CN112488801B - 一种石油订单数据处理方法、装置及存储介质 - Google Patents
一种石油订单数据处理方法、装置及存储介质 Download PDFInfo
- Publication number
- CN112488801B CN112488801B CN202011476203.XA CN202011476203A CN112488801B CN 112488801 B CN112488801 B CN 112488801B CN 202011476203 A CN202011476203 A CN 202011476203A CN 112488801 B CN112488801 B CN 112488801B
- Authority
- CN
- China
- Prior art keywords
- information
- petroleum
- gas station
- order
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003208 petroleum Substances 0.000 title claims abstract description 309
- 238000003860 storage Methods 0.000 title claims abstract description 26
- 238000003672 processing method Methods 0.000 title claims abstract description 9
- 238000012545 processing Methods 0.000 title claims description 79
- 238000007689 inspection Methods 0.000 claims abstract description 190
- 238000000034 method Methods 0.000 claims abstract description 53
- 230000000875 corresponding effect Effects 0.000 claims description 274
- 238000013528 artificial neural network Methods 0.000 claims description 63
- 238000003062 neural network model Methods 0.000 claims description 37
- 238000012549 training Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 10
- 238000012790 confirmation Methods 0.000 claims description 10
- 238000012384 transportation and delivery Methods 0.000 claims description 10
- 239000003209 petroleum derivative Substances 0.000 claims description 7
- 238000012797 qualification Methods 0.000 claims description 7
- 238000004806 packaging method and process Methods 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 4
- 238000007726 management method Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 119
- 230000008569 process Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 239000000284 extract Substances 0.000 description 5
- 238000012550 audit Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 235000014510 cooky Nutrition 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000013486 operation strategy Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0633—Lists, e.g. purchase orders, compilation or processing
- G06Q30/0635—Processing of requisition or of purchase orders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/401—Transaction verification
- G06Q20/4014—Identity check for transactions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- General Business, Economics & Management (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- Computer Security & Cryptography (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- Loading And Unloading Of Fuel Tanks Or Ships (AREA)
Abstract
本发明实施例公开了一种石油订单数据处理方法、装置及存储介质,方法包括:获取用户端对应的用户账号中正在执行的石油订单数据;提取石油订单数据中的加油站信息,并根据加油站信息确定目标加油站端;向目标加油站端发送油品检查调取命令,以供目标加油站端根据油品检查调取命令查找对应的目标油品检查报告;接收目标加油站端发送的目标油品检查报告,并将目标油品检查报告发送至用户端,以供用户端将目标油品检查报告添加至石油订单数据中。能够为各个正在执行的石油订单数据,获取对应的油品检查报告并展示,这样用户能够获知下单的石油属于合格产品,不存在质量问题,进而使得用户使用更加方便。
Description
技术领域
本发明属于数据处理技术领域,特别是涉及一种石油订单数据处理方法、装置及存储介质。
背景技术
传统的加油站加油服务,程序复杂,过程冗余缓慢,通常需要用户将车开入加油站后,再选取加油油号、加油金额等,待加油完毕,还需要通过现金支付,现金找零等方式来进行结算,造成了大量的时间浪费。若加油站客流量过大,还会造成后面车辆的拥堵,降低加油效率,给加油站的运营带来负面影响。
基于上述情况,现在出现很多加油站对应的APP客户端服务,用来给加油站提供网上下单加油的服务。
但是现有的技术中用户无法查看对应下单的石油,是不是符合标准,这样给用户造成影响,不方便使用。
发明内容
鉴于上述问题,本发明提出了一种石油订单数据处理方法、装置及存储介质,以便克服现有的技术中用户无法查看对应下单的石油,是不是符合标准,这样给用户造成影响,不方便使用的技术问题。
根据本发明的第一方面,提出了一种石油订单数据处理方法,步骤包括:
获取用户端对应的用户账号中正在执行的石油订单数据,其中,所述石油订单数据中包含加油站信息以及石油订单信息;
提取所述石油订单数据中的加油站信息,并根据所述加油站信息确定目标加油站端;
向所述目标加油站端发送油品检查调取命令,以供所述目标加油站端根据所述油品检查调取命令查找对应的目标油品检查报告,其中,所述油品检查调取命令中包含所述石油订单信息;
接收所述目标加油站端发送的目标油品检查报告,并将所述目标油品检查报告发送至所述用户端,以供所述用户端将所述目标油品检查报告添加至所述石油订单数据中。
进一步地,在所述向所述目标加油站端发送油品检查调取命令之前,所述方法还包括:
接收加油站端发来的油品检验指令,其中所述油品检验指令中包含有石油种类;
提取所述油品检验指令中的石油种类,从地图中查找具有所述石油种类检查资格的至少一个待确定检查站;
获取所述加油站端的位置信息,从至少一个待确定检查站中查找与所述位置信息属于同一个市级的确定检查站;
若查找到的确定检查站有多个,则按照与所述加油站端的位置信息的距离由进到远的顺序进行排列后发送至所述加油站端,以供加油站端从多个确定检查站中选择目标检查站;
接收所述加油站端发来的目标检查站以及送检时间,获取所述目标检查站在所述送检时间内的所述石油种类对应的送检业务是否饱和,若饱和,则生成拒绝送检指令发送至所述加油站端,以供所述加油站端重新确定目标检查站,若未饱和,则将所述油品检验指令以及所述送检时间进行打包,发送至所述目标检查站端;
接收所述目标检查站端发来的油品检查报告,并将所述油品检查报告发送至所述加油站端,以供所述加油站端将所述油品检查报告与对应的石油种类进行关联存储在所述加油站端的数据库中。
进一步地,所述方法还包括:
根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,其中所述客户端包括:用户端或加油站端;
接收客户端发来的车主信息和/或车辆信息,利用预先构建的信息识别神经网络模型根据所述车主信息和/或所述车辆信息确定第一待推石油类型;
以及,接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据所述石油订单数据确定第二待推石油类型;
结合所述第一待推石油类型与所述第二待推石油类型确定至少一个目标石油信息,并将所述目标石油信息发送至客户端进行显示。
所述根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,具体包括:
接收所述客户端发来的账号登录指令,将所述账号登录指令与数据库中对应的账号信息进行认证;
认证成功后,获取对应的Token签名,将Token签名与账号登录指令进行结合生成Token数据;
根据Token数据生成JWT数据,并将所述JWT数据反馈至所述客户端,以供所述客户端根据所述JWT数据确定对应角色权限信息;
接收所述客户端发来的角色权限信息获取对应的展示信息,并将展示信息发送至对应的客户端。
进一步地,在所述接收客户端发来的车主信息和/或车辆信息,利用预先构建的信息识别神经网络模型根据所述车主信息和/或所述车辆信息确定第一待推石油类型之前,所述方法还包括:
获取预定数量的信息样本数据,并为每个信息样本数据添加对应的石油类型标签,其中,所述信息样本数据包括:个人样本信息和/或车辆样本信息,所述石油类型标签的数量为一个或多个;
预先构建信息识别初始神经网络,其中,所述信息识别初始神经网络包括:信息识别输入层、N个信息识别隐层、信息识别输出层;
将所述信息样本数据从信息识别输入层中输入,通过所述N个信息识别隐层对所述信息样本数据进行处理,其中,第一个信息识别隐层的接收的是来自信息识别输入层输出的数据内容,剩余的信息识别隐层的数据都是上一个信息识别隐层处理后输出的数据内容;
最后一个信息识别隐层将处理结果数据输出至信息识别输出层,以供所述信息识别输出层根据处理结果数据确定对应的石油类型;
判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个信息样本数据进行训练,若不同,则对各个信息识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同;
将信息样本数据全部训练完成之后的信息识别初始神经网络作为信息识别神经网络模型。
进一步地,在所述接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据所述石油订单数据确定第二待推石油类型之前,所述方法还包括:
获取预定数量的石油订单样本数据,并为每个石油订单样本数据添加对应的石油类型标签,其中,所述石油类型标签的数量为一个或多个;
预先构建订单识别初始神经网络,其中,所述订单识别初始神经网络包括:订单识别输入层、M个订单识别隐层、订单识别输出层;
将所述石油订单样本数据从订单识别输入层中输入,通过所述M个订单识别隐层对所述石油订单样本数据进行处理,其中,第一个订单识别隐层的接收的是来自订单识别输入层输出的数据内容,剩余的订单识别隐层的数据都是上一个订单识别隐层处理后输出的数据内容;
最后一个订单识别隐层将处理结果数据输出至订单识别输出层,以供所述订单识别输出层根据处理结果数据确定对应的石油类型;
判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个石油订单样本数据进行训练,若不同,则根据输出的石油类型与对应的石油类型标签计算订单损失函数,根据订单损失函数对对订单识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同;
将石油订单样本数据全部训练完成之后的订单识别初始神经网络作为订单识别神经网络模型。
进一步地,所述方法还包括:
接收客户端发来的用户加油下单信息,其中,加油下单信息中包括目标石油商品、客户端的位置信息、目标加油站和加油时间段;
提取所述用户加油下单信息中的客户端的位置信息,并在地图中查找所述目标加油站的位置信息,计算所述客户端到达所述目标加油站的车程耗时;
若当前时间+车程耗时≤所述加油时间段的最晚时间点,则获取所述目标加油站在所述加油时间段内的所述目标石油商品是否有剩余出油口,若有,则将所述用户加油下单信息发送至所述目标加油站的加油站端进行确认接收,同时生成确认接收指令发送至客户端,否则,对所述用户加油下单信息进行拒绝接收,并生成拒绝接收指令发送至客户端;
若当前时间+车程耗时>所述加油时间段的最晚时间点,则对所述用户加油下单信息进行拒绝接收,并生成重新确认加油时间段指令发送至客户端。
进一步地,所述方法还包括:
接收总账号对应的加油站端发来的子账号申请指令,其中,所述子账号申请指令中包含:子账号对应的加油站端的终端识别码、子账号的申请地址、子账号的服务项目;
对所述子账号申请指令进行审核,确定所述子账号申请指令中各项信息是否真实;
若审核成功,在所述总账号的账号管理数据库中构建所述子账号对应的子数据库,以供所述子账号将成功的服务项目信息存储在所述子数据库中,若审核失败,则生成申请失败指令反馈至所述总账号对应的加油站端,以供所述总账号对应的加油站端对所述子账号申请指令进行修改或撤销。
根据本发明的第二方面,提出了一种石油订单数据处理装置,包括:
获取模块,用于获取用户端对应的用户账号中正在执行的石油订单数据,其中,所述石油订单数据中包含加油站信息以及石油订单信息;
提取模块,用于提取所述石油订单数据中的加油站信息,并根据所述加油站信息确定目标加油站端;
发送模块,用于向所述目标加油站端发送油品检查调取命令,以供所述目标加油站端根据所述油品检查调取命令查找对应的目标油品检查报告,其中,所述油品检查调取命令中包含所述石油订单信息;
转发模块,接收所述目标加油站端发送的目标油品检查报告,并将所述目标油品检查报告发送至所述用户端,以供所述用户端将所述目标油品检查报告添加至所述石油订单数据中。
根据本发明的第三方面,提出了一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现第一方面所述的石油订单数据处理方法的步骤。
根据本发明的第四方面,提出了一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现第一方面所述的石油订单数据处理方法的步骤。
本发明实施例提供的石油订单数据处理方法、装置及存储介质,具有如下有益效果:
通过本发明的技术方案,能够为各个正在执行的石油订单数据,获取对应的油品检查报告并展示,这样用户能够获知下单的石油属于合格产品,不存在质量问题,进而使得用户使用更加方便。
附图说明
构成说明书的一部分的附图描述了本发明的实施例,并且连同描述一起用于解释本发明的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:
图1为本发明实施例的石油订单数据处理方法的流程图;
图2为本发明实施例的石油订单数据处理装置的结构框图;
图3为本发明实施例的电子设备的结构框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,绝不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
如图1所示,本实施例提出了一种石油订单数据处理方法,适用于服务器端,服务器端属于预先搭建的对用户端和/或加油站端发来的关于加油的数据进行集中处理的服务平台,用户端和加油站端想要利用服务平台进行加油数据处理,需要预先在用户端和加油站端安装对应的APP或者在即时通讯中安装对应的小程序。
步骤包括:
步骤101,获取用户端对应的用户账号中正在执行的石油订单数据,其中,石油订单数据中包含加油站信息以及石油订单信息。
在该步骤中,石油订单信息包含:总额、单价、石油类别、购买量、购买时间、订单号等。
用户端进行石油下单后,对应的石油订单就属于正在执行的石油订单数据,然后就需要在该石油订单数据中添加对应的油品检验报告,具体过程如下述步骤。
步骤102,提取石油订单数据中的加油站信息,并根据加油站信息确定目标加油站端。
在该步骤中,服务器接收到对应的石油订单数据之后,就会提取其中的加油站信息,根据加油站信息确定目标加油站,并与目标加油站建立连接。
步骤103,向目标加油站端发送油品检查调取命令,以供目标加油站端根据油品检查调取命令查找对应的目标油品检查报告,其中,油品检查调取命令中包含石油订单信息。
步骤104,接收目标加油站端发送的目标油品检查报告,并将目标油品检查报告发送至用户端,以供用户端将目标油品检查报告添加至石油订单数据中。
通过上述方案,能够为各个正在执行的石油订单数据,获取对应的油品检查报告并展示,这样用户能够获知下单的石油属于合格产品,不存在质量问题,进而使得用户使用更加方便。
在具体实施例中,在步骤103之前,方法还包括:
步骤A1,接收加油站端发来的油品检验指令,其中油品检验指令中包含有石油种类。
其中,加油站可能需要上架一些品牌石油或者一些优质石油,但是这些品牌石油或者优质石油的油质需要经过检查站进行检验确认。然而由于检查站对应的检查服务可能比较繁忙,为了方便这个过程,避免时间的浪费,加油站端可以通过服务器进行查找确定。
步骤A2,提取油品检验指令中的石油种类,从地图中查找具有石油种类检查资格的至少一个待确定检查站。
其中,地图为具有石油检查资质的各个检查站的地理位置地图。预先在地图中的各个检查站上标注对应的检查资格的石油种类,这样就可以根据油品检验指令中的石油种类,在地图中进行对应查找。
步骤A3,获取加油站端的位置信息,从至少一个待确定检查站中查找与位置信息属于同一个市级的确定检查站。
其中,针对某个加油站端,可能只有地方的检查站出具的检查结果才具有效力,因此需要对应查找对应地方市级机构的检查站作为加油站端的确定检查站。查找出来的确定检查站可以有一个或多个。
另外,如果在同一个市级找不到对应的确定检查站,则扩大范围查找省级的确定检查站,若省级内还是找不到,则查找全国范围内的确定检查站。
步骤A4,若查找到的确定检查站有多个,则按照与加油站端的位置信息的距离由进到远的顺序进行排列后发送至加油站端,以供加油站端从多个确定检查站中选择目标检查站。
其中,若查找到的确定检查站为一个,则直接将确定检查站发送至客户端,以供加油站用户在客户端进行确认。若查找的确定检查站有多个,加油站用户就需要根据自己的实际情况进行选择。
步骤A5,接收加油站端发来的目标检查站以及送检时间,获取目标检查站在送检时间内的石油种类对应的送检业务是否饱和,若饱和,则生成拒绝送检指令发送至加油站端,以供加油站端重新确定目标检查站,若未饱和,则将油品检验指令以及送检时间进行打包,发送至目标检查站端。
步骤A6,接收目标检查站端发来的油品检查报告,并将油品检查报告发送至加油站端,以供加油站端将油品检查报告与对应的石油种类进行关联存储在加油站端的数据库中。
其中,服务器将油品检验指令发送至目标检查站之后,生成对应的唯一确定码,将目标检查站的邮寄信息和该唯一确定码整合后发送至客户端。这样加油站用户就可以将油品样本标记上该唯一确定码之后,按照对应的邮寄信息邮寄到目标检查站。目标检查站收到油品样本之后,判断对应的唯一确定码是否正确,若正确则对该油品样本进行检测,并出具对应的检测报告。将检测报告携带该唯一确定码上传至服务器中,服务器根据该唯一确定码确定对应的加油站用户的客户端,将检测报告发送至该客户端中,以供进行查询展示。
通过上述方案,加油站用户无需到达检查站现场进行油品检验,使得整个油品检验的程序更加方便快捷。
在具体实施例中,方法还包括:
步骤B1,根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,其中客户端包括:用户端或加油站端。
其中,当个人用户第一次打开用户端上对应的APP或者小程序时,先建立个人账号,选择对应用户角色,可以选择个人用户或者加油站用户。
当选择个人用户之后,就会弹出账号注册的界面。输入用户名和密码,并将用户名、密码以及选择的用户角色打包发送至服务器中,服务器根据用户角色匹配对应的用户界面,并为对应的个人账号建立对应的存储数据库,以供存储该个人账号的数据信息。在服务器中各个个人用户的数据对应存储在个人用户存储器中,个人用户存储器中包含有各个个人账号对应的存储数据库。
当选择加油站用户之后,也会弹出账号注册的界面。输入加油站名和密码,并将加油站名、密码以及选择的加油站角色打包发送至服务器中,服务器根据加油站角色匹配对应的加油站界面,并为对应的加油站账号建立对应的存储数据库,以供存储该加油站账号的数据信息。在服务器中各个加油站用户的数据对应存储在加油站用户存储器中,加油站用户存储器中包含有各个加油站账号对应的存储数据库。
这样,当个人用户或者加油站人员通过用户端或者加油站端进行再次登录时,就会向服务器发送账号登录指令,账号登录指令中包含有角色权限信息、账号名、密码以及对应客户端的一些基本信息。
服务器接收到账号登录指令后,若角色权限信息为个人用户,从个人用户存储器中调取对应个人账号的存储数据库中的相关展示信息。若是加油站用户,从加油站用户存储器中调取对应加油站账号的存储数据库中的相关展示信息。并将对应的展示信息发送至对应的客户端进行展示。
步骤B2,接收客户端发来的车主信息和/或车辆信息,利用预先构建的信息识别神经网络模型根据车主信息和/或车辆信息确定第一待推石油类型。
在该步骤中,信息识别神经网络模型是利用大量的带有具体需要的石油类型的车主信息和/或车辆信息,通过神经网络进行学习训练得到的,能够根据车主信息和/或车辆信息进行处理,得到对应需要的第一待推石油类型。
车主信息包括:姓名、年龄、性别、个人喜好、体重等,车辆信息包括:车型、品牌、排量、车辆型号、颜色等信息。
其中,对应的信息识别神经网络模型的信息识别输入层中包括两类输入口具体为:车主信息输入口,和车辆信息输入口,将接收到的车主信息和/或车辆信息从对应的输入口输入,经过信息识别输入层进行数据处理之后,将文字数据转换成代码数据以便信息识别神经网络模型的信息识别隐层根据这些数据进行进一步地信息处理。最终得到对应的第一待推石油类型。
步骤B3,接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据石油订单数据确定第二待推石油类型。
在该步骤中,石油订单数据为对应用户的历史订单数据,该订单数据包括:加油站的位置、加油的型号、加油量、加油时间等信息。
其中,订单识别神经网络模型是根据多组石油订单数据作为样本对神经网络进行学习训练得到的,每组石油订单为同一个用户的多个订单数据。
订单识别神经网络模型的订单识别输入层,包括多个输入口,每个输入口都可以输入一个订单数据。输入口的数量大于等于最大订单数据数量。用来保证多个订单数据能够同时进行输入处理。订单识别输入层将订单数据进行数据转换处理,转成成代码数据,以便订单识别神经网络模型的订单识别隐层能够根据这些代码数据进行处理,最终得到对应的第二待推石油类型。
步骤B4,结合第一待推石油类型与第二待推石油类型确定至少一个目标石油信息,并将目标石油信息发送至客户端进行显示。
其中,石油信息为对应加油站商家发布的石油信息以供各个车主选择购买进行加油服务。
在上述步骤中,服务器能够根据第一待推石油类型与第二待推石油类型查找对应的石油信息,查找到的石油信息有P个,服务器会根据用户所在的当前位置选择距离用户较近的Q个石油信息作为目标石油信息。P≥Q,P和Q均为正整数。服务器将目标石油信息发送至用户端之后,就会在用户端的显示屏上进行显示。显示屏的信息推荐栏可以设置在整个屏幕中下部,可以以目标石油信息逐条展开的形式进行展示,也可以以消息通知逐条滚动的方式进行展示。具体展示方式用户可以根据自己的喜好和需要进行选择设置。另外展示的顺序可以按照距离、金额、发布时间先后、销量、好评率等方式进行排序。具体的排序方式也可以根据用户的实际需要进行选择。
通过上述方案,利用预先构建的信息识别神经网络模型能够根据客户端发来的车主信息以及车辆信息确定出需要推荐的第一待推石油类型,以及利用预先构建的订单识别神经网络模型根据客户端中存储的石油订单数据来确定出需要推荐的第二待推石油类型,这样服务器就可以将两个待推石油类型进行结合确定出与用户以及用户的车辆匹配的目标石油信息,发送至客户端在对应显示屏的信息推荐栏中进行展示。这样,服务器能够自动为用户推荐石油信息,并且推荐的石油信息更符合用户或者用户车辆的实际需求,给用户提供便利。
在具体实施例中,步骤B1具体包括:
步骤B11,接收客户端发来的账号登录指令,将账号登录指令与数据库中对应的账号信息进行认证。
在该步骤中,个人用户或者加油站用户想要登录自己的账号,需要在客户端的APP或者嵌入小程序中输入对应的账号信息和账号密码,客户端将账号信息和账号密码进行映射关联后形成账号登录指令发送至服务器。
服务器接收到账号登录指令之后,先提取账号登录指令中的账号信息,根据账号信息查找对应的存储数据库,然后提取账号密码,将该账号密码与存储数据库中存储的密码进行比对,比对成功,即为认证成功。
步骤B12,认证成功后,获取对应的Token签名,将Token签名与账号登录指令进行结合生成Token数据。
其中,Token(令牌,标记),服务器的存储数据库中有属于该账号的唯一Token签名数据,将该Token签名与账号登录指令整合在一起之后生成Token数据。
步骤B14,根据Token数据生成JWT数据,并将JWT数据反馈至客户端,以供客户端根据JWT数据确定对应角色权限信息。
其中,JWT(Jsonweb token,网络数据标记规范)。JWT数据包括头部、载荷和签名,其中头部为对应的文件类型、载荷为数据对象(例如,用户的石油订单数据信息)等,签名为Token数据,整理作为JWT数据,然后将JWT数据发送至对应的客户端。
客户端中的APP或小程序接收到JWT数据之后,提取其中的Token数据,将其存储在用户端中的cookie存储库中。其中,cookie存储库为储存在用户本地终端上的数据库。根据JWT数据通过GET或POST生成资源访问请求。其中GET或POST为http请求的两种基本请求命令,可以选用这两种命令中的任意一种来生成资源访问请求。该资源访问请求中包括:个人信息访问、个人位置信息访问、历史订单信息访问以及其他的能够呈现在APP或者小程序对应的界面中信息对应的信息访问请求,全部集中在资源访问请求中。
客户端的资源访问请求中包含有相应的Token数据。并且在生成资源访问请求后,为了保证该资源访问请求的保密性,需要预先对该资源访问请求进行加密,其中加密时会将Token数据不加密,以供后期进行调取查找。
然后,客户端提取资源访问请求中的Token数据查找客户端的cookie存储库中是否有相匹配的Token数据,若有,证明匹配成功,直接调取存储在客户端本地的配置文件,从配置文件中获取该Token数据对应的签名信息和加密密钥,利用加密密钥对资源访问请求进行解码,同时将签名信息与Token数据进行签名验证。
客户端对资源访问请求进行解码成功并且签名验证成功后,获取对应的角色权限信息,将角色权限信息发送至服务器。
步骤B15,接收客户端发来的角色权限信息获取对应的展示信息,并将展示信息发送至对应的客户端。
这样,服务器就可以根据角色权限信息获取对应的展示信息。例如,服务器针对的用户需要的一些展示内容,以及该个人账户对应的数据库中的存储的内容一并合并到展示信息中,发送给客户端。
通过上述方案,能够在保证用户的账号信息的保密性以外,还能加快数据传输过程,以及数据传输的准确性,提高效率。
在具体实施例中,在步骤B2之前,方法还包括:
步骤C1,获取预定数量的信息样本数据,并为每个信息样本数据添加对应的石油类型标签,其中,信息样本数据包括:个人样本信息和/或车辆样本信息,石油类型标签的数量为一个或多个。
步骤C2,预先构建信息识别初始神经网络,其中,信息识别初始神经网络包括:信息识别输入层、N个信息识别隐层、信息识别输出层。
步骤C3,将信息样本数据从信息识别输入层中输入,通过N个信息识别隐层对信息样本数据进行处理,其中,第一个信息识别隐层的接收的是来自信息识别输入层输出的数据内容,剩余的信息识别隐层的数据都是上一个信息识别隐层处理后输出的数据内容。
步骤C4,最后一个信息识别隐层将处理结果数据输出至信息识别输出层,以供信息识别输出层根据处理结果数据确定对应的石油类型。
步骤C5,判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个信息样本数据进行训练,若不同,则对各个信息识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同。
步骤C6,将信息样本数据全部训练完成之后的信息识别初始神经网络作为信息识别神经网络模型。
在上述方案中,信息识别输入层包括两类输入口,具体为:车主信息输入口,和车辆信息输入口,将信息样本数据中的车主信息和/或车辆信息从对应的输入口输入,经过信息识别输入层进行数据处理之后,将文字数据转换成代码数据以便信息识别隐层根据这些数据进行进一步地信息处理。
信息识别隐层的数量可以根据个人样本信息或车辆样本信息中的信息类别数量进行设置,一个信息识别隐层对应处理一类样本信息,然后将处理结果传送至下一个信息识别隐层进行处理,下一个信息识别隐层会将上一个信息识别隐层的处理结果与该信息识别隐层对应类别的样本信息的处理结果进行结合后,再传送至下一个信息识别隐层,以此类推,直至最后一个信息识别隐层将最终的处理结果发送至信息识别输出层,信息识别输出层将处理结果转换成对应的石油类型的文字信息并输出。
若输出的石油类型与对应的石油类型标签相同,则不进行处理直接对下一个信息样本数据进行处理,如果不同,证明信息识别初始神经网络的输出结果不正确,需要对信息识别初始神经网络进行调整,可以根据经验进行人工调整各个信息识别隐层的参数,直至输出结果与石油类型标签相同。或者根据输出的石油类型与石油类型标签,计算相应的损失函数,根据损失函数对各个信息识别隐层进行自动调整,然后利用调整后的信息识别初始神经网络对该信息样本数据进行再次处理,直至输出结果与石油类型标签一致。
所有的信息样本数据全部训练完成后,还需要利用预定数量的检测样本数据对训练后的信息识别初始神经网络进行检测,判断识别结果的准确率,若准确率超过对应阈值,证明该训练后的信息识别初始神经网络符合标准可以作为信息识别神经网络模型,若准确率小于对应阈值,则需要重新选择信息样本数据,对该信息识别初始神经网络进行再次训练,直至得到的信息识别初始神经网络的准确率超过对应阈值。
将最终的信息识别初始神经网络作为信息识别神经网络模型。
通过上述方案,能够利用信息识别神经网络模型对车主信息和/或车辆信息进行识别判断,确定对应的第一待推石油类型,以供服务器根据该第一待推石油类型进行石油信息的推荐。
在具体实施例中,在步骤B3之前,方法还包括:
步骤D1,获取预定数量的石油订单样本数据,并为每个石油订单样本数据添加对应的石油类型标签,其中,石油类型标签的数量为一个或多个。
步骤D2,预先构建订单识别初始神经网络,其中,订单识别初始神经网络包括:订单识别输入层、M个订单识别隐层、订单识别输出层。
步骤D3,将石油订单样本数据从订单识别输入层中输入,通过M个订单识别隐层对石油订单样本数据进行处理,其中,第一个订单识别隐层的接收的是来自订单识别输入层输出的数据内容,剩余的订单识别隐层的数据都是上一个订单识别隐层处理后输出的数据内容。
步骤D4,最后一个订单识别隐层将处理结果数据输出至订单识别输出层,以供订单识别输出层根据处理结果数据确定对应的石油类型。
步骤D5,判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个石油订单样本数据进行训练,若不同,则根据输出的石油类型与对应的石油类型标签计算订单损失函数,根据订单损失函数对对订单识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同。
步骤D6,将石油订单样本数据全部训练完成之后的订单识别初始神经网络作为订单识别神经网络模型。
在上述方案中,包括多个输入口,每个输入口都可以输入一个订单数据。输入口的数量大于等于最大订单数据数量。用来保证多个订单数据能够同时进行输入处理。订单识别输入层将订单样本数据进行数据转换处理,转成成代码数据,以便订单识别隐层能够根据这些代码数据进行处理。
订单样本数据中包括多个订单数据组,每个订单数据组即为同一用户的订单数据,每个订单数据组中可以包含一个或多个订单数据,输入口的数量以订单数据组中最大订单数量作为输入口的设置数量。或者高于该最大订单数量预定值(例如,5个)作为输入口的设置数量,以便在实际情况中能够保证输入口的数量符合需求。
订单识别隐层的数量与输入口的数量一致,每个订单是被隐层对应处理一个订单数据,然后将处理结果传送至下一个订单识别隐层进行处理,下一个订单识别隐层会将上一个订单识别隐层的处理结果与该订单识别隐层对应订单数据的处理结果进行结合后,再传送至下一个订单识别隐层,以此类推,直至最后一个订单识别隐层将最终的处理结果发送至订单识别输出层,订单识别输出层将处理结果转换成对应的石油类型的文字信息并输出。
若输出的石油类型与对应的石油类型标签相同,则不进行处理直接对下一个信息样本数据进行处理,如果不同,证明订单识别初始神经网络的输出结果不正确,需要对订单识别初始神经网络进行调整,可以根据经验进行人工调整各个订单识别隐层的参数,直至输出结果与石油类型标签相同。或者根据输出的石油类型与石油类型标签,计算相应的损失函数,根据损失函数对各个订单识别隐层进行自动调整,然后利用调整后的订单识别初始神经网络对该订单样本数据进行再次处理,直至输出结果与石油类型标签一致。
所有的订单样本数据全部训练完成后,还需要利用预定数量的检测样本数据对训练后的订单识别初始神经网络进行检测,判断识别结果的准确率,若准确率超过对应阈值,证明该训练后的订单识别初始神经网络符合标准可以作为订单识别神经网络模型,若准确率小于对应阈值,则需要重新选择信息样本数据,对该订单识别初始神经网络进行再次训练,直至得到的订单识别初始神经网络的准确率超过对应阈值。
将最终的订单识别初始神经网络作为订单识别神经网络模型。
通过上述方案,能够利用订单识别神经网络模型对用户的石油订单数据进行识别判断,确定对应的第二待推石油类型,这样,服务器就能够根据该第一待推石油类型和第二待推石油类型进行结合确定石油信息的推荐。
在具体实施例中,方法还包括:
步骤E1,接收客户端发来的用户加油下单信息,其中,加油下单信息中包括目标石油商品、客户端的位置信息、目标加油站和加油时间段。
其中,如果用户的车辆需要加油,可以触发客户端上APP或者小程序中对应的加油按键或者语音触发对应的加油服务,进而形成用户加油下单信息。
步骤E2,提取用户加油下单信息中的客户端的位置信息,并在地图中查找目标加油站的位置信息,计算客户端到达目标加油站的车程耗时。
其中,根据客户端的位置信息与目标加油站的位置信息在地图中进行标记,计算从客户端的位置到达目标加油站的位置的路线,进而根据该路线以及各个车辆通过该路线的平均时间计算车程耗时。
步骤E3,若当前时间+车程耗时≤加油时间段的最晚时间点,则获取目标加油站在加油时间段内的目标石油商品是否有剩余出油口,若有,则将用户加油下单信息发送至目标加油站的加油站端进行确认接收,同时生成确认接收指令发送至客户端,否则,对用户加油下单信息进行拒绝接收,并生成拒绝接收指令发送至客户端。
其中,如果计算得到的车程耗时加上当前时间≤加油时间段的最晚时间点,证明用户能够在加油时间段内到达加油站进行加油。此情况下,如果加油站在该加油时间段内对应的目标石油商品的接单量已经达到了最大接单量,没有剩余出油口,证明该加油时间段,即使用户到达加油站也无法进行加油。则对应生成拒绝接收指令,其中拒绝接收指令中包含有该目标石油商品的其他可以接单的时间段。这样客户端接收到决绝接收指令后,用户就可以根据加油站的实际情况重新选择其他的时间段进行加油。或者用户也可以选择其他的加油站进行加油,具体根据用户的实际需要进行选择确定。
步骤E4,若当前时间+车程耗时>加油时间段的最晚时间点,则对用户加油下单信息进行拒绝接收,并生成重新确认加油时间段指令发送至客户端。
其中,若当前时间+车程耗时>加油时间段的最晚时间点,证明用户无法在加油时间段内到达加油站,这样服务器就会自动拒绝接收该加油下单信息,并获取该加油站目标石油商品的其他可以接单的时间段添加至重新确认加油时间段指令中,发送给客户端,以供用户根据加油站的实际情况重新选择其他的时间段进行加油。或者用户也可以选择其他的加油站进行加油,具体根据用户的实际需要进行选择确定。
通过上述方案,服务器能够预先对用户的加油下单信息进行处理,及时将一些根本无法完成的加油下单信息通知给用户,让用户能够及时进行更改加油下单,减少由于无法及时达到加油站而造成无法加油的情况。
在具体实施例中,方法还包括:
步骤F1,接收总账号对应的加油站端发来的子账号申请指令,其中,子账号申请指令中包含:子账号对应的加油站端的终端识别码、子账号的申请地址、子账号的服务项目。
步骤F2,对子账号申请指令进行审核,确定子账号申请指令中各项信息是否真实。
步骤F3,若审核成功,在总账号的账号管理数据库中构建子账号对应的子数据库,以供子账号将成功的服务项目信息存储在子数据库中,若审核失败,则生成申请失败指令反馈至总账号对应的加油站端,以供总账号对应的加油站端对子账号申请指令进行修改或撤销。
在上述方案中,如果加油站想要设立一个下属加油站,可以通过上述进行设立,一个加油站的总账号可以设立多个子账号,并且总账号可以通过查询子数据库调取对应的子账号的各类数据。
另外,还可以对各个子账号每天、每周、每季度或者每年的订单数据进行统计,并将统计结果发送至总账号中。并且各个子账号还可以再设置相应的分账号,并对各个分账号的数据进行统计汇总发送至子账号之后,子账号再对子账号以及各个分账号的数据汇总发送至总账号。
这样,如果加油站想要扩大经营范围,建立子账号,可以通过上述方案进行设置,这样给加油站用户提供多样化的服务,方便加油站扩大规模。
基于上述方案的扩展方案,具体包括如下内容:
步骤G1,接收加油站端发来的发布油品信息。
其中,发布油品信息包括下列至少之一:油品名称、油品组成成分、油品单价、油品总量、油品生产地、油品加工厂商。
加油站用户通过加油站端输入对应的发布油品信息,以供后期审核,审核通过后,利用网络进行发布。
另外,在接收加油站端发来的发布油品信息之前,预先在加油站端安装对应的APP或者在即时通讯中加载对应的小程序,预先建立加油站账号,选择对应用户角色,可以选择个人用户或者加油站用户。
当选择加油站用户之后,也会弹出账号注册的界面。输入加油站名和密码,并将加油站名、密码以及选择的加油站角色打包发送至服务器中,服务器根据加油站角色匹配对应的加油站界面,并为对应的加油站账号建立对应的存储数据库,以供存储该加油站账号的数据信息。在服务器中各个加油站用户的数据对应存储在加油站用户存储器中,加油站用户存储器中包含有各个加油站账号对应的存储数据库。
这样,当加油站人员通过加油站端进行再次登录时,就会向服务器发送账号登录指令,账号登录指令中包含有角色权限信息、账号名、密码以及对应加油站端的一些基本信息。
服务器接收到账号登录指令后,若角色权限信息为加油站用户,从加油站用户存储器中调取对应加油站账号的存储数据库中的相关展示信息。并将对应的展示信息发送至对应的加油站端进行展示。
步骤G2,将发布油品信息输入至油品类别鉴定模型中进行处理,输出发布油品信息对应的发布油品类别,其中,油品类别鉴定模型为利用预先标记油品类别的样本油品信息对神经网络进行训练得到的。
在该步骤中,其中,油品类别鉴定模型是根据多组预先标记油品类别的样本油品信息对神经网络进行学习训练得到的。
油品类别鉴定模型的油品鉴别输入层,包括多个输入口,每个输入口对应输入发布油品信息中的一项数据。输入口的数量大于等于样本油品信息中的数据最多的项数。用来保证发布油品信息中的每项数据能够同时进行输入处理。油品鉴别输入层将发布油品信息进行数据转换处理,转成代码数据,以便油品类别鉴定模型的油品鉴定隐层能够对这些代码数据进行处理,最终得到发布油品信息对应的发布石油类别并通过油品鉴别输出层进行输出。
步骤G3,根据发布油品类别在存储器中查找对应的目标审核标准,其中预先在存储器中存储各个油品类别对应的审核标准。
步骤G4,按照目标审核标准对发布油品信息的各项参数进行核对,若核对成功,则将发布油品信息在加油站端对应的账号平台进行发布。
在该步骤中,利用目标审核标准可以审核发布油品信息中的油品名称是否正确,对应的油品组成成分是否在该发布油品类别对应的各个组成成分的范围之内,油品单价是否符合官方发布的改发布油品类别对应的单价区间,并在预先存储的该发布油品类别的各个油品生产地中是否能够查找到发布油品信息中的油品生产地等。对这些发布油品信息中各项参数全部符合目标审核标准之后,才能确定核对成功,否则认定为核对不成功,并生成提醒信息发送至加油站端,这样加油站的工作人员能够看到对应的提示信息,对发布油品信息进行修改或者撤销油品发布。
通过上述方案,利用预先构建的油品类别鉴定模型能够根据加油站端发来的发布油品信息确定出发布油品信息对应的发布油品类别,这样就可以根据发布油品类别从存储器中查找对应的目标审核标准,并根据目标审核标准对发布油品信息进行审核,审核成功后才能进行发布,这样能够提高发布油品信息的正确性,避免了后期修改,操作简单快捷。
在具体实施例中,在步骤G2之前,具体包括:
步骤H1,获取预定数量的样本油品信息,并为每个样本油品信息添加对应的油品类别标签,其中,每个样本油品信息中包含有多个油品信息数据。
步骤H2,预先构建具有油品鉴别输入层、N个油品鉴别隐层和油品鉴别输出层的油品鉴别初始神经网络,其中,油品鉴别隐层构建数量N大于等于样本油品信息中的油品信息数据的数量最大值X。
步骤H3,将样本油品信息从油品鉴别输入层中输入,通过N个油品鉴别隐层对样本油品信息进行处理,其中,第一个油品鉴别隐层的接收的是来自油品鉴别输入层输出的数据内容,剩余的油品鉴别隐层的数据都是上一个油品鉴别隐层处理后输出的数据内容。
步骤H4,最后一个油品鉴别隐层将处理结果数据输出至油品鉴别输出层,以供油品鉴别输出层根据处理结果数据确定对应的输出油品类别。
步骤H5,判断输出油品类别与对应的油品类别标签是否相同,若相同,则对下一个样本油品信息进行训练,若不同,则对各个油品鉴别隐层的参数进行调整使得输出油品类别与对应的油品类别标签相同。
步骤H6,将样本油品信息全部训练完成之后的油品鉴别初始神经网络作为油品鉴别模型。
在上述方案中,油品鉴别输入层包括多个输入口,每个输入口对应输入样本油品信息中的一项数据。输入口的数量大于等于样本油品信息中的数据最多的项数。用来保证样本油品信息中的每项数据能够同时进行输入处理。油品鉴别输入层将样本油品信息进行数据转换处理,转成代码数据,以便油品鉴定隐层能够对这些代码数据进行处理,
每个样本油品信息中包括油品名称、油品组成成分、油品单价、油品总量、油品生产地、油品加工厂商中的一个或多个。输入口的数量以样本油品信息中的数据最多的项数作为设置数量。或者高于该样本油品信息中的数据最多的项数(例如,5项)作为输入口的设置数量。
油品鉴别隐层的数量与输入口的数量一致,样本油品信息中每项数据被对应的油品鉴别隐层对应处理,然后将处理结果传送至下一个油品鉴别隐层进行处理,下一个油品鉴别隐层会将上一个油品鉴别隐层的处理结果与该油品鉴别隐层需要处理的一项样本油品信息中的数据的处理结果进行结合后,再传送至下一个油品鉴别隐层,以此类推,直至最后一个油品鉴别隐层将最终的处理结果发送至油品鉴别输出层,油品鉴别输出层将处理结果转换成对应的输出油品类别的文字信息并输出。
若输出油品类别与对应的油品类别标签相同,则不进行处理直接对下一个样本油品信息进行处理,如果不同,证明油品鉴别初始神经网络的输出结果不正确,需要对油品鉴别初始神经网络进行调整,可以根据经验进行人工调整各个油品鉴别隐层的参数,直至输出结果与油品类别标签相同。或者根据输出油品类别与油品类别标签,计算相应的损失函数,根据损失函数对各个油品鉴别隐层进行自动调整,然后利用调整后的油品鉴别初始神经网络对该样本油品信息进行再次处理,直至输出结果与油品类别标签一致。
所有的样本油品信息全部训练完成后,还需要利用预定数量的检测样本数据对训练后的石油鉴别初始神经网络进行检测,判断识别结果的准确率,若准确率超过对应阈值,证明该训练后的石油鉴别初始神经网络符合标准可以作为石油鉴别神经网络模型,若准确率小于对应阈值,则需要重新选择样本油品信息,对该石油鉴别初始神经网络进行再次训练,直至得到的石油鉴别初始神经网络的准确率超过对应阈值。
将最终的石油鉴别初始神经网络作为石油类别鉴定模型。
通过上述方案,能够利用神经网络经过训练得到的石油类别鉴定模型,对发布油品信息进行油品类别鉴定时,保证油品类别鉴定的结果的准确性进一步提高。
在具体实施例中,方法还包括:
步骤I1,接收加油站端和/或用户端发来的石油知识待发布信息。
其中,加油站用户或者个人用户均可以通过加油站端或者用户端对应发布一些关于石油的一些知识,例如加油时的安全知识,或者车辆发动机的工作原理,再或者其他国家关于石油价格的变动消息等。
步骤I2,将石油知识待发布信息输入至知识类别鉴定模型中进行处理,输出石油知识待发布信息对应的待发布知识类别,其中,知识类别鉴定模型为利用预先标记知识类别的样本石油知识信息对神经网络进行训练得到的。
步骤I3,利用待发布知识类别对石油知识待发布信息进行标记,并将石油知识待发布信息发布在加油站端和/或用户端对应的账号平台上。
在上述方案中,针对石油知识待发布信息的知识类别需要利用知识类别鉴定模型进行处理,如果针对输出的待发布知识类别不认同,可以对该石油知识待发布信息标记对应符合的知识类别标签,并利用该标记后的石油知识发布信息对知识类别鉴定模型进行再次训练。使得经过再次训练后的知识类别鉴定模型的输出结果符合要求。
然后,得到待发布知识类别后,如果加油站端和/或用户端对应的账号平台存在该待发布知识类别,则将石油知识待发布信息添加至该待发布知识类别中,如果没有,则新建一个代发知识类别后,再将石油知识待发布信息添加至该待发布知识类别中。
通过上述方案,能够借助知识类别鉴定模型对待发布的石油知识信息进行归类处理,避免石油知识信息数量较多时不好查阅,这样方便查阅者进行查找,使用方便,并且还能使得石油知识界面更加整洁。
进一步地,在I2之前,具体包括:
步骤J1,获取预定数量的样本石油知识信息,并为每个样本石油知识信息添加对应的知识类别标签。
其中,知识类别标签包括但不限于下列至少之一:安全类别、新闻类别、使用类别、基本知识类别等。
步骤J2,预先构建具有知识鉴别输入层、M个知识鉴别隐层和知识鉴别输出层的知识鉴别初始神经网络,其中,每个知识鉴别隐层对应鉴定一个知识类别的符合概率,知识鉴别隐层构建数量M大于等于样本石油知识信息中的知识类别的类别数量最大值Q。
其中,知识鉴别输入层将样本石油知识信息进行数据转换处理,转成代码数据,以便知识鉴别隐层能够对这些代码数据进行处理。
步骤J3,将样本石油知识信息从知识鉴别输入层中输入,知识鉴别输入层对样本石油知识信息进行关键词提取。
其中,知识鉴别输入层将样本石油知识信息中的虚词、形容词、标点符号等进行删除,剩余的文字进行词语划分,划分出的各个词语作为提取的关键词。
步骤J4,知识鉴别输入层将提取的关键词分别输入各个知识鉴别隐层进行处理,各个知识鉴别隐层对应输出属于对应知识类别的概率P1,P2,……,PM,并分别发送至知识鉴别输出层。
其中,知识鉴别输入层将提取的关键词同时输入各个知识鉴别隐层进行处理中,各个知识鉴别隐层进行同时处理,并将处理得到的概率发送至知识鉴别输出层。
步骤J5,知识鉴别输出层筛选出知识类别的概率的最大值对应的知识类别作为输出知识类别,并判断输出知识类别与对应的知识类别标签是否相同,若相同,则对下一个样本石油知识信息进行训练,否则对输出知识类别对应的知识鉴别隐层的参数进行调整使得处理后输出的知识类别的概率为100%之后,对下一个样本石油知识信息进行训练。
其中,如果知识鉴别输出层筛选出知识类别的概率的最大值有两个,则对应输出两个输出知识类别,则对知识类别标签对应的知识鉴别隐层的参数进行调整使得处理后输出的知识类别的概率为100%之后,对下一个样本石油知识信息进行训练。
步骤J6,将样本石油知识信息全部训练完成之后的知识鉴别初始神经网络作为知识类别鉴定模型。
所有的样本石油知识信息全部训练完成后,还需要利用预定数量的检测样本数据对训练后的知识鉴别初始神经网络进行检测,判断识别结果的准确率,若准确率超过对应阈值,证明该训练后的知识鉴别初始神经网络符合标准可以作为知识类别鉴定模型,若准确率小于对应阈值,则需要重新选择信息样本数据,对该知识鉴别初始神经网络进行再次训练,直至得到的知识鉴别初始神经网络的准确率超过对应阈值。
将最终的知识鉴别初始神经网络作为知识类别鉴定模型。
通过上述方案,能够保证通过知识类别鉴定模型进行鉴别的知识类别更加精确,无需人工对石油知识信息进行分类,方便使用。
在具体实施例中,方法还包括:
步骤K1,接收加油站端在设定时间段内的交易成功的订单数据。
步骤K2,根据交易成功的订单数据中石油类型以及石油量计算各个交易成功的订单数据的成本金额。
步骤K3,根据各个交易成功的订单数据的成本金额和交易金额,计算对应的获利金额。
步骤K4,以获利金额为纵轴对应时间为横轴建立坐标系。
步骤K5,若坐标系为整体上升趋势则确定加油站端对应的账户属于上升型经营,若坐标系为上下波动的趋势则确定加油站端对应的账户属于稳定型经营,若坐标系为整体下降趋势则确定加油站端对应的账户属于下降型经营。
通过上述方案,能够根据加油站的历史订单数据的盈利情况建立对应的坐标,进而通过坐标上展示的趋势确定加油站端对应的账户的运营情况。进而及时通知加油站进行相应的运营调整,减少由于加油站经营不善造成破产的情况。
另外,如果确定加油站属于下降型经营,可以从网络中获取一些关于加油站运营的文章或者策略一并推送至加油站端,以供加油站的负责人进行查看。进而能够对加油站的运营策略进行改善。
在具体扩展方案中,服务器还能够执行:
步骤L1,接收客户端发来的入驻加油站命令,获取客户端的位置信息。
在该步骤中,用户想要选择一个常用加油站作为入驻加油站,用户可以通过触发客户端上的入驻加油站按键,对应形成入驻加油站命令,客户端就可以将入驻加油站命令发送至服务器。服务器接收到之后就会获取客户端的位置信息,进而根据客户端的位置查找对应的加油站。
该客户端的位置信息可以是客户端当前的位置信息,或者用户预先设置的常住地的位置信息。
步骤L2,根据客户端的位置信息确定出距离小于等于距离阈值的至少一个加油站,将至少一个加油站发送至客户端,以供客户端从至少一个加油站中进行选择。
步骤L3,接收客户端发来的选择的目标入驻加油站,将目标入驻加油站与入驻加油站命令进行整合,将整合后的信息发送至目标入驻加油站对应的加油站端,以供加油站端通过服务器与客户端建立入驻连接。
在该步骤中,整合后的信息发送至目标入驻加油站对应的加油站端之后,加油站端接收到之后,可以于客户端建立入驻连接,这样加油站端就可以直接将对应的打折信息或者优惠信息及时发送给客户端。
另外,加油站端与客户端建立入驻连接之后,向服务器发送入驻成功指令,服务器将该入驻加油站保存至客户端对应的入驻缓存库中。同时将客户端的相关信息保存至加油站端对应的入驻用户缓存库中。
各个加油站还可以对每个入驻的用户采用优惠或者打折,具体优惠或者打折措施根据每个加油站的实际情况进行选定。用户可以通过客户端上的APP或者小程序进入加油站的主页,在主页中查看到对应的优惠信息。
用户选择的入驻加油站可以为一个或者多个,这样如果对应的入驻加油站发布新的石油信息,会在对应的显示屏的信息推荐栏中进行展示。
入驻加油站还会在用户客户端的对应的入驻加油站栏中进行陈列,陈列的顺序可以根据与用户当前位置的距离、选择入驻时间、访问量、订单量等进行顺序排列,用户可以根据自己的实际需要选择对应的排列方式。
通过上述方案,能够通过服务器给用户提供选择入驻加油站的功能,这样方便用户能够及时查看对应入驻加油站发布的一些石油信息,以及一些优惠信息,给用户提供便利。
另外,作为本实施例的方案补充,方法还包括:
步骤M1,接收到客户端发来的发票请求指令。
步骤M2,根据发票请求指令从对应的加油站账号的存储数据库中查找对应的石油订单信息,以及对应的石油订单信息的开票记录。
步骤M3,若开票记录为空,则对应的加油站账号的存储数据库中获取石油订单信息的金额数据,以及提取发票请求指令中的开票账户信息,并对应生成电子发票信息,将电子发票信息发送至客户端,若开票记录中有对应的电子发票信息,则生成拒绝开票指令,发送至客户端。
在上述方案中,如果用户想要开发票,用户可以选择通过用户端的APP或者小程序向加油站端发送发票请求指令,开具对应的电子发票。具体为:
用户通过用户端触发APP或者小程序中交易成功后的石油商品中的发票开具按键,就会形成发票请求指令,将发票请求指令发送至服务器,其中发票请求指令中包含有对应加油站的信息,服务器根据加油站的信息查找对应的加油站,从对应的加油站账号的存储数据库中确定对应交易存在并且成功之后,查看该交易是否已经开具发票信息,若没有则根据交易金额以及对应发票请求指令中携带的开票信息,开具相应的发票信息,并将该发票信息发送至客户端,进行展示。
通过上述技术方案,为用户提供智能开具发票的功能、以及统计各种数据信息的功能,这样能够更加方便用户的使用。
基于上述图1所示实施例描述的方案,本实施了提出了一种石油订单数据处理装置,如图2所示,包括:
获取模块21,用于获取用户端对应的用户账号中正在执行的石油订单数据,其中,石油订单数据中包含加油站信息以及石油订单信息;
提取模块22,用于提取石油订单数据中的加油站信息,并根据加油站信息确定目标加油站端;
发送模块23,用于向目标加油站端发送油品检查调取命令,以供目标加油站端根据油品检查调取命令查找对应的目标油品检查报告,其中,油品检查调取命令中包含石油订单信息;
转发模块24,接收目标加油站端发送的目标油品检查报告,并将目标油品检查报告发送至用户端,以供用户端将目标油品检查报告添加至石油订单数据中。
在具体实施例中,装置还包括油品检验模块,具体用于:
接收加油站端发来的油品检验指令,其中油品检验指令中包含有石油种类;提取油品检验指令中的石油种类,从地图中查找具有石油种类检查资格的至少一个待确定检查站;获取加油站端的位置信息,从至少一个待确定检查站中查找与位置信息属于同一个市级的确定检查站;若查找到的确定检查站有多个,则按照与加油站端的位置信息的距离由进到远的顺序进行排列后发送至加油站端,以供加油站端从多个确定检查站中选择目标检查站;接收加油站端发来的目标检查站以及送检时间,获取目标检查站在送检时间内的石油种类对应的送检业务是否饱和,若饱和,则生成拒绝送检指令发送至加油站端,以供加油站端重新确定目标检查站,若未饱和,则将油品检验指令以及送检时间进行打包,发送至目标检查站端;接收目标检查站端发来的油品检查报告,并将油品检查报告发送至加油站端,以供加油站端将油品检查报告与对应的石油种类进行关联存储在加油站端的数据库中。
在具体实施例中,装置还包括登录模块,具体用于:
根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,其中客户端包括:用户端或加油站端;接收客户端发来的车主信息和/或车辆信息,利用预先构建的信息识别神经网络模型根据车主信息和/或车辆信息确定第一待推石油类型;以及,接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据石油订单数据确定第二待推石油类型;结合第一待推石油类型与第二待推石油类型确定至少一个目标石油信息,并将目标石油信息发送至客户端进行显示。
登录模块具体还用于:
接收客户端发来的账号登录指令,将账号登录指令与数据库中对应的账号信息进行认证;认证成功后,获取对应的Token签名,将Token签名与账号登录指令进行结合生成Token数据;根据Token数据生成JWT数据,并将JWT数据反馈至客户端,以供客户端根据JWT数据确定对应角色权限信息;接收客户端发来的角色权限信息获取对应的展示信息,并将展示信息发送至对应的客户端。
在具体实施例中,装置还包括信息识别训练模块,具体用于:
获取预定数量的信息样本数据,并为每个信息样本数据添加对应的石油类型标签,其中,信息样本数据包括:个人样本信息和/或车辆样本信息,石油类型标签的数量为一个或多个;预先构建信息识别初始神经网络,其中,信息识别初始神经网络包括:信息识别输入层、N个信息识别隐层、信息识别输出层;将信息样本数据从信息识别输入层中输入,通过N个信息识别隐层对信息样本数据进行处理,其中,第一个信息识别隐层的接收的是来自信息识别输入层输出的数据内容,剩余的信息识别隐层的数据都是上一个信息识别隐层处理后输出的数据内容;最后一个信息识别隐层将处理结果数据输出至信息识别输出层,以供信息识别输出层根据处理结果数据确定对应的石油类型;判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个信息样本数据进行训练,若不同,则对各个信息识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同;将信息样本数据全部训练完成之后的信息识别初始神经网络作为信息识别神经网络模型。
在具体实施例中,装置还包括订单识别训练模块,具体还用于:
获取预定数量的石油订单样本数据,并为每个石油订单样本数据添加对应的石油类型标签,其中,石油类型标签的数量为一个或多个;预先构建订单识别初始神经网络,其中,订单识别初始神经网络包括:订单识别输入层、M个订单识别隐层、订单识别输出层;将石油订单样本数据从订单识别输入层中输入,通过M个订单识别隐层对石油订单样本数据进行处理,其中,第一个订单识别隐层的接收的是来自订单识别输入层输出的数据内容,剩余的订单识别隐层的数据都是上一个订单识别隐层处理后输出的数据内容;最后一个订单识别隐层将处理结果数据输出至订单识别输出层,以供订单识别输出层根据处理结果数据确定对应的石油类型;判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个石油订单样本数据进行训练,若不同,则根据输出的石油类型与对应的石油类型标签计算订单损失函数,根据订单损失函数对对订单识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同;将石油订单样本数据全部训练完成之后的订单识别初始神经网络作为订单识别神经网络模型。
在具体实施例中,装置还包括,加油下单模块具体用于:
接收客户端发来的用户加油下单信息,其中,加油下单信息中包括目标石油商品、客户端的位置信息、目标加油站和加油时间段;提取用户加油下单信息中的客户端的位置信息,并在地图中查找目标加油站的位置信息,计算客户端到达目标加油站的车程耗时;若当前时间+车程耗时≤加油时间段的最晚时间点,则获取目标加油站在加油时间段内的目标石油商品是否有剩余出油口,若有,则将用户加油下单信息发送至目标加油站的加油站端进行确认接收,同时生成确认接收指令发送至客户端,否则,对用户加油下单信息进行拒绝接收,并生成拒绝接收指令发送至客户端;若当前时间+车程耗时>加油时间段的最晚时间点,则对用户加油下单信息进行拒绝接收,并生成重新确认加油时间段指令发送至客户端。
在具体实施例中,装置还包括子账号申请模块,具体用于:
接收总账号对应的加油站端发来的子账号申请指令,其中,子账号申请指令中包含:子账号对应的加油站端的终端识别码、子账号的申请地址、子账号的服务项目;对子账号申请指令进行审核,确定子账号申请指令中各项信息是否真实;若审核成功,在总账号的账号管理数据库中构建子账号对应的子数据库,以供子账号将成功的服务项目信息存储在子数据库中,若审核失败,则生成申请失败指令反馈至总账号对应的加油站端,以供总账号对应的加油站端对子账号申请指令进行修改或撤销。
基于上述图1所示方法和图2所示装置的实施例,为了实现上述目的,本申请实施例还提供了一种电子设备,如图3所示,包括存储器32和处理器31,其中存储器32和处理器31均设置在总线33上存储器32存储有计算机程序,处理器31执行计算机程序时实现图1所示的石油订单数据处理方法。
基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储器(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台电子设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施场景所述的方法。
可选地,该设备还可以连接用户接口、网络接口、摄像头、射频(Radio Frequency,RF)电路,传感器、音频电路、WI-FI模块等等。用户接口可以包括显示屏(Display)、输入单元比如键盘(Keyboard)等,可选用户接口还可以包括USB接口、读卡器接口等。网络接口可选的可以包括标准的有线接口、无线接口(如蓝牙接口、WI-FI接口)等。
本领域技术人员可以理解,本实施例提供的一种电子设备的结构并不构成对该实体设备的限定,可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述如图1所示方法和图2所示装置的实施例,相应的,本申请实施例还提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述如图1所示的石油订单数据处理方法。
存储介质中还可以包括操作系统、网络通信模块。操作系统是管理电子设备硬件和软件资源的程序,支持信息处理程序以及其它软件和/或程序的运行。网络通信模块用于实现存储介质内部各组件之间的通信,以及与电子设备中其它硬件和软件之间通信。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本申请可以借助软件加必要的通用硬件平台的方式来实现,也可以通过硬件实现。
通过应用本申请的技术方案,能够为各个正在执行的石油订单数据,获取对应的油品检查报告并展示,这样用户能够获知下单的石油属于合格产品,不存在质量问题,进而使得用户使用更加方便。
本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本申请所必须的。本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本申请序号仅仅为了描述,不代表实施场景的优劣。以上公开的仅为本申请的几个具体实施场景,但是,本申请并非局限于此,任何本领域的技术人员能思之的变化都应落入本申请的保护范围。
Claims (8)
1.一种石油订单数据处理方法,其特征在于,步骤包括:
获取用户端对应的用户账号中正在执行的石油订单数据,其中,所述石油订单数据中包含加油站信息以及石油订单信息;
提取所述石油订单数据中的加油站信息,并根据所述加油站信息确定目标加油站端;
向所述目标加油站端发送油品检查调取命令,以供所述目标加油站端根据所述油品检查调取命令查找对应的目标油品检查报告,其中,所述油品检查调取命令中包含所述石油订单信息;
接收所述目标加油站端发送的目标油品检查报告,并将所述目标油品检查报告发送至所述用户端,以供所述用户端将所述目标油品检查报告添加至所述石油订单数据中;
在所述向所述目标加油站端发送油品检查调取命令之前,所述方法还包括:
接收加油站端发来的油品检验指令,其中所述油品检验指令中包含有石油种类;
提取所述油品检验指令中的石油种类,从地图中查找具有所述石油种类检查资格的至少一个待确定检查站;
获取所述加油站端的位置信息,从至少一个待确定检查站中查找与所述位置信息属于同一个市级的确定检查站;
若查找到的确定检查站有多个,则按照与所述加油站端的位置信息的距离由进到远的顺序进行排列后发送至所述加油站端,以供加油站端从多个确定检查站中选择目标检查站;
接收所述加油站端发来的目标检查站以及送检时间,获取所述目标检查站在所述送检时间内的所述石油种类对应的送检业务是否饱和,若饱和,则生成拒绝送检指令发送至所述加油站端,以供所述加油站端重新确定目标检查站,若未饱和,则将所述油品检验指令以及所述送检时间进行打包,发送至目标检查站端;
接收所述目标检查站端发来的油品检查报告,并将所述油品检查报告发送至所述加油站端,以供所述加油站端将所述油品检查报告与对应的石油种类进行关联存储在所述加油站端的数据库中;
所述方法还包括:
根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,其中所述客户端包括:用户端或加油站端;
接收客户端发来的车主信息和车辆信息,利用预先构建的信息识别神经网络模型根据所述车主信息和所述车辆信息确定第一待推石油类型;
以及,接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据所述石油订单数据确定第二待推石油类型;
结合所述第一待推石油类型与所述第二待推石油类型确定至少一个目标石油信息,并将所述目标石油信息发送至客户端进行显示;
所述根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,具体包括:
接收所述客户端发来的账号登录指令,将所述账号登录指令与数据库中对应的账号信息进行认证;
认证成功后,获取对应的Token签名,将Token签名与账号登录指令进行结合生成Token数据;
根据Token数据生成JWT数据,并将所述JWT数据反馈至所述客户端,以供所述客户端根据所述JWT数据确定对应角色权限信息,其中,JWT数据包括文件类型形成的头部、石油订单数据信息形成的载荷、Token数据形成的签名;
接收所述客户端发来的角色权限信息获取对应的展示信息,并将展示信息发送至对应的客户端。
2.根据权利要求1所述的石油订单数据处理方法,其特征在于,在所述接收客户端发来的车主信息和车辆信息,利用预先构建的信息识别神经网络模型根据所述车主信息和所述车辆信息确定第一待推石油类型之前,所述方法还包括:
获取预定数量的信息样本数据,并为每个信息样本数据添加对应的石油类型标签,其中,所述信息样本数据包括:个人样本信息和车辆样本信息,所述石油类型标签的数量为一个或多个;
预先构建信息识别初始神经网络,其中,所述信息识别初始神经网络包括:信息识别输入层、N个信息识别隐层、信息识别输出层;
将所述信息样本数据从信息识别输入层中输入,通过所述N个信息识别隐层对所述信息样本数据进行处理,其中,第一个信息识别隐层的接收的是来自信息识别输入层输出的数据内容,剩余的信息识别隐层的数据都是上一个信息识别隐层处理后输出的数据内容;
最后一个信息识别隐层将处理结果数据输出至信息识别输出层,以供所述信息识别输出层根据处理结果数据确定对应的石油类型;
判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个信息样本数据进行训练,若不同,则对各个信息识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同;
将信息样本数据全部训练完成之后的信息识别初始神经网络作为信息识别神经网络模型。
3.根据权利要求1所述的石油订单数据处理方法,其特征在于,在所述接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据所述石油订单数据确定第二待推石油类型之前,所述方法还包括:
获取预定数量的石油订单样本数据,并为每个石油订单样本数据添加对应的石油类型标签,其中,所述石油类型标签的数量为一个或多个;
预先构建订单识别初始神经网络,其中,所述订单识别初始神经网络包括:订单识别输入层、M个订单识别隐层、订单识别输出层;
将所述石油订单样本数据从订单识别输入层中输入,通过所述M个订单识别隐层对所述石油订单样本数据进行处理,其中,第一个订单识别隐层的接收的是来自订单识别输入层输出的数据内容,剩余的订单识别隐层的数据都是上一个订单识别隐层处理后输出的数据内容;
最后一个订单识别隐层将处理结果数据输出至订单识别输出层,以供所述订单识别输出层根据处理结果数据确定对应的石油类型;
判断输出石油类型与对应的石油类型标签是否相同,若相同,则对下一个石油订单样本数据进行训练,若不同,则根据输出的石油类型与对应的石油类型标签计算订单损失函数,根据订单损失函数对对订单识别隐层的参数进行调整使得输出的石油类型与对应的石油类型标签相同;
将石油订单样本数据全部训练完成之后的订单识别初始神经网络作为订单识别神经网络模型。
4.根据权利要求1所述的石油订单数据处理方法,其特征在于,所述方法还包括:
接收客户端发来的用户加油下单信息,其中,加油下单信息中包括目标石油商品、客户端的位置信息、目标加油站和加油时间段;
提取所述用户加油下单信息中的客户端的位置信息,并在地图中查找所述目标加油站的位置信息,计算所述客户端到达所述目标加油站的车程耗时;
若当前时间+车程耗时≤所述加油时间段的最晚时间点,则获取所述目标加油站在所述加油时间段内的所述目标石油商品是否有剩余出油口,若有,则将所述用户加油下单信息发送至所述目标加油站的加油站端进行确认接收,同时生成确认接收指令发送至客户端,否则,对所述用户加油下单信息进行拒绝接收,并生成拒绝接收指令发送至客户端;
若当前时间+车程耗时>所述加油时间段的最晚时间点,则对所述用户加油下单信息进行拒绝接收,并生成重新确认加油时间段指令发送至客户端。
5.根据权利要求1所述的石油订单数据处理方法,其特征在于,所述方法还包括:
接收总账号对应的加油站端发来的子账号申请指令,其中,所述子账号申请指令中包含:子账号对应的加油站端的终端识别码、子账号的申请地址、子账号的服务项目;
对所述子账号申请指令进行审核,确定所述子账号申请指令中各项信息是否真实;
若审核成功,在所述总账号的账号管理数据库中构建所述子账号对应的子数据库,以供所述子账号将成功的服务项目信息存储在所述子数据库中,若审核失败,则生成申请失败指令反馈至所述总账号对应的加油站端,以供所述总账号对应的加油站端对所述子账号申请指令进行修改或撤销。
6.一种石油订单数据处理装置,其特征在于,包括:
获取模块,用于获取用户端对应的用户账号中正在执行的石油订单数据,其中,所述石油订单数据中包含加油站信息以及石油订单信息;
提取模块,用于提取所述石油订单数据中的加油站信息,并根据所述加油站信息确定目标加油站端;
发送模块,用于向所述目标加油站端发送油品检查调取命令,以供所述目标加油站端根据所述油品检查调取命令查找对应的目标油品检查报告,其中,所述油品检查调取命令中包含所述石油订单信息;
转发模块,接收所述目标加油站端发送的目标油品检查报告,并将所述目标油品检查报告发送至所述用户端,以供所述用户端将所述目标油品检查报告添加至所述石油订单数据中;
装置还包括油品检验模块,具体用于:
接收加油站端发来的油品检验指令,其中油品检验指令中包含有石油种类;提取油品检验指令中的石油种类,从地图中查找具有石油种类检查资格的至少一个待确定检查站;获取加油站端的位置信息,从至少一个待确定检查站中查找与位置信息属于同一个市级的确定检查站;若查找到的确定检查站有多个,则按照与加油站端的位置信息的距离由进到远的顺序进行排列后发送至加油站端,以供加油站端从多个确定检查站中选择目标检查站;接收加油站端发来的目标检查站以及送检时间,获取目标检查站在送检时间内的石油种类对应的送检业务是否饱和,若饱和,则生成拒绝送检指令发送至加油站端,以供加油站端重新确定目标检查站,若未饱和,则将油品检验指令以及送检时间进行打包,发送至目标检查站端;接收目标检查站端发来的油品检查报告,并将油品检查报告发送至加油站端,以供加油站端将油品检查报告与对应的石油种类进行关联存储在加油站端的数据库中;
装置还包括登录模块,具体用于:
根据接收到的客户端发来的账号登录指令中的角色权限信息,获取对应的展示信息,并将展示信息发送至对应的客户端,其中客户端包括:用户端或加油站端;接收客户端发来的车主信息和车辆信息,利用预先构建的信息识别神经网络模型根据车主信息和车辆信息确定第一待推石油类型;以及,接收客户端发来的石油订单数据,利用预先构建的订单识别神经网络模型根据石油订单数据确定第二待推石油类型;结合第一待推石油类型与第二待推石油类型确定至少一个目标石油信息,并将目标石油信息发送至客户端进行显示;
登录模块具体还用于:
接收客户端发来的账号登录指令,将账号登录指令与数据库中对应的账号信息进行认证;认证成功后,获取对应的Token签名,将Token签名与账号登录指令进行结合生成Token数据;根据Token数据生成JWT数据,并将JWT数据反馈至客户端,以供客户端根据JWT数据确定对应角色权限信息,其中,JWT数据包括文件类型形成的头部、石油订单数据信息形成的载荷、Token数据形成的签名;接收客户端发来的角色权限信息获取对应的展示信息,并将展示信息发送至对应的客户端。
7.一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至5中任一项所述的石油订单数据处理方法的步骤。
8.一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至5中任一项所述的石油订单数据处理方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011476203.XA CN112488801B (zh) | 2020-12-15 | 2020-12-15 | 一种石油订单数据处理方法、装置及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011476203.XA CN112488801B (zh) | 2020-12-15 | 2020-12-15 | 一种石油订单数据处理方法、装置及存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112488801A CN112488801A (zh) | 2021-03-12 |
CN112488801B true CN112488801B (zh) | 2024-07-02 |
Family
ID=74916368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011476203.XA Active CN112488801B (zh) | 2020-12-15 | 2020-12-15 | 一种石油订单数据处理方法、装置及存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112488801B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105339970A (zh) * | 2013-02-06 | 2016-02-17 | 电子商品交易合伙人有限公司 | 用于推荐珠宝物品的方法 |
CN109509054A (zh) * | 2018-09-30 | 2019-03-22 | 平安科技(深圳)有限公司 | 海量数据下商品推荐方法、电子装置及存储介质 |
CN109583870A (zh) * | 2018-12-04 | 2019-04-05 | 广州昂森计算机网络科技有限公司 | 一种基于微信支付的快捷加油支付方法 |
CN109840987A (zh) * | 2017-11-29 | 2019-06-04 | 北京聚利科技股份有限公司 | 加油信息推送方法及装置 |
CN110535851A (zh) * | 2019-08-27 | 2019-12-03 | 浪潮云信息技术有限公司 | 一种基于oauth2协议的用户认证系统 |
CN110657819A (zh) * | 2018-06-28 | 2020-01-07 | 比亚迪股份有限公司 | 语音导航方法、装置、计算机设备及存储介质 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2540316Y (zh) * | 2002-05-31 | 2003-03-19 | 郁文明 | 机动车加油用油品监示器 |
US20080319814A1 (en) * | 2003-06-30 | 2008-12-25 | Kuo Cooper S K | Quality Control Inspection and Maintenance Result Reporting System |
KR20130013058A (ko) * | 2011-07-27 | 2013-02-06 | 이지현 | 자발적 소비자 모니터링 요원을 이용한 지역별 주유 정보 모니터링 방법 |
KR101409453B1 (ko) * | 2012-03-12 | 2014-06-20 | 유성훈 | 주유소에서 주유되고 있는 유류의 정품 여부 결과를 실시간으로 사용자에게 제공하기 위한 유사유류 검사 시스템 및 그 서비스 방법 |
US20160203591A1 (en) * | 2015-01-09 | 2016-07-14 | Umm Al-Qura University | System and process for monitoring the quality of food in a refrigerator |
CN106627109B (zh) * | 2016-12-02 | 2023-08-18 | 北京汽车集团越野车有限公司 | 一种油品质量监控系统及汽车 |
WO2018137071A1 (zh) * | 2017-01-24 | 2018-08-02 | 深圳双创科技发展有限公司 | 一种结合机器人的警告系统及方法 |
CN106940839B (zh) * | 2017-03-13 | 2020-11-24 | 中国南方电网有限责任公司超高压输电公司 | 一种输变电工程质量数据管控系统及方法 |
CN109034890A (zh) * | 2018-07-18 | 2018-12-18 | 方志鹏 | 店铺会员管理方法和系统 |
CN110872092A (zh) * | 2018-09-03 | 2020-03-10 | 中国石油化工股份有限公司 | 一种用于加油站的车辆引导系统及方法 |
CN109409864A (zh) * | 2018-10-10 | 2019-03-01 | 上海找油信息科技有限公司 | 一种手持加油站管理系统 |
CN109710858A (zh) * | 2018-12-03 | 2019-05-03 | 北京梧桐车联科技有限责任公司 | 加油信息处理方法及装置、电子设备及存储介质 |
CN111859112A (zh) * | 2020-06-16 | 2020-10-30 | 北京嘀嘀无限科技发展有限公司 | 消息推送方法、装置及服务器 |
CN112036590A (zh) * | 2020-07-16 | 2020-12-04 | 摩拜(北京)信息技术有限公司 | 电动自行车的控制方法和电子设备 |
-
2020
- 2020-12-15 CN CN202011476203.XA patent/CN112488801B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105339970A (zh) * | 2013-02-06 | 2016-02-17 | 电子商品交易合伙人有限公司 | 用于推荐珠宝物品的方法 |
CN109840987A (zh) * | 2017-11-29 | 2019-06-04 | 北京聚利科技股份有限公司 | 加油信息推送方法及装置 |
CN110657819A (zh) * | 2018-06-28 | 2020-01-07 | 比亚迪股份有限公司 | 语音导航方法、装置、计算机设备及存储介质 |
CN109509054A (zh) * | 2018-09-30 | 2019-03-22 | 平安科技(深圳)有限公司 | 海量数据下商品推荐方法、电子装置及存储介质 |
CN109583870A (zh) * | 2018-12-04 | 2019-04-05 | 广州昂森计算机网络科技有限公司 | 一种基于微信支付的快捷加油支付方法 |
CN110535851A (zh) * | 2019-08-27 | 2019-12-03 | 浪潮云信息技术有限公司 | 一种基于oauth2协议的用户认证系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112488801A (zh) | 2021-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6165957B1 (ja) | 会計処理装置、会計処理システム、会計処理方法、及び会計処理プログラム | |
US7801828B2 (en) | Method and system for detecting identity theft in non-personal and personal transactions | |
CN103226764B (zh) | 一种快递收发件系统及方法 | |
CN105264487A (zh) | 身份验证系统和方法 | |
EP3323096A1 (en) | System and method for facilitating refunds | |
CN111512334B (zh) | 重型设备中介装置及方法,以及使用上述装置及方法的系统 | |
EP2976744A1 (en) | Systems and methods for managing sending of items | |
CN106779126A (zh) | 恶意占座订单的处理方法和系统 | |
CN101120375A (zh) | 用于自动回执的系统和方法 | |
CN106779937B (zh) | 基于网络支付的无卡化地铁售票检票终端、服务器及方法 | |
US20140181007A1 (en) | Trademark reservation system | |
JP2018136655A (ja) | 自動仕訳システムおよび自動仕訳プログラム | |
CN107679166B (zh) | 在线付费的碎片化阅读方法、装置、系统及存储介质 | |
CN112508652B (zh) | 一种基于服务器端的石油数据处理方法、装置及存储介质 | |
KR102469607B1 (ko) | 안전한 거래를 실현하기 위한 시스템, 방법 및 장치 | |
CN112488799B (zh) | 一种基于加油站端的石油数据处理方法、装置及存储介质 | |
CN112488801B (zh) | 一种石油订单数据处理方法、装置及存储介质 | |
CN110781141A (zh) | 一种获取电票抬头的方法 | |
CN112488666B (zh) | 一种基于网络的石油综合数据处理方法、装置及存储介质 | |
CN103793820A (zh) | 一种商品信息的投放方法和装置及系统 | |
CN113537878A (zh) | 包裹派送方法、装置、设备及存储介质 | |
CN107402923A (zh) | 智能处理问题数据的方法和系统 | |
CN112488800B (zh) | 一种基于网络的石油运行数据处理方法、装置及存储介质 | |
CN112990868A (zh) | 车辆保险自动赔付方法、系统、设备及存储介质 | |
CN112508653B (zh) | 一种基于用户端的石油数据处理方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |