 3, the combination mutant of BaNIT-L223Q/H263D, BaNIT-L223Q/Q279E, BaNIT-H263D/Q279E and BaNIT-L223Q/H263D/Q279E, and the parent BaNIT and wild type BrNIT were inoculated into LB medium containing kanamycin (50 mg/L final concentration), cultured at 37 ℃ for 6-8H, inoculated at 2% (v/v) into fresh LB liquid medium containing kanamycin (50 mg/L final concentration) for expansion culture, cultured at 37 ℃, and cultured at 150rpm until the OD of the bacterial cell body is reached600About 0.6-0.8, IPTG (final concentration of 0.1mM) was added to the LB liquid medium, induction-cultured at 28 ℃ and 150rpm for 10-12 hours, and centrifuged at 4 ℃ and 9000rpm for 10min to collect bacterial cells. Washing twice with normal saline, and storing the thallus obtained by centrifugation in a refrigerator at-20 ℃.
Example 5
Soluble expression study of nitrilase mutants
The bacterial cells collected in example 4 (equivalent amount) were dissolved in Tris-HCl (50mM) buffer at pH 8.0, and after resuspending the cells, the cells were disrupted by sonication (400W, 5min, 1s disruption and 1s pause). After the crushed product is centrifuged (12000rpm, 5min), respectively taking supernatant (crude enzyme liquid) for denaturation treatment, and verifying the soluble expression level of the protein by SDS-PAGE gel electrophoresis.
As shown by SDS-PAGE gel electrophoresis results (FIG. 1), the soluble expression levels of the mutants of BanIT-L223Q, BanIT-H263D and BanIT-Q279E are slightly improved compared with the parent BanIT, and the soluble expression levels of the triple mutant of BanIT-L223Q/H263D/Q279E are greatly improved. Therefore, the solubility of the target protein is improved by modifying the parent BanIT.
Example 6
Determination of Activity of recombinant Escherichia coli containing nitrile hydrolase mutant
The recombinant E.coli obtained in example 4 was subjected to viability assay. The reaction system comprises the following components: 1mL of Tris-HCl buffer (50mM, pH 8.0), IBSN 20mM, wet cells 0.2 mg. The reaction solution was preheated at 40 ℃ for 2min and then reacted at 600rpm for 10 min. 500. mu.L of the reaction mixture was sampled, quenched by addition of 200. mu.L of 2M HCl, extracted with ethyl acetate, and the upper organic phase was dried over anhydrous sodium sulfate and then subjected to gas chromatography to determine the conversion of the substrate and the enantiomeric excess (ee) of the product.
Enantiomeric excess values of the substrate IBSN and the product CMHA were determined by gas chromatography. The gas chromatography model is 7890N (Agilent) and the capillary column model is BGB-174(BGB Analytik Switzerland). The chromatographic conditions are as follows: the sample introduction amount is 1.0 mu L, the temperature of the sample inlet and the detector is 250 ℃, the column temperature is 120 ℃, the temperature is kept for 15min, the temperature is raised to 170 ℃ at the speed of 10 ℃/min, and the temperature is kept for 9 min. The carrier gas is high-purity helium, the flow rate is 1.0mL/min, and the split ratio is 50: 1. For the calculation of the enantiomeric excess (ee) and the conversion (c), reference is made to the method of Rakels et al (Enzyme Microb. Technol.,1993,15: 1051).
The results of the activity measurement of the recombinant Escherichia coli containing the nitrilase mutant are shown in tables 3 and 4, the catalytic activity of the combined mutant is obviously improved compared with that of the parent, wherein the activity of the triple mutant, namely BanIT-L223Q/H263D/Q279E, is 2.2 times that of the parent, and the E value of all mutants is kept above 400.
Table 3: comparison of the Activity of nitrilases
Table 4: comparison of the Activity of nitrilases
Example 7
Application of recombinant escherichia coli containing nitrile hydrolase in preparation of (S) -CMHA (chitosan-binding protein)
The transformation system composition and transformation operation were as follows: 1L of Tris-HCl buffer solution (50mM, pH 8.0) was added to the recombinant nitrilase mutant E.coli BL21(DE3)/pET28b-BanIT-L223Q/H263D/Q279E, the parent E.coli BL21(DE3)/pET28b-BanIT and the wild type E.coli BL21(DE3)/pET28b-BrNIT (15 g/L of addition), respectively, and the substrate content was 100 g/L. Reaction conditions are as follows: the reaction progress was checked by hand gas chromatography at 35 ℃ and 400rpm during the reaction, and the conditions for gas chromatography were as shown in example 6.
As can be seen from FIG. 2, the conversion rates of the mutant BanIT-L223Q/H263D/Q279E and the parent BanIT reach 48.1% and 40.4% respectively after reaction for 10H, and the E values of the product (S) -CMHA are both kept above 400; while the conversion rate of wild-type BrNIT is 35.1%, and the E value of the product (S) -CMHA is about 150.
After 10 hours of reaction, the reaction was terminated, E.coli cells were removed by centrifugation, and the reaction mixture was distilled under reduced pressure to 1/3 volumes. The mixture was extracted by adding 2 times the volume of ethyl acetate (sample after vacuum distillation), and the lower aqueous phase was collected. The pH of the lower aqueous phase pool was adjusted to 4.0 with 2M HCl. 2 volumes of ethyl acetate were again added for extraction and the lower aqueous phase was discarded. The upper organic phase was collected and subjected to rotary evaporation to remove ethyl acetate to give (S) -3-cyano-5-methylhexanoic acid as an oil (ee > 99.5%).
Example 8
Application of recombinant escherichia coli containing nitrile hydrolase in preparation of (S) -CMHA (second)
The composition and catalytic operation of the catalytic system are as follows: 100mL of Tris-HCl buffer (50mM, pH 8.0), 150g/L of substrate IBSN was added, and the recombinant nitrilase mutant E.coli BL21(DE3)/pET28b-BanIT-L223Q/H263D/Q279E (20g/L) obtained in example 4 was added; reaction conditions are as follows: the progress of the reaction was checked by gas chromatography at 30 ℃ and 400rpm, the conditions of which were as shown in example 6.
The reaction is carried out for 10 hours, the conversion rate reaches 40.1 percent, and the ee of the product is more than 99.6 percent.
Example 9
Application of recombinant escherichia coli containing nitrile hydrolase in preparation of (S) -CMHA (C)
0.1g of E.coli BL21(DE3)/pET28b-BanIT-L223Q/H263D, E.coli BL21(DE3)/pET28b-BanIT-L223Q/Q279E, E.coli BL21(DE3)/pET28b-BanIT-H263D/Q279 and parent strain E.coli BL21(DE3)/pET28b-BanIT wet cells obtained in example 4 were weighed out and suspended in 10mL of Tris-HCl buffer (50mM, pH 8.0). 100g/L of IBSN was added thereto, and the mixture was reacted in a water bath at 30 ℃ and 200 rpm. Samples were taken at different times to examine the progress of the reaction, and the sample treatment and examination were performed as described in example 6.
The reaction time is 10H, the conversion rates of E.coli BL21(DE3)/pET28b-BanIT-L223Q/H263D, E.coli BL21(DE3)/pET28b-BanIT-L223Q/Q279E, E.coli BL21(DE3)/pET28b-BanIT-H263D/Q279 and parent strain E.coli BL21(DE3)/pET28b-BanIT reach 43.6%, 41.9%, 42.7% and 30.2% respectively.
Example 10
Application of recombinant escherichia coli containing nitrile hydrolase in preparation of (S) -CMHA (IV)
0.05g of E.coli BL21(DE3)/pET28b-BanIT-L223Q/H263D/Q279E wet cells obtained in example 4 were weighed out and suspended in 10mL of Tris-HCl buffer (50mM, pH 8.0). 1.0g of IBSN was added thereto, and the mixture was reacted in a water bath at 35 ℃ and 200 rpm. Samples were taken at different times to examine the progress of the reaction, and the sample treatment and examination were performed as described in example 6. As shown in FIG. 3, the reaction time was 18 hours, the conversion rate was 43.5%, and the ee of the product was > 99.3%.
The invention is not limited by the foregoing detailed description, and various modifications can be made within the scope of the invention as outlined by the claims.
Sequence listing
<110> Zhejiang industrial university
<120> chimeric plant nitrilase mutant, coding gene and application thereof
<160> 26
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgctgc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagaccacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtcaggtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 2
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Leu His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp His Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Gln Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 3
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgcagc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagaccacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtcaggtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 4
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Gln His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp His Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Gln Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 5
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgctgc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagacgacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtcaggtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 6
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 6
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Leu His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp Asp Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Gln Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 7
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgctgc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagaccacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtgaagtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 8
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 8
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Leu His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp His Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Glu Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 9
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgcagc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagacgacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtcaggtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 10
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 10
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Gln His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp Asp Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Gln Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 11
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgcagc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagaccacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtgaagtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 12
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 12
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Gln His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp His Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Glu Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 13
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgctgc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagacgacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtgaagtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 14
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 14
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Leu His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp Asp Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Glu Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 15
<211> 1050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
atgtctggct ctgaagaaat gtccaaagct ctgaatgcta ccactccagg tttcccggac 60
atccctagca ccatcgttcg cgccacgatc gttcaggctt ccactgtata caacgacact 120
cctaaaacca tcgaaaaagc tgaaaaattc atcgcggaag ctgctagcga cggtgcgcag 180
ctggtggtct ttccggaagc tttcatcgct ggttacccgc gtggctatcg tttcggcatc 240
ggtgtaggtg tgcacaacga ggcgggccgt gattgtttcc gccgctatca tgctagcgcg 300
atcgttgtcc cgggtccgga ggttgataaa ctggcagaaa ttgctcgtaa atacaaagtc 360
tacctggtaa tgggtgccat ggagaaagat ggttataccc tgtactgtac tgcgctgttt 420
ttcagctctg aaggtcgttt cctgggcaag caccgcaaag tcatgccgac gtctctggaa 480
cgttgcatct ggggcttcgg tgatggttct actatcccgg tctacgacac cccgctgggc 540
aagctgggcg ccgcaatctg ttgggaaaac cgcatgccgc tgtaccgtac tagcctgtac 600
ggcaaaggta tcgagctgta ttgcgctccg actgccgatg gctctaaaga atggcagtct 660
tctatgcagc acatcgctct ggaaggtggt tgcttcgttc tgtctgcttg ccagttctgc 720
cgtcgtaaag acttcccgga ccacccggac tacctgttca ccgactggga cgacaaccag 780
gaagacgacg ctatcgtttc tcagggtggt tctgttatca tctctccgct gggtgaagtt 840
ctggctggtc cgaacttcga gtctgagggc ctgatcactg cagatctgga tctgggcgat 900
gtagcgcgtg caaaactgta tttcgatgtt gttggtcact actcccgccc tgagattttt 960
aatctgacgg ttaacgagac tccgaagaaa ccggttactt tcgtttccaa gtccgtaaaa 1020
gctgaggacg actctgagcc gcaggacaaa 1050
<210> 16
<211> 350
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 16
Met Ser Gly Ser Glu Glu Met Ser Lys Ala Leu Asn Ala Thr Thr Pro
1 5 10 15
Gly Phe Pro Asp Ile Pro Ser Thr Ile Val Arg Ala Thr Ile Val Gln
20 25 30
Ala Ser Thr Val Tyr Asn Asp Thr Pro Lys Thr Ile Glu Lys Ala Glu
35 40 45
Lys Phe Ile Ala Glu Ala Ala Ser Asp Gly Ala Gln Leu Val Val Phe
50 55 60
Pro Glu Ala Phe Ile Ala Gly Tyr Pro Arg Gly Tyr Arg Phe Gly Ile
65 70 75 80
Gly Val Gly Val His Asn Glu Ala Gly Arg Asp Cys Phe Arg Arg Tyr
85 90 95
His Ala Ser Ala Ile Val Val Pro Gly Pro Glu Val Asp Lys Leu Ala
100 105 110
Glu Ile Ala Arg Lys Tyr Lys Val Tyr Leu Val Met Gly Ala Met Glu
115 120 125
Lys Asp Gly Tyr Thr Leu Tyr Cys Thr Ala Leu Phe Phe Ser Ser Glu
130 135 140
Gly Arg Phe Leu Gly Lys His Arg Lys Val Met Pro Thr Ser Leu Glu
145 150 155 160
Arg Cys Ile Trp Gly Phe Gly Asp Gly Ser Thr Ile Pro Val Tyr Asp
165 170 175
Thr Pro Leu Gly Lys Leu Gly Ala Ala Ile Cys Trp Glu Asn Arg Met
180 185 190
Pro Leu Tyr Arg Thr Ser Leu Tyr Gly Lys Gly Ile Glu Leu Tyr Cys
195 200 205
Ala Pro Thr Ala Asp Gly Ser Lys Glu Trp Gln Ser Ser Met Gln His
210 215 220
Ile Ala Leu Glu Gly Gly Cys Phe Val Leu Ser Ala Cys Gln Phe Cys
225 230 235 240
Arg Arg Lys Asp Phe Pro Asp His Pro Asp Tyr Leu Phe Thr Asp Trp
245 250 255
Asp Asp Asn Gln Glu Asp Asp Ala Ile Val Ser Gln Gly Gly Ser Val
260 265 270
Ile Ile Ser Pro Leu Gly Glu Val Leu Ala Gly Pro Asn Phe Glu Ser
275 280 285
Glu Gly Leu Ile Thr Ala Asp Leu Asp Leu Gly Asp Val Ala Arg Ala
290 295 300
Lys Leu Tyr Phe Asp Val Val Gly His Tyr Ser Arg Pro Glu Ile Phe
305 310 315 320
Asn Leu Thr Val Asn Glu Thr Pro Lys Lys Pro Val Thr Phe Val Ser
325 330 335
Lys Ser Val Lys Ala Glu Asp Asp Ser Glu Pro Gln Asp Lys
340 345 350
<210> 17
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
gaatggcagt cttctatgct gcacatcgc 29
<210> 18
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
gaagttcgga ccagccagaa cctgaccc 28
<210> 19
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gcgatgtgca gcatagaaga ctgccattc 29
<210> 20
<211> 28
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
gggtcaggtt ctggctggtc cgaacttc 28
<210> 21
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
cagtcttcta tgctgcacat cgctctggaa gg 32
<210> 22
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
ccttccagag cgatgtgcag catagaagac tg 32
<210> 23
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
caaccaggaa gacgacgcta tcgtttctca ggg 33
<210> 24
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ccctgagaaa cgatagcgtc gtcttcctgg ttg 33
<210> 25
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
catctctccg ctgggtcagg ttctggctgg 30
<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
ccagccagaa cctgacccag cggagagatg 30
Claims (9)
1. A plant nitrilase mutant characterized in that its amino acid sequence is as shown in SEQ ID No. 8.
2. A gene encoding the plant nitrilase mutant of claim 1, wherein the nucleotide sequence of the gene is as shown in SEQ ID No. 7.
3. A recombinant vector comprising the encoding gene of claim 2.
4. A recombinant genetically engineered bacterium comprising the recombinant vector of claim 3.
5. A method for preparing a plant nitrilase mutant is characterized by comprising the following steps:
(1) designing a PCR primer aiming at a sequence of a turnip nitrilase gene, and amplifying by using the PCR primer to obtain a DNA fragment I containing the nucleotide sequence 675-855 bit of the Arabidopsis thaliana nitrilase by using the cDNA of the Arabidopsis thaliana as a template;
(2) uses a recombinant plasmid carrying the turnip nitrilase gene as a template to obtain the turnip nitrilase nucleotide sequence 678-858 bit deletion by reverse PCR amplificationBrA NIT plasmid fragment;
(3) DNA fragments I and IBrRecombining the NIT plasmid fragment, then transforming the recombined product to host bacteria, and screening to obtain a recombined parent nitrilase expression strain, wherein the nucleotide sequence of the parent nitrilase is shown as SEQ ID NO. 1;
(4) designing a site-directed mutagenesis primer, and carrying out overlap extension PCR by using the recombinant plasmid carrying the parent nitrilase gene obtained in the step (3) as a template to obtain a single-site mutagenesis product of which the 279 rd site Q is mutated into E in the parent nitrilase;
(5) and transforming the single-site mutation product into host bacteria, screening to obtain a nitrilase mutant expression strain, and performing induced expression to obtain the plant nitrilase mutant.
6. A plant nitrilase mutant as in claim 1 for catalyzing the preparation of racemic isobutylsuccinonitrile (S) -3-cyano-5-methylhexanoic acid.
7. The use of claim 6, wherein the use is to use wet thalli, wet thalli immobilized cells, enzyme extracted after ultrasonic disruption of wet thalli or immobilized enzyme obtained by fermentation culture of engineering bacteria containing plant nitrilase mutant encoding genes as catalyst, racemic isobutyl butanedinitrile as substrate, buffer solution with pH of 6-10 as reaction medium, water bath reaction at 20-50 ℃ and 200-400rpm, and after the reaction is finished, separating and purifying the reaction solution to obtain (A), (B), (C), (S) -3-cyano-5-methylhexanoic acid.
8. The method as claimed in claim 7, wherein the concentration of the substrate in the reaction system is 100-150g/L, and the amount of the catalyst is 5-20g/L based on the weight of wet cells, wherein the water content of the wet cells is 70-90%.
9. The use according to claim 7, wherein the reaction medium is a Tris-HCl buffer at pH 8.0 and the catalytic reaction temperature is 35 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110054581.7A CN112626057B (en) | 2018-07-12 | 2018-07-12 | Chimeric plant nitrilase mutant, coding gene and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110054581.7A CN112626057B (en) | 2018-07-12 | 2018-07-12 | Chimeric plant nitrilase mutant, coding gene and application thereof |
CN201810765047.5A CN110714002B (en) | 2018-07-12 | 2018-07-12 | Plant nitrilase mutant, coding gene and application thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810765047.5A Division CN110714002B (en) | 2018-07-12 | 2018-07-12 | Plant nitrilase mutant, coding gene and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112626057A CN112626057A (en) | 2021-04-09 |
CN112626057B true CN112626057B (en) | 2022-03-08 |
Family
ID=69209127
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110054581.7A Active CN112626057B (en) | 2018-07-12 | 2018-07-12 | Chimeric plant nitrilase mutant, coding gene and application thereof |
CN202110054609.7A Active CN112852790B (en) | 2018-07-12 | 2018-07-12 | Plant nitrilase chimeric enzyme mutant, coding gene and application thereof |
CN201810765047.5A Active CN110714002B (en) | 2018-07-12 | 2018-07-12 | Plant nitrilase mutant, coding gene and application thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110054609.7A Active CN112852790B (en) | 2018-07-12 | 2018-07-12 | Plant nitrilase chimeric enzyme mutant, coding gene and application thereof |
CN201810765047.5A Active CN110714002B (en) | 2018-07-12 | 2018-07-12 | Plant nitrilase mutant, coding gene and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN112626057B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111100856B (en) * | 2020-01-13 | 2021-12-07 | 浙江工业大学 | Nitrilase mutant and application thereof in synthesis of pregabalin chiral intermediate |
CN111321132B (en) * | 2020-02-18 | 2021-08-24 | 浙江工业大学 | Nitrilase mutant with improved reaction specificity and application thereof |
CN113444700B (en) * | 2020-03-26 | 2022-06-28 | 中国科学院青岛生物能源与过程研究所 | Acetylacetone lyase mutant capable of improving acetylacetone synthesis efficiency, nucleotide, expression vector, recombinant bacterium and application |
CN112359036B (en) * | 2020-11-30 | 2022-03-08 | 浙江工业大学 | Nitrilase mutant with improved catalytic activity and reaction specificity and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101072871A (en) * | 2004-08-16 | 2007-11-14 | 纳幕尔杜邦公司 | Production of 3-hydroxycarboxylic acid using nitrilase mutants |
CN104962540A (en) * | 2015-06-30 | 2015-10-07 | 浙江工业大学 | Nitrilase, encoding genes, carrier and application |
CN107177576A (en) * | 2017-05-10 | 2017-09-19 | 浙江工业大学 | Nitrilase mutants and its application |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101691574B (en) * | 2009-09-08 | 2011-11-23 | 浙江工业大学 | Nitrilase gene, vector, engineering bacteria and application thereof |
CN104212784B (en) * | 2014-08-12 | 2017-06-23 | 浙江工业大学 | Restructuring nitrilase, encoding gene, mutant, engineering bacteria and application |
CN104212850B (en) * | 2014-08-12 | 2017-06-13 | 浙江工业大学 | The method that 1 cyanocyclohexanoic guanidine-acetic acid is prepared using nitrilase engineering bacteria |
CN104152500A (en) * | 2014-08-27 | 2014-11-19 | 中国科学院天津工业生物技术研究所 | New method of biologically synthesizing (R)-3-hydroxylglutarate monoester |
CN104774825B (en) * | 2015-03-23 | 2017-11-07 | 浙江工业大学 | Nitrilase mutants and its application |
CN105176955B (en) * | 2015-08-27 | 2018-11-02 | 浙江工业大学 | From the nitrilase of high mountain south mustard, gene, carrier, engineering bacteria and its application |
CN105505904B (en) * | 2016-01-19 | 2019-02-01 | 浙江工业大学 | Nitrilase mutants, gene, carrier, engineering bacteria and application |
CN108424900B (en) * | 2018-02-09 | 2020-11-03 | 浙江工业大学 | Nitrilase mutant and construction method and application thereof |
CN108715881B (en) * | 2018-05-04 | 2020-11-10 | 浙江工业大学 | Method for regioselective and stereoselective biocatalytic synthesis of pregabalin chiral intermediate |
EP3856900B1 (en) * | 2018-09-27 | 2024-09-25 | ZYMtronix Catalytic Systems, Inc. | Printable magnetic powders and 3d printed objects for bionanocatalyst immobilization |
CN111100856B (en) * | 2020-01-13 | 2021-12-07 | 浙江工业大学 | Nitrilase mutant and application thereof in synthesis of pregabalin chiral intermediate |
CN111172140B (en) * | 2020-01-21 | 2022-04-19 | 浙江工业大学 | Nitrilase mutant and application thereof in preparation of anti-epileptic drug intermediate |
-
2018
- 2018-07-12 CN CN202110054581.7A patent/CN112626057B/en active Active
- 2018-07-12 CN CN202110054609.7A patent/CN112852790B/en active Active
- 2018-07-12 CN CN201810765047.5A patent/CN110714002B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101072871A (en) * | 2004-08-16 | 2007-11-14 | 纳幕尔杜邦公司 | Production of 3-hydroxycarboxylic acid using nitrilase mutants |
CN104962540A (en) * | 2015-06-30 | 2015-10-07 | 浙江工业大学 | Nitrilase, encoding genes, carrier and application |
CN107177576A (en) * | 2017-05-10 | 2017-09-19 | 浙江工业大学 | Nitrilase mutants and its application |
Non-Patent Citations (3)
Title |
---|
ACCESSION NO.NP_001288810.1;ANDO S.等;《GENBANK》;20151225;1 * |
Development of a robust nitrilase by fragment swapping and semi‐rational design for efficient biosynthesis of pregabalin precursor;Qin Zhang 等;《Biotechnology and Bioengineering》;20201231;第117卷;318-329 * |
点饱和突变提高腈水解酶不对称合成L-2-氨基丁酸的酶活;周海岩等;《工业微生物》;20151222;第45卷(第06期);1-8 * |
Also Published As
Publication number | Publication date |
---|---|
CN110714002B (en) | 2021-03-26 |
CN112626057A (en) | 2021-04-09 |
CN110714002A (en) | 2020-01-21 |
CN112852790B (en) | 2022-04-29 |
CN112852790A (en) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108424900B (en) | Nitrilase mutant and construction method and application thereof | |
CN106754846B (en) | Fusobacterium nucleatum tyrosine phenol lyase mutant, gene, vector, engineering bacterium and application thereof | |
CN112626057B (en) | Chimeric plant nitrilase mutant, coding gene and application thereof | |
CN114164197B (en) | Nitrilase mutant with improved thermal stability and activity and application thereof | |
CN113151201B (en) | High-thermal-stability and high-activity isoeugenol monooxygenase mutant and application thereof | |
CN112626056B (en) | Nitrilase mutant with improved nitrile hydration activity specificity and application thereof | |
CN111808829B (en) | Gamma-glutamyl methylamine synthetase mutant and application thereof | |
CN115322981B (en) | Nitrile hydratase mutant and application thereof in preparation of amide compounds | |
CN107937422B (en) | panD mutant gene, genetic engineering and application thereof in catalytic production of beta-alanine | |
CN113652408B (en) | Carbonyl reductase mutant and application thereof in synthesis of (R) -4-chloro-3-hydroxybutyrate ethyl ester | |
CN110872593B (en) | Serine hydroxymethyl transferase mutant and application thereof | |
CN110358751B (en) | Recombinant lipase mutant, encoding gene, recombinant engineering bacterium and application | |
CN109182319B (en) | Threonine deaminase mutant and preparation method and application thereof | |
CN110592045A (en) | Recombinant esterase, gene, engineering bacterium and application of recombinant esterase to resolution of (R, S) -indoline-2-ethyl formate | |
CN112553185B (en) | Nitrilase mutant with improved nitrile hydrolysis activity specificity and application thereof | |
CN115896081A (en) | Aspartase mutant and application thereof | |
CN109762801B (en) | Halogen alcohol dehalogenase mutant and application thereof in synthesizing chiral drug intermediate | |
CN112391373A (en) | Glutamic acid decarboxylase GADZ1 for high yield of gamma-aminobutyric acid and gene and application thereof | |
KR101778878B1 (en) | Highly active GABA-producing glutamate decarboxylase from Bacteroides sp. and use thereof | |
CN110004119B (en) | -ketoester reductase mutant and application thereof in catalyzing and synthesizing (R) -alpha-lipoic acid precursor | |
CN115029329B (en) | Carbonyl reductase mutant and application thereof in preparation of R-mandelic acid | |
CN114107270B (en) | L-aspartic acid beta-decarboxylase mutant | |
CN114196659B (en) | Amidase mutant, coding gene, engineering bacteria and application thereof | |
CN108866017B (en) | Method for preparing β -hydroxy- β -methylbutyric acid by enzyme method | |
CN117210429A (en) | Histidine trimethylase EgtD mutant and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |