CN112563565A - 一种锂钠离子混合固态电解质的制备方法及固态混合电池 - Google Patents
一种锂钠离子混合固态电解质的制备方法及固态混合电池 Download PDFInfo
- Publication number
- CN112563565A CN112563565A CN202011271582.9A CN202011271582A CN112563565A CN 112563565 A CN112563565 A CN 112563565A CN 202011271582 A CN202011271582 A CN 202011271582A CN 112563565 A CN112563565 A CN 112563565A
- Authority
- CN
- China
- Prior art keywords
- lithium
- sodium
- preparation
- sodium ion
- ionic liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 229910001415 sodium ion Inorganic materials 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000007784 solid electrolyte Substances 0.000 title description 36
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 239000011734 sodium Substances 0.000 claims abstract description 26
- 239000002608 ionic liquid Substances 0.000 claims abstract description 22
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 17
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 17
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 17
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 15
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 239000004793 Polystyrene Substances 0.000 claims abstract description 11
- 229920002223 polystyrene Polymers 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 5
- 239000004020 conductor Substances 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 239000002228 NASICON Substances 0.000 claims description 4
- 229910003249 Na3Zr2Si2PO12 Inorganic materials 0.000 claims description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 4
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 4
- 229910013188 LiBOB Inorganic materials 0.000 claims description 2
- 229910010941 LiFSI Inorganic materials 0.000 claims description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 2
- 239000007774 positive electrode material Substances 0.000 claims description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims 1
- 229910013684 LiClO 4 Inorganic materials 0.000 claims 1
- -1 LiDFOB Inorganic materials 0.000 claims 1
- 229910013872 LiPF Inorganic materials 0.000 claims 1
- 229910013870 LiPF 6 Inorganic materials 0.000 claims 1
- 101150058243 Lipf gene Proteins 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 6
- 238000001035 drying Methods 0.000 abstract description 4
- 238000005406 washing Methods 0.000 abstract description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 16
- 229910052744 lithium Inorganic materials 0.000 description 11
- 239000010416 ion conductor Substances 0.000 description 9
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 7
- 238000011161 development Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910010710 LiFePO Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910013874 LiPF2O2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种锂钠离子混合固态电解质的制备方法,包括:步骤1,将钠超离子导体粉体与锂盐、离子液体和聚苯乙烯混合均匀,放入反应釜中,所述的锂盐在离子液体中的浓度为0.1mol/L‑0.5mol/L;步骤2,将反应釜放入均相反应器内,进行一次热处理;步骤3,将反应釜内的产物取出并离心分离,洗涤,干燥;步骤4,对步骤3得到的产物进行二次热处理,得到所述的锂钠离子混合固态电解质。本发明提供的锂钠离子混合固态电解质可以同时传导锂离子和钠离子,且具有高电导率和高可靠性,可以直接采用目前商业化的锂离子电池的正极材料,锂钠离子传输机理类似,可快速实现应用。这样不但得到了具有实用价值的电池,而且该电池兼具优异的电化学性能与低廉的价格。
Description
技术领域
本发明涉及固态电池技术领域,具体涉及一种锂钠离子混合固态电解质的制备方法及固态混合电池。
背景技术
电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性,而固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。固态电解质材料及固态锂电池被广泛研究。自然界中相对匮乏的锂资源极大程度地限制了固态锂离子电池的大规模发展(Kim,J.J.,Yoon,K.,Park,I.,etal.Small Methods 2017,1,1700219.),随着锂电池的大规模制备,金属锂的价格不断攀升,锂电池的成本将持续增加。而钠元素在地壳中的丰度远远高于锂元素,钠元素与锂元素位于同一主族,它们的化学、物理性质相似,因而开发固态钠离子电池可以大幅度地降低电池的成本。由于钠具有原料丰富、成本低的优点而成为当前新能源器件和新材料领域的研究热点。作为新一代的电池,固态钠电池被认为是固态锂电池未来的替代者,其工作原理和锂电池的原理相似,在性能研究和材料研发方面具有一定共性。然而,由于Na+的离子半径比Li+大,所以限制了钠离子在电极材料中的可逆脱嵌过程,从而影响电池的电化学性能(Kim,H.,Ding,Z.,Lee,M.H.,et al.Adv.Energy Mater.2016,6,1600943.)。
2006年,J.Baker等人首次提出了混合型锂离子电池的概念,使用液态电解液,混合锂钠离子电池与钠离子电池相比表现出较好的电化学性能,与锂离子电池相比价格低廉。但固态混合锂钠离子电池鲜有报道,原因是因为缺少可同时传导锂离子和钠离子的固态电解质。而开发固态混合锂钠离子电池可以成为实现固态电池广泛应用的有效设计。
发明内容
本发明的目的是提供一种具有高电导率和高可靠性的锂钠离子混合固态电解质的制备方法及固态混合电池。
为了达到上述目的,本发明提供了一种锂钠离子混合固态电解质的制备方法,包括:
步骤1,将钠超离子导体粉体与锂盐、离子液体和聚苯乙烯混合均匀,放入反应釜中,所述的锂盐在离子液体中的浓度为0.1mol/L-0.5mol/L;
步骤2,对反应釜进行一次热处理;
步骤3,将反应釜内的产物取出并离心分离,洗涤,干燥;
步骤4,对步骤3得到的产物进行二次热处理,得到所述的锂钠离子混合固态电解质。
优选地,所述的钠超离子导体为Na3Zr2Si2PO12。
优选地,所述的锂盐为LiTFSI、LiFSI、LiClO4、LiPF6、LiBF4、LiBOB、LiDFOB、LiPF2O2中的一种或多种。
优选地,所述的离子液体为咪唑类离子液体、季铵类离子液体、哌啶类离子液体、吡咯类离子液体中的一种或多种。
优选地,所述的一次热处理的方法为:将所述的反应釜放入均相反应器内以50rpm/min的转速旋转加热。
优选地,所述的一次热处理的条件为加热温度100-250℃,加热时间为2-6h。
优选地,所述的二次热处理的条件为加热温度400-600℃,加热时间2-4h。
优选地,所述的锂钠离子混合固态电解质为锂钠混合超离子导体,其化学式Li3- xNaxZr2Si2PO12,1.5≤x≤2。
优选地,所述的锂钠离子混合固态电解质中,Li/Na原子比为0.5:1~1:1,能够同时传导锂钠混合离子。
本发明还提供了一种固态混合电池,包括通过上述方法制备的锂钠离子混合固态电解质、锂离子电池正极材料和金属钠。
本发明的有益效果包括:
(1)本发明提供的锂钠离子混合固态电解质可以同时传导锂离子和钠离子,且具有高电导率和高可靠性,其组成及性能可根据制备过程中的锂盐浓度、热处理时间及增加聚苯乙烯进行可控调节。
(2)相较于金属锂,钠金属在自然界中含量丰富,且价格低廉,钠离子电池近年来被广泛研究,但其发展受限于电解液以及可供钠离子传输的电解材料,可以选择的不多。本发明所提供的固态混合锂钠电池可以直接采用目前商业化的锂离子电池的正极材料,锂钠离子传输机理类似,可快速实现应用。这样不但得到了具有实用价值的电池,而且该电池兼具优异的电化学性能与低廉的价格。
附图说明
图1为实施例1得到的锂钠离子混合固态电解质的扫描电镜(SEM)图。
图2为实施例1得到的锂钠离子混合固态电解质的X射线衍射(XRD)图。
图3为实施例2得到的锂钠离子混合固态电解质的室温电化学交流阻抗谱图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明制备的锂钠离子混合固态电解质中,限定Li/Na原子比为0.5:1~1:1,在该组分的区间内,电解质才可以同时传导锂钠混合离子。
固态电解质的离子交换生成的过程在前期是非常快的。当通过离子交换法制备锂钠离子混合固态电解质时,在很短的时间内就会使90%的钠交换成锂,即锂钠的原子比超过了1。而90%的钠交换成锂之后,交换速度变慢,达到100%的交换率需要很长的时间。因此,为了控制本发明制备的锂钠离子混合固态电解质中,锂钠原子比为0.5:1~1:1,在制备原料中添加了聚苯乙烯。通过增加聚苯乙烯,可以增加锂钠交换的反应速率,较好的控制原子比。聚苯乙烯可以通过热处理消除,与此同时也可以防止固态电解质纳米颗粒的聚集,生成均匀的纳米颗粒。
实施例1:
一种锂钠离子混合固态电解质的制备方法,包括以下步骤:
步骤1,将Na超离子导体Na3Zr2Si2PO12粉体与锂盐LiTFSI、离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐(C8H11F6N3O4S2)、聚苯乙烯混合均匀,放入反应釜中,锂盐在离子液体中的浓度为0.5mol/L;
步骤2,将反应釜放入均相反应器内,以50rpm/min的转速,在180℃下热处理4h;
步骤3,取出反应釜中的产物离心分离,除去多余的锂盐和离子液体,并用酒精反复清洗2~3次后干燥;
步骤4,将步骤3得到的产物400℃热处理2h,除去多余的聚苯乙烯,得到锂钠离子混合固态电解质。
通过上述方法,制得的锂钠离子混合固态电解质为锂钠混合超离子导体,其化学式为Li1.5Na1.5Zr2Si2PO12。将锂离子电池正极材料LiFePO4、锂钠离子混合固态电解质和金属钠加工组成固态混合电池。
如图1所示,通过实施例1得到的锂钠离子混合固态电解质的SEM图能够看出,该方法制得的锂钠离子混合固态电解质大小均一,平均粒径尺寸在300nm左右。
如图2所示,通过实施例1得到的锂钠离子混合固态电解质的XRD图能够看出,该锂钠离子混合固态电解质具有NASICON结构,和使用传统溶胶凝胶法合成得到的具有相同元素组成的化合物结构不同,是一种新型的混合离子导体。
实施例2:
一种锂钠离子混合固态电解质,该固态电解质为锂钠混合超离子导体,化学式Li1.39Na1.61Zr2Si2PO12,可以传导锂钠混合离子,可以用于固态混合锂钠电池。
一种锂钠离子混合固态电解质的制备方法,包括以下步骤:
步骤1,将Na超离子导体Na3Zr2Si2PO12粉体与锂盐LiTFSI、离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐(C8H11F6N3O4S2)、聚苯乙烯混合均匀,放入反应釜中,锂盐在离子液体中的浓度为0.35mol/L;
步骤2,将反应釜放入均相反应器内,以50rpm/min的转速,在180℃下热处理4h;
步骤3,取出反应釜中的产物离心分离,除去多余的锂盐和离子液体,并用酒精反复清洗2~3次后干燥;
步骤4,将步骤3得到的产物400℃热处理2h,除去多余的聚苯乙烯,得到锂钠离子混合固态电解质。
通过上述方法,制得的锂钠离子混合固态电解质为锂钠混合超离子导体,其化学式为LiNi0.8Co0.15Al0.05O2。将锂离子电池正极材料LiFePO4、锂钠离子混合固态电解质和金属钠加工组成固态混合电池。
如图3所示,通过实施例2制备的锂钠离子混合固态电解质Li1.39Na1.61Zr2Si2PO12的室温电化学交流阻抗谱,可以计算得出离子电导率为8.1×10-4S/cm。
综上所述,本发明公开了一种锂钠离子混合固态电解质的制备方法及固态混合电池,该固态电解质包括锂钠混合超离子导体,其化学式Li3-xNaxZr2Si2PO12,1.5≤x≤2,锂钠离子的相对含量由热处理时间决定,其结构为亚稳态结构,和传统高温固相法或溶胶凝胶法合成得到的具有相同元素组成的化合物结构不同,具有高离子电导率及高环境稳定性。该固态电解质可以同时传导锂钠混合离子,可直接将目前商业化的锂离子电池的正极材料直接应用到锂钠混合电池体系中,开发出新型的固态混合锂钠电池,兼具优异的电化学性能与低廉的价格。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。
Claims (10)
1.一种锂钠离子混合固态电解质的制备方法,其特征在于,包括:
步骤1,将钠超离子导体粉体与锂盐、离子液体和聚苯乙烯混合均匀,放入反应釜中,所述的锂盐在离子液体中的浓度为0.1mol/L-0.5mol/L;
步骤2,对反应釜进行一次热处理;
步骤3,将反应釜内的产物取出并离心分离,洗涤,干燥;
步骤4,对步骤3得到的产物进行二次热处理,得到所述的锂钠离子混合固态电解质。
2.如权利要求1所述的制备方法,其特征在于,所述的钠超离子导体为Na3Zr2Si2PO12。
3.如权利要求1所述的制备方法,其特征在于,所述的锂盐为LiTFSI、LiFSI、LiClO4、LiPF6、LiBF4、LiBOB、LiDFOB、LiPF2O2中的一种或多种。
4.如权利要求1所述的制备方法,其特征在于,所述的离子液体为咪唑类离子液体、季铵类离子液体、哌啶类离子液体、吡咯类离子液体中的一种或多种。
5.如权利要求1所述的制备方法,其特征在于,所述的一次热处理的方法为:将所述的反应釜放入均相反应器内以50rpm/min的转速旋转加热。
6.如权利要求1所述的制备方法,其特征在于,所述的一次热处理的条件为加热温度100-250℃,加热时间为2-6h。
7.如权利要求1所述的制备方法,其特征在于,所述的二次热处理的条件为加热温度400-600℃,加热时间2-4h。
8.如权利要求1所述的制备方法,其特征在于,所述的锂钠离子混合固态电解质为锂钠混合超离子导体,其化学式Li3-xNaxZr2Si2PO12,1.5≤x≤2。
9.如权利要求1所述的制备方法,其特征在于,所述的锂钠离子混合固态电解质中,Li/Na原子比为0.5:1~1:1,能够同时传导锂钠混合离子。
10.一种固态混合电池,其特征在于,包括通过权利要求1-9的方法制备的锂钠离子混合固态电解质、锂离子电池正极材料和金属钠。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011271582.9A CN112563565B (zh) | 2020-11-13 | 2020-11-13 | 一种锂钠离子混合固态电解质的制备方法及固态混合电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011271582.9A CN112563565B (zh) | 2020-11-13 | 2020-11-13 | 一种锂钠离子混合固态电解质的制备方法及固态混合电池 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112563565A true CN112563565A (zh) | 2021-03-26 |
CN112563565B CN112563565B (zh) | 2022-03-25 |
Family
ID=75042400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011271582.9A Active CN112563565B (zh) | 2020-11-13 | 2020-11-13 | 一种锂钠离子混合固态电解质的制备方法及固态混合电池 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112563565B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117174992A (zh) * | 2023-08-14 | 2023-12-05 | 国联汽车动力电池研究院有限责任公司 | 一种锂钠复合无机硫化物固态电解质材料及其制备方法 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1527432A (zh) * | 2003-03-03 | 2004-09-08 | ������������ʽ���� | 电池 |
US20050258039A1 (en) * | 2004-05-24 | 2005-11-24 | Matco Associates Inc. | Reference electrode |
CN102303125A (zh) * | 2011-09-20 | 2012-01-04 | 南京林业大学 | 一种粘稠介质中制备纳米银粉的方法 |
CN102372275A (zh) * | 2010-08-16 | 2012-03-14 | 中国科学院大连化学物理研究所 | 一种无机磷酸盐晶体材料的制备方法 |
CN103178261A (zh) * | 2013-04-12 | 2013-06-26 | 长沙理工大学 | 一种快离子导体镶嵌型锂离子电池正极材料的原位合成方法 |
US20130224571A1 (en) * | 2010-12-13 | 2013-08-29 | Nec Corporation | Lithium ion secondary battery and method for manufacturing the same |
CN203445193U (zh) * | 2013-08-20 | 2014-02-19 | 宋维鑫 | 一种混合离子二次电池 |
CN103818949A (zh) * | 2014-02-18 | 2014-05-28 | 南京宇热材料科技有限公司 | 一种离子交换溶剂热法制备钛酸盐纳米粉体的方法 |
WO2014136650A1 (ja) * | 2013-03-05 | 2014-09-12 | 旭硝子株式会社 | リチウムイオン伝導性ガラスセラミックスの製造方法、リチウムイオン伝導性ガラスセラミックスおよびリチウムイオン二次電池 |
CN104953118A (zh) * | 2015-05-21 | 2015-09-30 | 青海时代新能源科技有限公司 | 锂离子电池正极材料及其制备方法 |
CN106433606A (zh) * | 2016-08-31 | 2017-02-22 | 四川光亚聚合物化工有限公司 | 一种聚合物稠化酸 |
CN108963209A (zh) * | 2018-06-26 | 2018-12-07 | 深圳大学 | 钠离子电池正极材料及其制备方法和应用 |
CN109687017A (zh) * | 2018-12-24 | 2019-04-26 | 郑州新世纪材料基因组工程研究院有限公司 | 一种钠离子固体电解质及其制备方法 |
CN109742449A (zh) * | 2018-12-15 | 2019-05-10 | 桂林理工大学 | 一种nasicon型固态电解质的制备方法 |
CN109888208A (zh) * | 2019-01-25 | 2019-06-14 | 高点(深圳)科技有限公司 | 锂离子电池正极材料及其制法和应用 |
CN110277586A (zh) * | 2019-06-26 | 2019-09-24 | 上海空间电源研究所 | 一种锂离子固态电解质及其制备方法 |
CN111740167A (zh) * | 2020-07-06 | 2020-10-02 | 三明市新能源产业技术研究院有限公司 | 纳米磷酸钛铝锂固态电解质及其制备方法、锂离子电池和用电设备 |
-
2020
- 2020-11-13 CN CN202011271582.9A patent/CN112563565B/zh active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1527432A (zh) * | 2003-03-03 | 2004-09-08 | ������������ʽ���� | 电池 |
US20050258039A1 (en) * | 2004-05-24 | 2005-11-24 | Matco Associates Inc. | Reference electrode |
CN102372275A (zh) * | 2010-08-16 | 2012-03-14 | 中国科学院大连化学物理研究所 | 一种无机磷酸盐晶体材料的制备方法 |
US20130224571A1 (en) * | 2010-12-13 | 2013-08-29 | Nec Corporation | Lithium ion secondary battery and method for manufacturing the same |
CN102303125A (zh) * | 2011-09-20 | 2012-01-04 | 南京林业大学 | 一种粘稠介质中制备纳米银粉的方法 |
WO2014136650A1 (ja) * | 2013-03-05 | 2014-09-12 | 旭硝子株式会社 | リチウムイオン伝導性ガラスセラミックスの製造方法、リチウムイオン伝導性ガラスセラミックスおよびリチウムイオン二次電池 |
CN103178261A (zh) * | 2013-04-12 | 2013-06-26 | 长沙理工大学 | 一种快离子导体镶嵌型锂离子电池正极材料的原位合成方法 |
CN203445193U (zh) * | 2013-08-20 | 2014-02-19 | 宋维鑫 | 一种混合离子二次电池 |
CN103818949A (zh) * | 2014-02-18 | 2014-05-28 | 南京宇热材料科技有限公司 | 一种离子交换溶剂热法制备钛酸盐纳米粉体的方法 |
CN104953118A (zh) * | 2015-05-21 | 2015-09-30 | 青海时代新能源科技有限公司 | 锂离子电池正极材料及其制备方法 |
CN106433606A (zh) * | 2016-08-31 | 2017-02-22 | 四川光亚聚合物化工有限公司 | 一种聚合物稠化酸 |
CN108963209A (zh) * | 2018-06-26 | 2018-12-07 | 深圳大学 | 钠离子电池正极材料及其制备方法和应用 |
CN109742449A (zh) * | 2018-12-15 | 2019-05-10 | 桂林理工大学 | 一种nasicon型固态电解质的制备方法 |
CN109687017A (zh) * | 2018-12-24 | 2019-04-26 | 郑州新世纪材料基因组工程研究院有限公司 | 一种钠离子固体电解质及其制备方法 |
CN109888208A (zh) * | 2019-01-25 | 2019-06-14 | 高点(深圳)科技有限公司 | 锂离子电池正极材料及其制法和应用 |
CN110277586A (zh) * | 2019-06-26 | 2019-09-24 | 上海空间电源研究所 | 一种锂离子固态电解质及其制备方法 |
CN111740167A (zh) * | 2020-07-06 | 2020-10-02 | 三明市新能源产业技术研究院有限公司 | 纳米磷酸钛铝锂固态电解质及其制备方法、锂离子电池和用电设备 |
Non-Patent Citations (2)
Title |
---|
康彦芳: "《化工分离技术》", 31 January 2014 * |
李学恒: "《土壤化学动力学》", 31 July 2001, 高等教育出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117174992A (zh) * | 2023-08-14 | 2023-12-05 | 国联汽车动力电池研究院有限责任公司 | 一种锂钠复合无机硫化物固态电解质材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112563565B (zh) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11843109B2 (en) | Method of preparing and application of carbon-selenium composites | |
KR101681739B1 (ko) | 그래핀 변성 인산철리튬 정극 활성물질과 그의 제조방법 및 리튬이온 이차전지 | |
Zhang et al. | Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte | |
JP2019052088A (ja) | 三価金属を含むチタン及びニオブの混合酸化物 | |
CN110277586B (zh) | 一种锂离子固态电解质及其制备方法 | |
WO2017022464A1 (ja) | α-リチウム固体電解質 | |
JP2001146427A (ja) | 被覆したリチウム混合酸化物粒子およびそれらの使用ii | |
JP2018168065A (ja) | ソルボサーマル処理によるチタンおよびニオブ混合酸化物の調製方法、ならびに前記混合酸化物を含む電極およびリチウム蓄電池 | |
CN110993942A (zh) | 一种高性能钠缺陷型正极材料及钠离子电池 | |
CN106099180A (zh) | 复合聚合物电解质的制备方法与锂二次电池 | |
CN113921790A (zh) | 一种双金属硒化物负极材料及其制备方法和应用 | |
CN112864372A (zh) | 一种双功能界面锂离子电池富镍单晶正极材料及制备方法 | |
CN112563565B (zh) | 一种锂钠离子混合固态电解质的制备方法及固态混合电池 | |
CN117682568B (zh) | 一种球形K0.44Mn0.78Ni0.22O1.8F0.2正极材料制备方法及应用 | |
CN117059799A (zh) | 石墨负极材料及其制备方法和应用 | |
JP2024532863A (ja) | 固体電極用イオン結合剤 | |
CN114220969A (zh) | 一种硅酸钛锂的制备方法 | |
CN113968590A (zh) | 一种碱金属离子插层SnS2及其制备方法和其在电池负极材料中的应用及制备方法 | |
CN108123130B (zh) | 一种LiV2BO5在锂离子电池正极中的应用 | |
CN114956014B (zh) | 一种硒化钴/硒化锡@多孔碳纳米棒的制备方法及其应用 | |
KR101798154B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
CN118263443B (zh) | 金属掺杂碳酸锂柔性材料及其制备方法、应用和电池 | |
WO2014187034A1 (zh) | 碳酸酯辅助制备磷酸铁锂的方法 | |
CN113929072B (zh) | 一种LFP@VSe2复合正极材料及其制备方法 | |
Roopan et al. | Review on outlook of coating materials for Li-ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |