CN112490681A - Three-dimensional paper-cut metamaterial adjustable wave absorber and design method thereof - Google Patents
Three-dimensional paper-cut metamaterial adjustable wave absorber and design method thereof Download PDFInfo
- Publication number
- CN112490681A CN112490681A CN202011326153.7A CN202011326153A CN112490681A CN 112490681 A CN112490681 A CN 112490681A CN 202011326153 A CN202011326153 A CN 202011326153A CN 112490681 A CN112490681 A CN 112490681A
- Authority
- CN
- China
- Prior art keywords
- metamaterial
- mode
- polarization
- electromagnetic wave
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 38
- 238000013461 design Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000010287 polarization Effects 0.000 claims abstract description 65
- 238000010521 absorption reaction Methods 0.000 claims abstract description 46
- 230000033228 biological regulation Effects 0.000 claims abstract description 33
- 230000001105 regulatory effect Effects 0.000 claims abstract description 5
- 238000010168 coupling process Methods 0.000 claims description 22
- 238000005859 coupling reaction Methods 0.000 claims description 22
- 230000008878 coupling Effects 0.000 claims description 21
- 230000003993 interaction Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 230000005405 multipole Effects 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 22
- 238000004088 simulation Methods 0.000 description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- 230000008844 regulatory mechanism Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/007—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明属于超材料电磁调控技术领域,具体为一种三维剪纸超材料可调吸波体及其设计方法。本发明剪纸超材料可调吸波体由M*N个超材料单元周期延拓组成;超材料单元是由两个条带折叠后拼接成的四面体,四个面相同,每个面可通过折叠角度β进行调控;每个面由三层结构组成,其中,中间层为PET,在PET上下两面的为ITO,ITO层为完全对称的双开口谐振环。本发明剪纸超材料可调吸波体,通过改变折叠角度β,可以实现TE极化下电磁波反射幅度(吸收幅度)的机械调控以及TM极化下反射电磁波谐振频率(吸波频段)的机械调控,在β=45°时可以实现全极化大角度宽频吸波的优异功能;本发明具有灵活度高、效率高等优势。
The invention belongs to the technical field of metamaterial electromagnetic regulation, in particular to a three-dimensional kirigami metamaterial adjustable wave absorber and a design method thereof. The kirigami metamaterial adjustable wave absorber of the present invention is composed of M*N metamaterial units with periodic extension; the metamaterial unit is a tetrahedron formed by folding and splicing two strips, and the four faces are the same, and each face can pass through The folding angle β is regulated; each surface is composed of a three-layer structure, of which the middle layer is PET, the upper and lower sides of the PET are ITO, and the ITO layer is a completely symmetrical double-opening resonant ring. The kirigami metamaterial adjustable wave absorber of the present invention can realize the mechanical regulation of the electromagnetic wave reflection amplitude (absorption amplitude) under TE polarization and the mechanical regulation of the reflected electromagnetic wave resonance frequency (absorption frequency band) under TM polarization by changing the folding angle β , when β =45°, the excellent function of fully polarized large-angle wide-band wave absorption can be realized; the invention has the advantages of high flexibility and high efficiency.
Description
技术领域technical field
本发明属于超材料电磁调控技术领域,具体涉及可调的超材料吸波体及其设计方法。The invention belongs to the technical field of electromagnetic regulation of metamaterials, and in particular relates to an adjustable metamaterial wave absorber and a design method thereof.
背景技术Background technique
超材料是指人们模拟自然界原子、分子构成物质的理念,依据电磁学理论采用亚波长单元按照某种排列方式形成的周期或准周期结构。由于超材料具有大自然材料所不具备的一些物理性质,所以近年来一直都是国内外科学家们研究的热点之一。超材料的出现,使人们对于雷达隐身从梦想变为现实,完美超材料吸波体发展也十分迅速,应用前景光明。尽管如此,现有报道中对于全极化大角度宽频吸波以及可调这两大问题,它们并不能很好的解决,极度阻碍了实际应用。全极化大角度宽频吸波具有很大的挑战性,原因主要是当电磁波斜入射角特别大时,超材料的结构相当于不对称了,不能很好的保证全极化吸波,只能保证在一个极化下很好的吸波。第二个调控的问题,同样很有难度,目前所报道的可调超材料基本基于电子元件,这种方式制作麻烦,对工艺来说是很困难的;目前报道的剪纸可调基本都是基于3D打印技术,通过打印出不同的模具,这样成本较高,本质上并没有做到可调。所以如何解决全极化大角度宽频吸波以及可调,是所设计超材料可调吸波体的关键。Metamaterials refer to the idea of simulating natural atoms and molecules to constitute matter, and adopting subwavelength units according to the electromagnetic theory to form periodic or quasi-periodic structures in a certain arrangement. Because metamaterials have some physical properties that natural materials do not have, they have been one of the hotspots of research by scientists at home and abroad in recent years. The emergence of metamaterials has turned people's dream of radar stealth into reality, and the development of perfect metamaterial absorbers is also very rapid, with bright application prospects. Nonetheless, for the two major problems of full-polarization wide-angle broadband absorption and tunability in existing reports, they cannot be well solved, which greatly hinders practical applications. Full-polarization large-angle broadband absorption is very challenging. The main reason is that when the oblique incident angle of electromagnetic waves is particularly large, the structure of metamaterials is equivalent to asymmetrical, which cannot guarantee full-polarization absorption. Guaranteed good absorption in one polarization. The second problem of regulation is also very difficult. The tunable metamaterials reported so far are basically based on electronic components. This method is troublesome to manufacture and is very difficult for the process; 3D printing technology, by printing different molds, has a high cost and is not adjustable in nature. Therefore, how to solve the problem of fully polarized large-angle broadband absorption and tunability is the key to the designed metamaterial tunable absorber.
发明内容SUMMARY OF THE INVENTION
本发明目的在于提出一种在线极化波激发下能实现全极化大角度宽频、幅度及谐振频率可调的超材料吸波体及其设计方法。The purpose of the present invention is to provide a metamaterial wave absorber and a design method thereof which can realize full polarization, wide angle, wide frequency, adjustable amplitude and resonance frequency under the excitation of linear polarized wave.
本发明提供的剪纸超材料可调吸波体,是基于多偶极子耦合理论和剪纸折叠结构的,具体由M*N个具有相同结构参数的超材料单元在空间内等间距周期延拓组成;所述超材料单元为立体结构,主要为从二维超表面裁剪的两个条带折叠后拼接围成的四面体,四面体的四个面相同;其中,每个面(二维超表面)为三层结构,中间层为聚对苯二甲酸乙二醇酯(PET);附在PET上下两面的为完全对称的矩形双开口谐振环结构,其材料均为ITO;记两个条带折叠的角度为β,双开口谐振环结构的结构参数为:外开口环长和宽分别为m和n,两个开口环的缝宽为w1,开口环的宽度为w2,开口的宽度为g。The kirigami metamaterial adjustable wave absorber provided by the present invention is based on the multi-dipole coupling theory and the kirigami folding structure, and is specifically composed of M*N metamaterial units with the same structural parameters that are periodically extended at equal intervals in space The metamaterial unit is a three-dimensional structure, and is mainly a tetrahedron formed by folding and splicing two strips cut from a two-dimensional metasurface, and the four faces of the tetrahedron are identical; wherein, each face (two-dimensional metasurface) ) is a three-layer structure, and the middle layer is polyethylene terephthalate (PET); attached to the upper and lower sides of PET is a completely symmetrical rectangular double-opening resonator ring structure, and its material is ITO; mark two strips The folding angle is β, the structural parameters of the double-slit resonator ring structure are: the length and width of the outer split ring are m and n respectively, the slit width of the two split rings is w 1 , the width of the split ring is w 2 , and the width of the opening is
所述超材料单元为立体结构,其在水平面内的周期为p=2*m*sinβ;The metamaterial unit is a three-dimensional structure, and its period in the horizontal plane is p=2*m*sinβ;
其中,所述超材料单元分为三种模式(即两块折叠好的条带的拼接方式),具体如下:Among them, the metamaterial unit is divided into three modes (that is, the splicing mode of two folded strips), as follows:
模式1:为两块折叠好的条带对立拼接成的“井”字形结构;其x轴方向周期为2*m*cosβ,y轴方向的周期为2*m*sinβ。Mode 1: It is a "well"-shaped structure formed by oppositely splicing two folded strips; the period in the x-axis direction is 2*m*cosβ, and the period in the y-axis direction is 2*m*sinβ.
模式2:与模式1相比相对的两个条带之间分开了一定的距离;其x轴方向周期为2*m*cosβ,y轴方向的周期为2*m*sinβ+k(k=2)。Mode 2: Compared with
模式3:相当于将模式1的条状结构翻折90度,相邻单元由边界边的中点连接,相邻的两个条带结构对立放置相差半个周期;其x轴方向周期为2*n,y轴方向的周期为2*m*cosβ。Mode 3: It is equivalent to folding the strip structure of
本发明提供的剪纸超材料可调吸波体,其中超材料单元的三种不同结构模式,在线极化波激发下,在不同折叠角度β下可实现三种调制电磁波的功能:The kirigami metamaterial adjustable wave absorber provided by the present invention, wherein the three different structural modes of the metamaterial unit can realize three functions of modulating electromagnetic waves under the excitation of linear polarized waves and different folding angles β:
功能一,折叠角度β改变时,可以在TE极化下(电场沿y轴方向)实现电磁波反射幅度的机械调控(f1);Function 1: When the folding angle β is changed, the electromagnetic wave reflection amplitude can be mechanically controlled (f 1 ) under TE polarization (the electric field is along the y-axis direction);
功能二,折叠角度β改变时,可以在TM极化下(电场沿x轴方向)实现反射电磁波谐振频率的机械调控(f2、f3);Function 2: When the folding angle β is changed, the mechanical regulation of the resonant frequency of the reflected electromagnetic wave (f 2 , f 3 ) can be realized under TM polarization (the electric field is along the x-axis direction);
功能三,当折叠角度β=45°时,可以作为一个宽频可调吸波体(f0)。The third function, when the folding angle β=45°, can be used as a broadband tunable absorber (f 0 ).
f0为宽频吸波体工作频带,f1为反射幅度调控的工作频段,f2、f3。谐振频率调控的工作频段。f 0 is the working frequency band of the broadband absorber, f 1 is the working frequency band of the reflection amplitude regulation, f 2 and f 3 . The working frequency band of resonance frequency regulation.
其中,主要通过外部机械力的作用调控折叠角度β,从而调制电磁波。Among them, the folding angle β is mainly regulated by the action of external mechanical force, thereby modulating the electromagnetic wave.
如图2所示,超材料单元的每个面(二维超表面)为三层结构,由三层介质ITO、PET、ITO组成,例如模式1,它的四个面是完全一样的,每个面都是由三层介质ITO、PET、ITO组成,其中,ITO层为双开口谐振环结构。As shown in Figure 2, each face (two-dimensional metasurface) of the metamaterial unit is a three-layer structure, which is composed of three layers of media ITO, PET, and ITO, such as
如图3所示,在模式1(β=45°)下激发时,可以看出,F=4.75GHz时,四个表面电流分别形成环流,各形成一个磁偶极子,相对的两个面上的磁偶极子可以理解为同向纵向耦合,可以近似理解为N、S极靠近,这样可以使得系统更加稳定,从而谐振频率在低频。在F=13.57GHz时,四个表面的电流的流向可以看出,各形成一个电偶极子,相对的两个面上的电偶极子同向横向耦合,可以近似理解为两个同向放置的电流线会相互排斥,从而导致系统需要更大的回复力,所以谐振频率在高频。通过改变折叠角度β,可以改变两个偶极子间的距离,进而可以调控电磁波的反射幅度和谐振频率。模式2的原理与模式1类似。模式3,如图4所示TM极化下一个谐振点下的表面电流分布可以看出,每个面上各形成一个磁偶极子,两个面上的磁偶极子的z轴分量pz=pcosβ大小相等方向相反,可以近似为反向横向耦合;其沿着y轴的分量py=psinβ,可以近似为同向纵向耦合;当折叠角度β增大时,两个面中心点之间的距离l=mcosβ会减小,所以两个偶极子之间的作用会增大,进而可以调控电磁波的谐振频率。由于周期长度的改变,进而可以调控反射幅度。As shown in Fig. 3, when excited in mode 1 (β=45°), it can be seen that at F=4.75 GHz, the four surface currents respectively form a circular current, each forming a magnetic dipole, and the two opposite surfaces The magnetic dipole on can be understood as longitudinal coupling in the same direction, which can be approximately understood as the proximity of N and S poles, which can make the system more stable, so that the resonance frequency is at a low frequency. When F=13.57GHz, the current flow direction of the four surfaces can be seen, each forms an electric dipole, and the electric dipoles on the two opposite surfaces are laterally coupled in the same direction, which can be approximately understood as two in the same direction The placed current lines will repel each other, causing the system to require more restoring force, so the resonant frequency is at high frequencies. By changing the folding angle β, the distance between the two dipoles can be changed, and the reflection amplitude and resonance frequency of the electromagnetic wave can be adjusted. The principle of
根据三功能集成超材料可调吸波体的要求,本发明对超材料单元结构进行优化设计,具体步骤如下:According to the requirements of the three-function integrated metamaterial tunable absorber, the present invention optimizes the design of the metamaterial unit structure, and the specific steps are as follows:
第一步,根据多偶极子耦合的基本理论,构建单元结构The first step is to construct the unit structure according to the basic theory of multi-dipole coupling
电/磁多极子都可以向外辐射能量。一般情况下,两个空间放置的偶极子之间会相互作用,可以分为横向耦合和纵向耦合,如图8所示。两个偶极子同向横向耦合时,使得系统回复力增加,谐振频率较高;两个偶极子反向横向耦合时,使得系统相对稳定,谐振频率较低。然而当两个偶极子纵向耦合时情况正好相反,同向纵向耦合时,使得系统变得更加稳定,谐振频率较低;反向纵向耦合时,回复力增加,谐振频率相对较高。根据此原理,设计三维剪纸超材料单元结构,通过改变折叠的角度β,可以改变偶极子之间的作用,从而起到调控的目的。Both electric and magnetic polypoles can radiate energy outward. In general, the interaction between two spatially placed dipoles can be divided into lateral coupling and longitudinal coupling, as shown in Figure 8. When two dipoles are laterally coupled in the same direction, the restoring force of the system increases and the resonant frequency is high; when two dipoles are laterally coupled in opposite directions, the system is relatively stable and the resonance frequency is low. However, when the two dipoles are longitudinally coupled, the situation is exactly the opposite. When longitudinally coupled in the same direction, the system becomes more stable and the resonant frequency is lower; when the reverse longitudinal coupling is performed, the restoring force increases and the resonance frequency is relatively high. According to this principle, the three-dimensional kirigami metamaterial unit structure is designed. By changing the folding angle β, the interaction between the dipoles can be changed, so as to achieve the purpose of regulation.
在模式1下,进行单元结构的设计,首先设计一个外方环结构,如图5(a)所示,-10dB带宽很窄,效果不是很好;接着设计双方环结构,如图5(b)所示,-10dB带宽明显提升,但是在低频处仍不是很理想;接着设计双开口谐振环结构,仿真结果如图5(c)所示,-10dB带宽明显提升且在低频处也达到了-10dB以下。接着对结构参数进行了优化设计,如图6所示,通过仿真可得各个参数下的仿真结果,参数最后优化后可得m=16mm,n=12mm,w2=2.3mm,w1=g=0.3mm;其中,PET的厚度为0.1mm,ITO的阻值为100Ω/sq。In
第二步,构建三种剪纸模式The second step is to construct three paper-cut patterns
根据第一步,如图7所示设计了三种剪纸的模式:模式1:两块折好的条带结构对立拼接成“井”字形结构;模式2(与模式1相似):两块折好的条带结构对立放置(两个条带结构中间有一定距离);模式3:相当于将模式1的条带结构翻折90度,相邻单元由边界边的中点连接,即相邻两块条带结构相差半个周期交错排列。According to the first step, three paper-cut modes are designed as shown in Figure 7: Mode 1: Two folded strips are spliced to form a "well"-shaped structure; Mode 2 (similar to Mode 1): Two folded Good strip structures are placed opposite each other (there is a certain distance between the two strip structures); Mode 3: It is equivalent to turning the strip structure of
根据所构建的三种模式,应用多偶极子耦合理论分析调控机制如下:According to the constructed three models, the multi-dipole coupling theory is applied to analyze the regulation mechanism as follows:
如图8所示,两个空间放置的偶极子(电偶极子或磁偶极子,图中所示为电偶极子)会相互作用,它们之间的相互作用能为:As shown in Figure 8, two spatially placed dipoles (electric dipoles or magnetic dipoles, electric dipoles are shown in the figure) interact, and the interaction energy between them is:
其中,是p1指向p2的单位矢量,当两个偶极子为单纯的纵向耦合或者横向耦合时,可以简化为:in, is the unit vector of p 1 pointing to p 2. When the two dipoles are purely longitudinally or laterally coupled, they can be simplified as:
其中,γ=+1,是相互作用系数,当两个偶极子横向耦合时γ=-2,当两个偶极子纵向耦合时γ=+1,p1和p2为两个偶极矩的幅值。例如,当两个电偶极子相互作用,在横向耦合下两个反向放置的偶极子会相互吸引,会降低系统的回复力,使得系统变得稳定,谐振频率相对较低;相反的是,两个同向放置的偶极子之间会相互排斥,使得系统的回复力增加,谐振频率相对较高。纵向耦合与横向耦合的情况正好相反,两个同向放置的电偶极子,距离靠近的两端正负电荷相互吸引,会降低系统的回复力,使得系统变得稳定,谐振频率较低;而两个偶极子反向放置时,距离靠近的两端电荷会相互排斥,会提高系统的回复力,使得谐振频率较高。Among them, γ=+1, is the interaction coefficient, when two dipoles are coupled laterally, γ=-2, when two dipoles are coupled longitudinally, γ=+1, p 1 and p 2 are two dipoles The magnitude of the moment. For example, when two electric dipoles interact, the two oppositely placed dipoles will attract each other under lateral coupling, which will reduce the restoring force of the system, making the system stable and the resonant frequency relatively low; the opposite Yes, two dipoles placed in the same direction will repel each other, so that the restoring force of the system increases and the resonant frequency is relatively high. The situation of longitudinal coupling and lateral coupling is just the opposite. Two electric dipoles placed in the same direction, the positive and negative charges at the two ends close to each other attract each other, which will reduce the restoring force of the system, making the system stable and the resonant frequency is low; When two dipoles are placed in opposite directions, the charges at the two ends that are close to each other will repel each other, which will improve the restoring force of the system and make the resonance frequency higher.
据此,设计的三种模式如下:Accordingly, the three modes are designed as follows:
模式1,如图9所示,为两种极化下的功能示意图。为了更好地理解调控机制,先通过几何关系得出两个相对面之间的距离为l1=msin2β(2β≤90°)(当β>45°时相当于所设计的超材料旋转90度,所以不做分析),周期的长度为a1=2mcosβ(β≤45°),宽度为b1=2msinβ(β≤45°)。当受到外部机械力的作用改变折叠的角度β时,β增大,沿y方向的周期会增大,即沿y方向有效ITO吸收面积变大,从而导致TE极化波吸收效果更好,反射幅度减小,即功能一:在TE极化下可以实现电磁波反射幅度的机械调控;根据上述提到的偶极子理论以及图3的电流分布图,可以得到两个相邻的面也会相互作用,它们会形成两个分量,即|Mx|=|M|·sinβ,|My|=|M|·cosβ,沿着y轴的分量可以近似同向纵向耦合,沿着x轴的分量相反可以认为反向纵向耦合,相对的两个面可以认为同向纵向耦合,β增大时,两个相对偶极子之间的距离l1会增大,相互作用力减小,认为谐振频率会向高频移动,即功能二:在TM极化下可以实现反射电磁波谐振频率的机械调控。如图10所示,当β=45°时,该种状态下可以作为一个宽频吸波体,主要机理在于沿y轴(TE极化)的周期b1达到了极大值,吸收效果最好,TM极化下两个相对面上的偶极子之间的距离l1最大,此时两个磁偶极子同向纵向耦合作用最小(低频谐振频率向高频移动),电偶极子横向同向耦合作用最小(高频谐振频率向低频移动),如图15所示,当β=30°时两个谐振频率的中间频带会达到-10dB以上(宽频吸波被分裂成两个窄带吸波),所以只有当β=45°达到极值时,两个谐振频率点靠近,使得中间频带达到-10dB以下,最终使得两个窄带吸波无缝连接成宽频吸波,达到最大吸波带宽。在3.46GHz到15.61GHz范围内电磁波垂直入射下吸收率可以达到90%以上,绝对带宽达到了12.15GHz,相对带宽达到127.43%;在入射角60°以内,TE极化波吸收率可以达到74%以上,TM极化波吸收率可以达到90%以上,但是高频处会有漂移,即功能三:全极化大角度宽频吸波体。
模式2,如图11所示,调控机制与模式1类似。功能一和功能二都类似于模式1,但是工作频带是不同的。当折叠角度β=45°时,如图12所示,该种状态下也可以作为一个宽频吸波体,在6GHz到16GHz范围内电磁波垂直入射下吸收率可以达到80%以上,绝对带宽达到了10GHz,相对带宽达到90.91%;在斜入射角度60°以内,14.5GHz以下TE极化波吸收率可以达到80%以上,TM极化波吸收率可以达到90%以上,在14.5GHz-16 GHz范围内吸收率也能达到74%以上,即功能三:全极化大角度宽频吸波体。
模式3,如图13所示,根据几何关系两个相邻面中心点之间的距离l=mcosβ。如图4所示TM极化下一个谐振点下的表面电流分布可以看出,每个面上各形成一个磁偶极子,两个相邻面上的磁偶极子的z轴分量pz=pcosβ大小相等方向相反,可以近似为反向横向耦合;其沿着y轴的分量py=psinβ,可以近似为同向纵向耦合;当折叠角度β增大时,两个偶极子之间的作用会增大,使得系统变得稳定,减小系统的回复力,进而可以调控电磁波的谐振频率向低频移动,即功能二:在TM极化下可以实现反射电磁波谐振频率的机械调控。由于折叠角度β增大,周期长度l=2mcosβ会减小,超材料被激发所产生的谐振变得更强,进而反射幅度减小,即功能一:在TE极化下可以实现电磁波反射幅度的机械调控。当折叠角度β=45°时,如图14所示,该种状态下也可以作为一个宽频吸波体,主要是因为周期长度l=2mcosβ和超材料的高度h=msinβ达到了极值,此时ITO作用的面积最大,所以吸收效果最好。在4GHz到15.5GHz范围内垂直入射下TE极化波吸收率可以达到90%以上,TM极化波吸收率可以达到82%以上,绝对带宽达到了11.55GHz,相对带宽达到90%;在斜入射角度60°以内,TE极化波吸收率可以达到70%以上,TM极化波吸收率可以达到72%以上,即功能三:全极化大角度宽频吸波体。
第三步:改变三种剪纸模式的折叠角度β,评估电磁吸波调控范围Step 3: Change the folding angle β of the three kirigami modes to evaluate the regulation range of electromagnetic wave absorption
有了第一步的理论支撑和第二步的三种剪纸模式,就可以分析三种模式在不同折叠角度β(β≤45°)下的不同电磁吸波调控范围。With the theoretical support of the first step and the three kirigami modes of the second step, the different electromagnetic wave absorption regulation ranges of the three modes at different folding angles β (β≤45°) can be analyzed.
模式1:实验结果如图9所示,当折叠角度β从10°变化到30°,TE极化下电磁波反射幅度从0.55变化到0.1,TM极化下反射电磁波谐振频率从2.0GHz到3.9GHz(相对带宽调控范围可达38.7%);仿真结果如图18所示,当折叠角度β从1.5°变化到30°,TE极化下电磁波反射系数(反射系数越小对电磁波的吸收效果越好)从-23dB变化到-3dB,TM极化下反射电磁波谐振频率从0.7GHz到3.9GHz(相对带宽调控范围可达139.1%)。Mode 1: The experimental results are shown in Figure 9. When the folding angle β changes from 10° to 30°, the reflected amplitude of the electromagnetic wave changes from 0.55 to 0.1 under TE polarization, and the resonant frequency of the reflected electromagnetic wave changes from 2.0 GHz to 3.9 GHz under TM polarization. (The relative bandwidth control range can reach 38.7%); the simulation results are shown in Figure 18. When the folding angle β changes from 1.5° to 30°, the reflection coefficient of electromagnetic waves under TE polarization (the smaller the reflection coefficient, the better the absorption effect of electromagnetic waves). ) changes from -23dB to -3dB, and the resonance frequency of the reflected electromagnetic wave under TM polarization is from 0.7GHz to 3.9GHz (the relative bandwidth regulation range can reach 139.1%).
模式2:实验结果如图11所示,当折叠角度β从20°变化到45°,TE极化下电磁波反射幅度从0.5变化到0.1,TM极化下反射电磁波谐振频率从3.2GHz到4.9GHz(相对带宽调控范围可达41.9%);仿真结果如图19所示,当折叠角度β从3°变化到45°,TE极化下电磁波反射系数从-19dB变化到-3dB,TM极化下反射电磁波谐振频率从1.7GHz到4.7GHz(相对带宽调控范围可达93.7%)。Mode 2: The experimental results are shown in Figure 11. When the folding angle β changes from 20° to 45°, the reflected amplitude of the electromagnetic wave changes from 0.5 to 0.1 under TE polarization, and the resonant frequency of the reflected electromagnetic wave changes from 3.2 GHz to 4.9 GHz under TM polarization. (The relative bandwidth control range can reach 41.9%); the simulation results are shown in Figure 19. When the folding angle β changes from 3° to 45°, the electromagnetic wave reflection coefficient changes from -19dB to -3dB under TE polarization, and under TM polarization The resonant frequency of the reflected electromagnetic wave is from 1.7GHz to 4.7GHz (the relative bandwidth control range can reach 93.7%).
模式3:实验结果如图13所示,当折叠角度β从20°变化到45°,TE极化下电磁波反射幅度从0.48变化到0.05,TM极化下反射电磁波谐振频率从13.3GHz到6.6GHz(相对带宽调控范围可达67.3%);仿真结果如图20所示,当折叠角度β从10°变化到45°,TE极化下电磁波反射系数从-5dB变化到-32dB,TM极化下反射电磁波谐振频率从15.5GHz到5.4GHz(相对带宽调控范围可达96.7%)。Mode 3: The experimental results are shown in Figure 13. When the folding angle β changes from 20° to 45°, the reflected amplitude of the electromagnetic wave changes from 0.48 to 0.05 under TE polarization, and the resonant frequency of the reflected electromagnetic wave changes from 13.3 GHz to 6.6 GHz under TM polarization. (The relative bandwidth control range can reach 67.3%); the simulation results are shown in Figure 20. When the folding angle β changes from 10° to 45°, the electromagnetic wave reflection coefficient changes from -5dB to -32dB under TE polarization, and under TM polarization The resonant frequency of the reflected electromagnetic wave is from 15.5GHz to 5.4GHz (the relative bandwidth control range can reach 96.7%).
第四步:根据三种剪纸模式以及折叠角度β不同,确定出三种功能Step 4: Determine three functions according to the three paper-cut modes and the different folding angles β
首先,在外部机械力的作用下,通过改变剪纸的角度β,三种模式下都可以实现在TE极化下电磁波反射幅度的机械调控(即工作于频段f1功能一);在TM极化下实现反射电磁波谐振频率的机械调控(即工作于频段f2、f3的功能二);当折叠角度β=45°时,三种模式都可以作为一个全极化大角度宽频吸波体(即工作于频段f0的功能三)。First, under the action of external mechanical force, by changing the angle β of the kirigami, the mechanical regulation of the electromagnetic wave reflection amplitude under TE polarization can be achieved in all three modes (that is, working in the frequency band f 1 function 1); The mechanical regulation of the resonant frequency of the reflected electromagnetic wave can be achieved under the fold (that is, the
计算三种模式下的泊松比和相对密度:Calculate Poisson's ratio and relative density in three modes:
泊松比主要指的是材料在单向受拉或受压时,横向正应变与轴向正应变之比的负值。计算公式为:Poisson's ratio mainly refers to the negative value of the ratio of the transverse normal strain to the axial normal strain when the material is in unidirectional tension or compression. The calculation formula is:
其中,v为泊松比,l为超材料单元的长度,w为超材料单元的宽度。所以可得模式1的泊松比为:where v is the Poisson's ratio, l is the length of the metamaterial unit, and w is the width of the metamaterial unit. So the Poisson's ratio of
其中,l1=2m·cosβ,w3=2m·sinβ。Wherein, l 1 =2m·cosβ, and w 3 =2m·sinβ.
模式2的泊松比为:The Poisson's ratio for
其中,l2=2m·cosβ,w4=2m·sinβ+k。Wherein, l 2 =2m·cosβ, and w 4 =2m·sinβ+k.
模式3由于横向正应变为0,所以根据计算公式可得泊松比为0。三种模式下泊松比的计算结果如图21(a)所示,可以看出,随着折叠角度β(β≤45°)的增大,泊松比会增大,模式2要比模式1的泊松比大。In
相对密度主要指的是超材料的体积与所占立方体空间的比值,如模式1的相对密度为:The relative density mainly refers to the ratio of the volume of the metamaterial to the space occupied by the cube. For example, the relative density of
模式2的相对密度为:The relative density of
模式3的相对密度为The relative density of
三种模式下相对密度的计算结果如图21(b)所示。可得随着折叠角度β(β≤45°)的增大,相对密度会减小,模式1和模式3的变化趋势相同,模式2要比模式1的相对密度小。The calculated results of the relative densities in the three modes are shown in Fig. 21(b). It can be seen that with the increase of the folding angle β (β≤45°), the relative density will decrease, the change trend of
本发明提供的三维剪纸超材料可调吸波体及其设计方法,通过改变折叠角度β,可以实现TE极化下电磁波反射幅度(吸收幅度)的机械调控以及TM极化下反射电磁波谐振频率(吸波频段)的机械调控,其中,在β=45°时可以实现全极化大角度宽频吸波的优异功能。本发明具有集成度高、灵活多变等优势。The three-dimensional kirigami metamaterial tunable absorber and its design method provided by the present invention can realize the mechanical regulation of the electromagnetic wave reflection amplitude (absorption amplitude) under TE polarization and the reflected electromagnetic wave resonance frequency under TM polarization by changing the folding angle β ( The mechanical regulation of the absorbing frequency band), in which, when β=45°, the excellent function of fully polarized large-angle broadband absorbing can be realized. The invention has the advantages of high integration, flexibility and change.
附图说明Description of drawings
图1为具有全极化大角度宽频吸波、幅度调控、谐振频率调控功能的一体化超材料功能示意图。Figure 1 is a functional schematic diagram of an integrated metamaterial with the functions of fully polarized large-angle broadband absorption, amplitude modulation, and resonance frequency modulation.
图2为超材料单元结构示意图。Figure 2 is a schematic diagram of the metamaterial unit structure.
图3为模式1(β=45°)两个谐振点4.75和13.57GHz下超材料单元电流分布图。Figure 3 shows the current distribution of the metamaterial unit at two resonance points of mode 1 (β=45°) at 4.75 and 13.57 GHz.
图4为模式3TM极化下谐振频率5.4GHz下超材料单元电流分布图。Figure 4 shows the current distribution of the metamaterial unit at the resonant frequency of 5.4 GHz under the mode 3TM polarization.
图5为单元设计流程示意图。Figure 5 is a schematic diagram of the unit design flow.
图6为结构参数优化设计示意图。Figure 6 is a schematic diagram of the optimal design of structural parameters.
图7为三种不同模式示意图。Figure 7 is a schematic diagram of three different modes.
图8为两个偶极子相互作用的示意图。Figure 8 is a schematic diagram of the interaction of two dipoles.
图9为模式1下β变化时两种极化下的功能示意图(实验结果)。FIG. 9 is a schematic diagram of the functions at two polarizations when β changes in mode 1 (experimental results).
图10为模式1下β=45°时两种极化下大角度宽频吸波的仿真结果示意图。FIG. 10 is a schematic diagram of the simulation results of large-angle broadband absorption under two polarizations when β=45° in
图11为模式2下β变化时两种极化下的功能示意图(实验结果)。Figure 11 is a schematic diagram of the functions at two polarizations when β changes in mode 2 (experimental results).
图12为模式2下β=45°时两种极化下大角度宽频吸波的仿真结果示意图。FIG. 12 is a schematic diagram of the simulation results of large-angle broadband absorption under two polarizations when β=45° in
图13为模式3下β变化时两种极化下的功能示意图(实验结果)。Figure 13 is a schematic diagram of the functions at two polarizations when β changes in mode 3 (experimental results).
图14为模式2下β=45°时两种极化下大角度宽频吸波的仿真结果示意图。FIG. 14 is a schematic diagram of the simulation results of large-angle broadband absorption under two polarizations when β=45° in
图15为模式1两种极化下β变化时的仿真结果示意图。FIG. 15 is a schematic diagram of the simulation results when β changes under two polarizations in
图16为所设计的超材料可调吸波体制作流程图。Figure 16 is a flow chart of the fabrication of the designed metamaterial tunable absorber.
图17为实验测试示意图。Figure 17 is a schematic diagram of the experimental test.
图18为模式1仿真结果示意图。FIG. 18 is a schematic diagram of the simulation result of
图19为模式2仿真结果示意图。FIG. 19 is a schematic diagram of the simulation result of
图20为模式3仿真结果示意图。FIG. 20 is a schematic diagram of the simulation results of
图21为三种模式下的泊松比和相对密度。Figure 21 shows Poisson's ratio and relative density for the three modes.
具体实施方式Detailed ways
下面以实施例详述超材料可调吸波体的具体实施方式。首先,根据多偶极子耦合的理论构建三种模式,通过改变折叠角度β,可以实现TE极化下电磁波反射幅度的机械调控以及TM极化下反射电磁波谐振频率的机械调控,其中,在β=45°时可以实现全极化大角度宽频吸波的优异功能。具体的调控机制如上述所示,为了进行验证,下面详细叙述制作过程和测试过程。The specific implementation of the metamaterial tunable wave absorber will be described in detail below with examples. Firstly, three modes are constructed according to the theory of multi-dipole coupling. By changing the folding angle β, the mechanical regulation of the electromagnetic wave reflection amplitude under TE polarization and the mechanical regulation of the reflected electromagnetic wave resonance frequency under TM polarization can be realized. When =45°, the excellent function of fully polarized large-angle broadband absorption can be realized. The specific regulation mechanism is shown above. For verification, the production process and the testing process are described in detail below.
1、将加工好的ITO平面结构裁成所需要的条状结构:实际制作时是一个平面结构(所设计的ITO结构附在PET板上),需要进行后处理,如图16所示,主要通过切割刀沿着x轴方向的切割线切割(或者剪刀裁剪)成所需要的条状结构,接着将切好的条状结构按照折叠线折叠。1. Cut the processed ITO plane structure into the required strip structure: the actual production is a plane structure (the designed ITO structure is attached to the PET board), which requires post-processing, as shown in Figure 16, the main Cut (or cut with scissors) a cutting knife along the cutting line in the x-axis direction into a desired strip-shaped structure, and then fold the cut strip-shaped structure according to the folding line.
2、在泡沫板上刻蚀槽状结构:为了保证折叠角度β的准确性,在泡沫板上刻蚀槽状结构,然后将折叠好的条状结构固定在槽内。为了保证刻蚀的准确性,如图16所示,在泡沫板上贴好了带有刻蚀线的白纸,沿着白纸上的线条进行刻蚀,不同模式不同折叠角度β下,只需刻蚀不同的槽状结构即可。接着将折叠好的条状结构插入槽中,制作完成。不同模式下的不同折叠角度β,只需插入不同槽状结构的泡沫板上即可,即制作完成,如图16所示为三种模式下制作好的超材料可调吸波体示意图。2. Etch the grooved structure on the foam board: In order to ensure the accuracy of the folding angle β, the grooved structure is etched on the foam board, and then the folded strip structure is fixed in the groove. In order to ensure the accuracy of etching, as shown in Figure 16, white paper with etching lines is pasted on the foam board, and etching is performed along the lines on the white paper. Under different modes and different folding angles β, only Different groove structures need to be etched. Then insert the folded strip structure into the slot, and the production is completed. For different folding angles β in different modes, it is only necessary to insert foam boards with different groove-like structures, and the fabrication is completed. Figure 16 shows the schematic diagrams of the fabricated metamaterial tunable absorbers in three modes.
3、实验验证:在微波暗室下进行测试,经验证,测试结果基本与仿真结果相符合,图18、图19、图20为三种模式的仿真结果示意图,图9、图11、图13为三种模式的实验测试结果示意图。验证了所设计的超材料可调吸波体的三种功能:通过改变折叠角度β,可以实现TE极化下电磁波反射幅度的机械调控以及TM极化下反射电磁波谐振频率的机械调控,其中在β=45°时可以实现全极化大角度宽频吸波的优异功能。3. Experimental verification: The test was carried out in a microwave anechoic chamber. After verification, the test results were basically consistent with the simulation results. Figure 18, Figure 19, and Figure 20 are schematic diagrams of the simulation results of the three modes. Figure 9, Figure 11, and Figure 13 are the simulation results. Schematic diagram of the experimental test results of the three modes. The three functions of the designed metamaterial tunable absorber are verified: by changing the folding angle β, the mechanical regulation of the electromagnetic wave reflection amplitude under TE polarization and the mechanical regulation of the reflected electromagnetic wave resonance frequency under TM polarization can be achieved. When β=45°, the excellent function of fully polarized large-angle broadband absorption can be realized.
4、具体结果如下:4. The specific results are as follows:
模式1:如图9所示当折叠角度β从10°变化到30°,TE极化下电磁波反射幅度从0.55变化到0.1,即功能一:在TE极化下可以实现电磁波反射幅度的机械调控;TM极化下反射电磁波谐振频率从2.0GHz到3.9GHz(相对带宽调控范围可达38.7%),即功能二:在TM极化下可以实现反射电磁波谐振频率的机械调控;如图10所示,当β=45°时,该种状态下可以作为一个宽频吸波体,在3.46GHz到15.61GHz范围内电磁波垂直入射下吸收率可以达到90%以上,绝对带宽达到了12.15GHz,相对带宽达到127.43%,在入射角60°以内,TE极化波吸收率可以达到74%以上,TM极化波吸收率可以达到90%以上,但是高频处会有漂移,即功能三:全极化大角度宽频吸波体。Mode 1: As shown in Figure 9, when the folding angle β changes from 10° to 30°, the electromagnetic wave reflection amplitude under TE polarization changes from 0.55 to 0.1, that is, function 1: Mechanical regulation of electromagnetic wave reflection amplitude can be realized under TE polarization The resonant frequency of the reflected electromagnetic wave under TM polarization is from 2.0GHz to 3.9GHz (the relative bandwidth control range can reach 38.7%), that is, the second function: the mechanical adjustment of the reflected electromagnetic wave resonance frequency can be realized under the TM polarization; as shown in Figure 10 , when β=45°, it can be used as a broadband absorber in this state, the absorption rate can reach more than 90% under vertical incidence of electromagnetic waves in the range of 3.46GHz to 15.61GHz, the absolute bandwidth reaches 12.15GHz, and the relative bandwidth reaches 127.43%, within the incident angle of 60°, the absorption rate of TE polarized wave can reach more than 74%, and the absorption rate of TM polarized wave can reach more than 90%, but there will be drift at high frequency, that is, function three: large full polarization Angle Broadband Absorber.
模式2:如图11所示当折叠角度β从20°变化到45°,TE极化下电磁波反射幅度从0.5变化到0.1,即功能一:在TE极化下可以实现电磁波反射幅度的机械调控;TM极化下反射电磁波谐振频率从3.2GHz到4.9GHz(相对带宽调控范围可达41.9%),即功能二:在TM极化下可以实现反射电磁波谐振频率的机械调控;当折叠角度β=45°时,如图12所示,该种状态下也可以作为一个宽频吸波体,在6GHz到16GHz范围内电磁波垂直入射下吸收率可以达到80%以上,绝对带宽达到了10GHz,相对带宽达到90.91%,在斜入射角度60°以内,14.5GHz以下TE极化波吸收率可以达到80%以上,14.5GHz TM极化波吸收率可以达到90%以上,在14.5GHz-16GHz范围内吸收率也能达到74%以上,即功能三:全极化大角度宽频吸波体。Mode 2: As shown in Figure 11, when the folding angle β changes from 20° to 45°, the electromagnetic wave reflection amplitude changes from 0.5 to 0.1 under TE polarization, that is, function 1: Mechanical regulation of electromagnetic wave reflection amplitude can be realized under TE polarization ; The resonant frequency of the reflected electromagnetic wave under TM polarization is from 3.2GHz to 4.9GHz (the relative bandwidth control range can reach 41.9%), that is, the second function: the mechanical adjustment of the reflected electromagnetic wave resonance frequency can be realized under the TM polarization; when the folding angle β= At 45°, as shown in Figure 12, in this state, it can also be used as a broadband absorber. In the range of 6GHz to 16GHz, the absorption rate can reach more than 80% under vertical incidence of electromagnetic waves, the absolute bandwidth reaches 10GHz, and the relative bandwidth reaches 90.91%, within 60° of the oblique incident angle, the absorption rate of TE polarized wave below 14.5GHz can reach more than 80%, and the absorption rate of TM polarized wave can reach more than 90% at 14.5GHz. Can reach more than 74%, that is, function three: fully polarized large-angle broadband absorber.
模式3:如图13所示当折叠角度β从20°变化到45°,TE极化下电磁波反射幅度从0.48变化到0.05,即功能一:在TE极化下可以实现电磁波反射幅度的机械调控;TM极化下反射电磁波谐振频率从13.3GHz到6.6GHz(相对带宽调控范围可达67.3%),即功能二:在TM极化下可以实现反射电磁波谐振频率的机械调控;当折叠角度β=45°时,如图14所示,该种状态下也可以作为一个宽频吸波体,在4GHz到15.5GHz范围内垂直入射下TE极化波吸收率可以达到90%以上,TM极化波吸收率可以达到82%以上,绝对带宽达到了11.55GHz,相对带宽达到90%,在斜入射角度60°以内,TE极化波吸收率可以达到70%以上,TM极化波吸收率可以达到72%以上,即功能三:全极化大角度宽频吸波体。Mode 3: As shown in Figure 13, when the folding angle β changes from 20° to 45°, the electromagnetic wave reflection amplitude changes from 0.48 to 0.05 under TE polarization, that is, function 1: Mechanical regulation of electromagnetic wave reflection amplitude can be realized under TE polarization ; The resonant frequency of the reflected electromagnetic wave under TM polarization is from 13.3GHz to 6.6GHz (the relative bandwidth control range can reach 67.3%), that is, the second function: the mechanical adjustment of the reflected electromagnetic wave resonance frequency can be realized under the TM polarization; when the folding angle β= At 45°, as shown in Figure 14, in this state, it can also be used as a broadband absorber. Under normal incidence in the range of 4GHz to 15.5GHz, the TE polarized wave absorption rate can reach more than 90%, and the TM polarized wave absorbs The absorption rate can reach more than 82%, the absolute bandwidth can reach 11.55GHz, the relative bandwidth can reach 90%, and the absorption rate of TE polarized wave can reach more than 70% and the TM polarized wave absorption rate can reach 72% within the oblique incidence angle of 60°. The above is the third function: fully polarized large-angle broadband absorber.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011326153.7A CN112490681B (en) | 2020-11-24 | 2020-11-24 | Three-dimensional kirigami metamaterial tunable absorber and its design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011326153.7A CN112490681B (en) | 2020-11-24 | 2020-11-24 | Three-dimensional kirigami metamaterial tunable absorber and its design method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112490681A true CN112490681A (en) | 2021-03-12 |
CN112490681B CN112490681B (en) | 2022-04-12 |
Family
ID=74933308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011326153.7A Active CN112490681B (en) | 2020-11-24 | 2020-11-24 | Three-dimensional kirigami metamaterial tunable absorber and its design method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112490681B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112949136A (en) * | 2021-03-16 | 2021-06-11 | 大连理工大学 | Paper-cut metamaterial with adjustable expansion characteristic under large stretching amount and design method thereof |
CN114824815A (en) * | 2022-05-05 | 2022-07-29 | 吉林大学 | Metamaterial for mechanically regulating wave absorption performance and mechanical regulation method of coupling distance of metamaterial |
CN115084869A (en) * | 2022-06-24 | 2022-09-20 | 中国人民解放军空军工程大学 | An ultra-broadband and wide-angle stealth structural material |
CN115149269A (en) * | 2022-06-27 | 2022-10-04 | 西北工业大学 | A Broadband Metamaterial Absorber Based on Synthetic Resin and ITO Thin Films |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004018064A (en) * | 2002-06-19 | 2004-01-22 | Rengo Co Ltd | Paper sheet packaging material |
CN104376133A (en) * | 2013-08-14 | 2015-02-25 | 上海交通大学 | Manufacturing and application methods of smooth curved crease-based origami pattern |
CN104376132A (en) * | 2013-08-14 | 2015-02-25 | 上海交通大学 | Implementing and applying method of paper folding structure |
TW201539971A (en) * | 2013-11-29 | 2015-10-16 | Univ Michigan | Autonomous solar tracking of micro-structured flat panel photovoltaic panels using paper-cutting process |
CN106684571A (en) * | 2017-02-27 | 2017-05-17 | 北京理工大学 | Miura - Ori origami structure electromagnetic stealthl plate of loaded graphene metamaterial unit |
US20180360354A1 (en) * | 2017-06-02 | 2018-12-20 | Regents Of The University Of Minnesota | 3d isotropic microscale metamaterials and methods of manufacture |
US20190093728A1 (en) * | 2017-09-25 | 2019-03-28 | University Of Washington | Shock absorbing and impact mitigating structures based on axial-rotational coupling mechanism |
CN110143566A (en) * | 2019-04-22 | 2019-08-20 | 中国科学院物理研究所 | A method for preparing a three-dimensional micro-nano origami structure |
CN111092288A (en) * | 2020-01-09 | 2020-05-01 | 天津大学 | Single-degree-of-freedom parabolic cylinder deployable surface antenna |
CN111478050A (en) * | 2020-04-16 | 2020-07-31 | 中国人民解放军国防科技大学 | A flexible electromagnetic scattering control structure and its fabrication method |
-
2020
- 2020-11-24 CN CN202011326153.7A patent/CN112490681B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004018064A (en) * | 2002-06-19 | 2004-01-22 | Rengo Co Ltd | Paper sheet packaging material |
CN104376133A (en) * | 2013-08-14 | 2015-02-25 | 上海交通大学 | Manufacturing and application methods of smooth curved crease-based origami pattern |
CN104376132A (en) * | 2013-08-14 | 2015-02-25 | 上海交通大学 | Implementing and applying method of paper folding structure |
TW201539971A (en) * | 2013-11-29 | 2015-10-16 | Univ Michigan | Autonomous solar tracking of micro-structured flat panel photovoltaic panels using paper-cutting process |
CN106684571A (en) * | 2017-02-27 | 2017-05-17 | 北京理工大学 | Miura - Ori origami structure electromagnetic stealthl plate of loaded graphene metamaterial unit |
US20180360354A1 (en) * | 2017-06-02 | 2018-12-20 | Regents Of The University Of Minnesota | 3d isotropic microscale metamaterials and methods of manufacture |
US20190093728A1 (en) * | 2017-09-25 | 2019-03-28 | University Of Washington | Shock absorbing and impact mitigating structures based on axial-rotational coupling mechanism |
CN110143566A (en) * | 2019-04-22 | 2019-08-20 | 中国科学院物理研究所 | A method for preparing a three-dimensional micro-nano origami structure |
CN111092288A (en) * | 2020-01-09 | 2020-05-01 | 天津大学 | Single-degree-of-freedom parabolic cylinder deployable surface antenna |
CN111478050A (en) * | 2020-04-16 | 2020-07-31 | 中国人民解放军国防科技大学 | A flexible electromagnetic scattering control structure and its fabrication method |
Non-Patent Citations (2)
Title |
---|
HIROMI YASUDA等: "Nonlinear Wave Dynamics of Origami-based", 《2014 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES》 * |
王彦朝等: "电磁超材料吸波体的研究进展", 《物理学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112949136A (en) * | 2021-03-16 | 2021-06-11 | 大连理工大学 | Paper-cut metamaterial with adjustable expansion characteristic under large stretching amount and design method thereof |
CN112949136B (en) * | 2021-03-16 | 2022-03-29 | 大连理工大学 | Paper-cut metamaterial with adjustable expansion characteristic under large stretching amount and design method thereof |
WO2022193477A1 (en) * | 2021-03-16 | 2022-09-22 | 大连理工大学 | Paper-cutting metamaterial having adjustable auxeticity under large tensile amount, and design method therefor |
CN114824815A (en) * | 2022-05-05 | 2022-07-29 | 吉林大学 | Metamaterial for mechanically regulating wave absorption performance and mechanical regulation method of coupling distance of metamaterial |
CN115084869A (en) * | 2022-06-24 | 2022-09-20 | 中国人民解放军空军工程大学 | An ultra-broadband and wide-angle stealth structural material |
CN115084869B (en) * | 2022-06-24 | 2023-08-01 | 中国人民解放军空军工程大学 | Ultra-wideband wide-angle domain stealth structural material |
CN115149269A (en) * | 2022-06-27 | 2022-10-04 | 西北工业大学 | A Broadband Metamaterial Absorber Based on Synthetic Resin and ITO Thin Films |
Also Published As
Publication number | Publication date |
---|---|
CN112490681B (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112490681B (en) | Three-dimensional kirigami metamaterial tunable absorber and its design method | |
CN105428825B (en) | A kind of multi-functional micro-strip array antenna of polarization based on super surface | |
Chen et al. | Asymmetric coplanar waveguide (ACPW) zeroth-order resonant (ZOR) antenna with high efficiency and bandwidth enhancement | |
CN106654597B (en) | An ultra-thin and ultra-broadband linearly polarized electromagnetic wave polarization converter | |
CN108470973A (en) | Broadband RCS based on gap load reduces super surface | |
WO2009078596A1 (en) | Metamaterial structure having negative permittivity, negative permeability, and negative refractivity | |
EP2693860B1 (en) | Wave-absorbing metamaterial | |
CN208093729U (en) | Broadband RCS based on gap load reduces super surface | |
CN103647152B (en) | Broadband polarization insensitive meta-material wave absorber | |
CN106450795A (en) | Wave-absorbing structure of double-frequency polarized insensitive monolayer metamaterial | |
Dewan et al. | The improvement of array antenna performance with the implementation of an artificial magnetic conductor (AMC) ground plane and in-phase superstrate | |
Zhu et al. | Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner | |
CN103178352A (en) | Multi-frequency single negative-permittivity metamaterial and preparation method thereof | |
CN102931495B (en) | Single-frequency/dual-frequency electromagnetic ultra-medium wave absorbing material | |
Hua et al. | Wide-angle frequency selective surface with ultra-wideband response for aircraft stealth designs | |
Wang et al. | GPS patch antenna loaded with fractal EBG structure using organic magnetic substrate | |
CN211404744U (en) | Strong coupling frequency selection surface structure insensitive to incident electromagnetic wave full angle | |
CN117060090B (en) | A broadband circularly polarized planar integrated feed transmission array antenna | |
Petrignani et al. | Supershaped dielectric resonator antenna for 5G applications | |
Ni et al. | A Fifth-Order X-Band Frequency Selective Surface With High Selectivity and Angular Stability Based on 3-D Coupling Slot | |
Dewantari et al. | Bandwidth enhancement of artificial magnetic conductor-based microwave absorber using square patch corner cutting | |
Kanth et al. | Design and implementation of ultra-thin wideband fss with sharp sidebands using tripole slots | |
WO2019024354A1 (en) | Frequency selective surface structure | |
Kabiri et al. | n th order Rose curve as a generic candidate for RF artificial magnetic material | |
Hua et al. | Design of compact vertically stacked SIW end-fire filtering antennas with transmission zeros |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |