Nothing Special   »   [go: up one dir, main page]

CN112458108A - Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum - Google Patents

Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum Download PDF

Info

Publication number
CN112458108A
CN112458108A CN202011331840.8A CN202011331840A CN112458108A CN 112458108 A CN112458108 A CN 112458108A CN 202011331840 A CN202011331840 A CN 202011331840A CN 112458108 A CN112458108 A CN 112458108A
Authority
CN
China
Prior art keywords
glutamicum
glutamic acid
xylose
corynebacterium glutamicum
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011331840.8A
Other languages
Chinese (zh)
Inventor
鲍杰
金慈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202011331840.8A priority Critical patent/CN112458108A/en
Publication of CN112458108A publication Critical patent/CN112458108A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • C12P13/18Glutamic acid; Glutamine using biotin or its derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/04Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
    • C12Y102/04002Oxoglutarate dehydrogenase (succinyl-transferring) (1.2.4.2), i.e. alpha-ketoglutarat dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01017Xylulokinase (2.7.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention belongs to the field of genetic engineering, and discloses a method for constructing a synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum, which comprises the following steps: (1) expressing a heterologous pentose transporter in corynebacterium glutamicum; (2) expressing heterologous xylose isomerase and xylulokinase in C.glutamicum; (3) the generated 5-xylulose phosphate can generate alpha-ketoglutarate through a pentose phosphate pathway and a glycolysis pathway, and alpha-ketoglutarate dehydrogenase is subjected to attenuation expression so that the alpha-ketoglutarate flows to the synthesis of glutamic acid more; (4) the glutamic acid secretory protein is modified so that the corynebacterium glutamicum can not respond to the external biotin pressure any more and continuously secrete glutamic acid to the outside of cells. The synthesis path from xylose to glutamic acid constructed by the invention enables corynebacterium glutamicum to produce glutamic acid by using xylose in a conventional synthesis medium, and can synthesize the glutamic acid from xylose in the environment of high biotin such as lignocellulose.

Description

Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum
Technical Field
The invention belongs to the field of genetic engineering, and relates to a construction method of a synthetic path for producing glutamic acid by utilizing xylose in corynebacterium glutamicum, an engineering strain for producing the glutamic acid by utilizing the xylose in a high-biotin environment and application thereof.
Background
Glutamic acid is an important industrial amino acid, is widely used in the fields of food, feed and the like, and is also used as a monomer for producing biological polymerization materials such as polyglutamic acid and the like. In 2013, the annual yield of glutamic acid has reached 300 ten thousand tons, which indicates that the demand is huge. At present, glutamic acid is mainly produced by a microbial fermentation method, but most of raw materials used by the method are grain crops such as starch and the like, so that the problem of 'competing for grain with people' is caused. Therefore, it is urgent to find more inexpensive and widely available raw materials. Lignocellulose has wide sources, large supply quantity and low price, and is the best choice as glutamic acid fermentation raw material.
Lignocellulose is mainly composed of cellulose, hemicellulose and lignin. The abundant glucose in cellulose can be utilized by most microorganisms, but the xylose from hemicellulose also accounts for 30% of the total sugar of lignocellulose, and the utilization of the xylose for fermentation production is a precondition for high-efficiency utilization of lignocellulose.
Corynebacterium glutamicum has a wide substrate production potential and is used for synthesizing various amino acids, organic acids, biofuels and other bio-based chemicals. However, wild Corynebacterium glutamicum cannot utilize xylose, so that metabolic engineering to utilize xylose in lignocellulose is a prerequisite for lignocellulose fermentation. Meanwhile, lignocellulose contains a large amount of biotin, and the biotin can promote the synthesis of the cell wall of the corynebacterium glutamicum so as to inhibit the secretion of glutamic acid, so that the problem that the corynebacterium glutamicum secretes the glutamic acid in a high-biotin environment is also a necessary step.
At present, no report on the construction of xylose path of corynebacterium glutamicum so as to utilize glucose and xylose in lignocellulose for producing glutamic acid is available, so that the establishment of a corynebacterium glutamicum construction method for producing glutamic acid by co-fermenting glucose and xylose in wheat straw hydrolysate is very necessary for the industrial production of lignocellulose glutamic acid.
Disclosure of Invention
The purpose of the present invention is to provide a method for constructing a synthetic pathway for producing glutamic acid from xylose in Corynebacterium glutamicum.
Another purpose of the invention is to construct an engineering strain capable of producing glutamic acid by using xylose in a high biotin environment.
The starting strain is Corynebacterium glutamicum Glutaminocus mS9114 which is purchased from Shanghai Industrial microorganism institute (SIIM, Shanghai, China, http:// www.gsysiim.com /), and the Collection number is SIIM B460, and the strain is also collected in China Industrial microorganism strain Collection management Center (China Center of Industrial Culture Collection, CICC, http:// www.china-cic, org /) and the Collection number is CICC 20935. The modified strain has not been deposited
The technical scheme adopted by the invention for realizing the construction of the synthetic route from xylose to glutamic acid in corynebacterium glutamicum is as follows: firstly, heterologous pentose transporters are expressed in the corynebacterium glutamicum to help the corynebacterium glutamicum to absorb xylose into cells; then expressing heterologous xylose isomerase and xylulokinase in corynebacterium glutamicum, isomerizing xylose into xylulose, and then phosphorylating to xylulose-5-phosphate; the generated xylulose-5-phosphate can generate alpha-ketoglutarate through a pentose phosphate pathway and a glycolysis pathway of the corynebacterium glutamicum, and the alpha-ketoglutarate dehydrogenase is subjected to attenuation expression, so that the alpha-ketoglutarate flows to the synthesis of glutamic acid more; finally, the glutamic acid secretory protein is modified, so that the corynebacterium glutamicum can not respond to the pressure of external biotin any more and can secrete the glutamic acid out of the cells continuously.
The specific method for gene knockout and gene integration is as follows: the constructed knock-out plasmid or integrative plasmid is electrically transformed into corynebacterium glutamicum, and then coated on a plate containing kanamycin resistance, pcr identification is carried out on the grown colony, and a primary recombinant strain is determined. Culturing the bacterial strain which is subjected to the primary recombination in an LB culture medium for overnight culture, coating the bacterial strain on a sucrose plate, carrying out pcr verification on the grown bacterial colony again through sucrose marking and screening, and carrying out gene sequencing to obtain the correct bacterial strain which is the successfully constructed bacterial strain.
The construction method of the knockout plasmid comprises the following steps: taking a corynebacterium glutamicum genome as a template, obtaining upstream and downstream homology arms of a target gene to be knocked out by PCR, and then respectively connecting the upstream and downstream homology arms to pK18mobsacB plasmids by enzyme digestion connection.
The method for constructing the synthetic route for generating the glutamic acid by utilizing the xylose in the corynebacterium glutamicum specifically comprises the following steps:
(1) the xylAB expression cassette is integrated at the ldhA gene locus of c.glutamicum;
(2) modification of glutamate secretory channel protein;
(3) attenuating the expression of alpha-ketoglutarate dehydrogenase;
(4) expression of the heterologous pentose transporter araE.
Further, the step (1) of integrating the xylAB expression cassette into the ldhA gene site of c. Firstly, constructing an integration plasmid of xylAB, then transferring the integration plasmid pK 18-delta ldhA of xylAB into C.glutamicum in an electrotransfer mode, and further screening out a strain which generates correct homologous recombination in a pcr verification mode to obtain recombinant corynebacterium glutamicum, which is named as C.glutamicum XyltoGA 01;
the step (2) is modification of glutamic acid secretory channel protein: firstly constructing a knockout plasmid with 330 bases at the carbon end of MscCG, then transferring the knockout plasmid pK 18-delta MscG 330 into C.glutamicum XyltoGA01 in an electric transfer mode, and screening out a strain which generates correct homologous recombination in a pcr verification mode to obtain recombinant corynebacterium glutamicum, which is named as C.glutamicum XyltoGA 02;
said step (3) attenuating the expression of alpha-ketoglutarate dehydrogenase: firstly, constructing an integrated plasmid which replaces an original RBS sequence of odhA and is an RBS sequence with the transcription initiation strength of 0.1, then transferring the knocked-out plasmid into C.glutamicum xyltotA 02 in an electric transfer mode, and screening a strain which generates correct homologous recombination in a pcr verification mode to obtain recombinant corynebacterium glutamicum, which is named as C.glutamicum xyltotA 03;
the step (4) expresses a heterologous pentose transporter araE: firstly, constructing an integration plasmid of araE, then transferring the integration plasmid pK 18-delta ack of araE into C.glutamicum xyltotGA 03 in an electrotransfer mode, further screening a strain which generates correct homologous recombination in a pcr verification mode, and finally obtaining the recombinant corynebacterium glutamicum which is named C.glutamicum xyltotGA 04.
According to the construction method of the synthetic route for producing glutamic acid by utilizing xylose in corynebacterium glutamicum, a recombinant strain C.glutamicum xyltotaGA 04 is cultured and fermented, the culture medium is a high-biotin-concentration culture medium containing 60g/L glucose and 40g/L xylose, the temperature is 32 ℃, the pH is controlled to be 7.2 by ammonia water, the ventilation amount is 1.4vvm, and the rotation speed is 600 rpm.
The invention also provides the corynebacterium glutamicum which is constructed by the construction method of the synthetic pathway for producing the glutamic acid by utilizing the xylose in the corynebacterium glutamicum and can highly produce the glutamic acid by utilizing the xylose in a high-biotin environment.
The invention also provides application of the corynebacterium glutamicum for producing glutamic acid with high yield by using xylose in the environment with high biotin in lignocellulose fermentation.
The invention relates to a method for constructing a synthetic route for generating glutamic acid by utilizing xylose in corynebacterium glutamicum, which more particularly comprises the following steps:
1: integration of xylAB expression cassette into ldhA Gene site of C
Firstly, constructing an integrative plasmid of xylAB, wherein the specific construction method comprises the following steps: using a genome of C.glutamcums as a template, and amplifying by using a Peftu-F (shown as a Peftu-F sequence in a sequence table) primer and a Peftu-R (shown as a Peftu-R sequence in the sequence table) primer through a PCR method to obtain a Peftu promoter (shown as a Peftu sequence in the sequence table); taking a genome of E.coli BL21 as a template, and amplifying by using an xylAB _ BL21-F (shown as a xylAB _ BL21-F sequence in a sequence table) primer and a xylAB _ BL21-R (shown as a xylAB _ BL21-R sequence in the sequence table) primer in a PCR (polymerase chain reaction) manner to obtain a xylAB _ BL21 (shown as a xylAB _ BL21 sequence in the sequence table) fragment; obtaining a Peftu _ xylAB _ BL21 fusion fragment by taking Peftu and xylAB _ BL21 as templates and using Peftu-F and xylAB _ BL21-R primers in a mode of overlapping extension PCR; using a genome of Glutamicum as a template, and using ldhA-up-F (shown as ldhA-up-F sequence in the sequence table) and ldhA-up-R (shown as ldhA-up-R sequence in the sequence table) primers, amplifying by a PCR method to obtain an ldhA-up fragment (shown as ldhA-up sequence in the sequence table); using the genome of Glutamicum as a template, and using ldhA-down-F (shown as ldhA-down-F sequence in the sequence table) and ldhA-down-R (shown as ldhA-down-R sequence in the sequence table) primers, an ldhA-down fragment (shown as ldhA-down sequence in the sequence table) is obtained by PCR amplification; a. DELTA. ldhA:. xylAB fusion fragment was obtained by overlap extension PCR using ldhA-up-F and ldhA-down-R primers using ldhA-up-BL 21 and ldhA-down as templates, and was treated with EcoRI and HindIII endonucleases and inserted into pK18mob plasmid using T4 ligase to obtain pK 18-. DELTA. ldhA:. xylAB plasmid. Then, the integrated plasmid pK 18-delta ldhA is transferred into C.glutamicum by electrotransfer, and a strain which generates correct homologous recombination is screened out by pcr verification to obtain the recombinant corynebacterium glutamicum, which is named as C.glutamicum XyltoGA 01.
2: modification of glutamate secretory channel proteins
Firstly constructing a knockout plasmid with 330 bases at the carbon end of MscCG, wherein the specific construction method comprises the following steps: using a genome of C.glutamicum as a template, and amplifying by using MscCG-up-F (shown as an MscCG-up-F sequence in a sequence table) and MscCG-up-R (shown as an MscCG-up-R sequence in the sequence table) primers through a PCR (polymerase chain reaction) method to obtain an MscCG-up fragment (shown as an MscCG-up sequence in the sequence table); using a genome of C.glutamcum as a template, and amplifying by using MscG-down-F (shown as an MscCG-down-F sequence in a sequence table) and MscCG-down-R (shown as an MscCG-down-R sequence in the sequence table) primers through a PCR (polymerase chain reaction) method to obtain an MscG-down fragment (shown as an MscCG-down sequence in the sequence table); using MscCG-up and MscCG-down as templates, using MscCG-up-F and MscCG-down-R primers, obtaining a delta MscCG330 fusion fragment in a mode of overlapping extension PCR, using EcoRI and HindIII endonucleases to process the delta MscCG330 fusion fragment, and using T4 ligase to insert the delta MscCG330 fusion fragment into a pK18mob plasmid to obtain a plasmid of 18-delta MscCG 330. And then transferring the knock-out plasmid pK 18-delta MscCG330 into C.glutamicum XyltoGA01 in an electrotransfer mode, and screening a strain which generates correct homologous recombination in a pcr verification mode to obtain the recombinant corynebacterium glutamicum, which is named as C.glutamicum XyltoGA 02.
3: attenuation of expression of alpha-ketoglutarate dehydrogenase
An integration plasmid in which the original RBS sequence replacing odhA was an RBS sequence having a transcription initiation strength of 0.1 was constructed, specifically, as follows: using genome of Glutamicum as a template, and amplifying an odhA-up fragment (shown as the odhA-up sequence in the sequence table) by using odhA-up-F (shown as the odhA-up-F sequence in the sequence table) and odhA-up-R (shown as the odhA-up-R sequence in the sequence table) primers through a PCR method; using genome of Glutamicum as template, using odhA-down-F (shown as odhA-down-F sequence in sequence table) and odhA-down-R (shown as odhA-down-R sequence in sequence table) primers to amplify by PCR to obtain odhA-down fragment (shown as odhA-down sequence in sequence table); an odhABS0.1 fusion fragment was obtained by overlap extension PCR using the odhA-up-F and odhA-down-R primers using the odhA-up and odhA-down as templates, and was treated with EcoRI and HindIII endonucleases, and then inserted into the pK18mob plasmid using T4 ligase to obtain the pK 18-odhABS0.1 plasmid. And then transferring the knock-out plasmid into C.glutamicum xyltotaGA 02 in an electric transfer mode, and screening out a strain which generates correct homologous recombination in a pcr verification mode to obtain the recombinant corynebacterium glutamicum, which is named as C.glutamicum xyltotaGA 03.
4: expression of heterologous pentose transporter araE
Firstly, constructing an araE integration plasmid, wherein the specific construction method comprises the following steps: synthesizing a PH36 promoter (shown as a PH36 sequence in a sequence table) by Czeri; taking the genome of E.coli BL21 as a template, and amplifying by using araE-F (shown as an araE-F sequence in a sequence table) and araE-R (shown as an araE-R sequence in the sequence table) primers in a PCR (polymerase chain reaction) mode to obtain an araE-up (shown as an araE-up sequence in the sequence table) fragment; taking PH36 and araE as templates, and obtaining a PH36_ araE fusion fragment by a mode of overlap extension PCR by using PH36-F and araE-R primers; taking the genome of E.coli BL21 as a template, and amplifying by using ack-up-F (shown as ack-up-F sequence in a sequence table) and ack-up-R (shown as ack-up-R sequence in the sequence table) primers in a PCR mode to obtain an ack-up (shown as ack-up sequence in the sequence table) fragment; using E.coli BL21 genome as template, and using ack-down-F (shown as ack-down-F sequence in sequence table) and ack-down-R (shown as ack-down-R sequence in sequence table) primers to amplify by PCR method to obtain ack-down fragment (shown as ack-down sequence in sequence table); the fusion fragment of araE was obtained by overlap extension PCR using ack-up-F and ack-down-R primers using ack-up-F and ack-down-R as templates, and was treated with EcoRI and HindIII endonucleases, and then inserted into pK18mob plasmid using T4 ligase to obtain pK 18-aaack. Then, the integrated plasmid pK 18-delta ack is transferred into C.glutamicum xyltotA 03 by electrotransfer, and a strain which generates correct homologous recombination is screened out by a pcr verification mode, and the obtained recombinant corynebacterium glutamicum is named as C.glutamicum xyltotA 04. The recombinant strain C.glutamicum xyltotA 04 was also cultured in the environment described in example 1 for fermentation, and it was found that the xylose utilization capacity of the engineered strain was greatly increased, and 40.7g/L xylose could be utilized in 48 hours (see FIG. 1).
The invention realizes that the corynebacterium glutamicum utilizes glucose and xylose to generate the glutamic acid together internationally for the first time in the environment of high biotin.
The xylose metabolic pathway construction and glutamic acid secretion pathway construction method adopted by the invention is not limited to the construction in corynebacterium glutamicum, and can also be applied to the construction of xylose metabolic pathways and glutamic acid secretion pathways of other microorganisms.
Drawings
FIG. 1: all metabolically engineered strains were compared to the fermentation performance (a xylose consumption, b glucose consumption and c glutamate production) of the starting strain.
FIG. 2: the fermentation performance (a glucose utilization, b xylose utilization and c glutamic acid production) of the recombinant strain was compared with that of the control strain in a lignocellulose hydrolysate.
FIG. 3: the invention constructs a synthetic pathway from xylose to glutamic acid.
Detailed description of the preferred embodiments
One, the strain used in the invention
Coli DH5 α was used for the construction of expression and knock-out plasmids, and e.coli bl21 was used to provide the e.coli-derived xylose utilization gene. Glutamicum S9114 was used mainly as the starting strain. Pediococcus acidilactici DSM20284 is used to provide a lactate-derived xylose utilization gene.
II, reagent and culture medium
PrimeSTARHSDNA polymerase was purchased from Takara bioengineering; restriction enzymes and T4DNAligase were purchased from Fermentas; the genome extraction kit is purchased from Tiangen company; the plasmid mini-pump kit, the PCR product recovery kit and the DNA gel recovery kit are purchased from Shanghai Czeri bioengineering GmbH; the Megazyme D-/L-Lactic acid Kit is purchased from Megazyme; other medicines and reagents are purchased from Shanghai Lingfeng Chemicals company or Shanghai national medicine chemical reagent group without special instructions; primer synthesis was performed by Shanghai Czeri bioengineering, Inc.
LB culture medium: 10g/L sodium chloride, 10g/L peptone, 5g/L yeast extract.
An LK medium: 10g/L sodium chloride, 10g/L peptone, 5g/L yeast extract, 50. mu.g/L kanamycin.
Limiting biotin medium: 1g/L potassium dihydrogen phosphate, 3g/L urea, 0.6g/L magnesium sulfate, 0.5g/L corn steep liquor, and optionally 60g/L glucose or xylose as carbon source.
Biotin-rich medium: 1g/L potassium dihydrogen phosphate, 3g/L urea, 0.6g/L magnesium sulfate, 25g/L corn steep liquor, and optionally 60g/L glucose or xylose as carbon source.
Example 1: integration of xylAB expression cassette into ldhA Gene site of C
Firstly, constructing an integrative plasmid of xylAB, wherein the specific construction method comprises the following steps: using a genome of C.glutamcums as a template, and amplifying by using a Peftu-F (shown as a Peftu-F sequence in a sequence table) primer and a Peftu-R (shown as a Peftu-R sequence in the sequence table) primer through a PCR method to obtain a Peftu promoter (shown as a Peftu sequence in the sequence table); taking a genome of E.coli BL21 as a template, and amplifying by using an xylAB _ BL21-F (shown as a xylAB _ BL21-F sequence in a sequence table) primer and a xylAB _ BL21-R (shown as a xylAB _ BL21-R sequence in the sequence table) primer in a PCR (polymerase chain reaction) manner to obtain a xylAB _ BL21 (shown as a xylAB _ BL21 sequence in the sequence table) fragment; obtaining a Peftu _ xylAB _ BL21 fusion fragment by taking Peftu and xylAB _ BL21 as templates and using Peftu-F and xylAB _ BL21-R primers in a mode of overlapping extension PCR; using a genome of Glutamicum as a template, and using ldhA-up-F (shown as ldhA-up-F sequence in the sequence table) and ldhA-up-R (shown as ldhA-up-R sequence in the sequence table) primers, amplifying by a PCR method to obtain an ldhA-up fragment (shown as ldhA-up sequence in the sequence table); using the genome of Glutamicum as a template, and using ldhA-down-F (shown as ldhA-down-F sequence in the sequence table) and ldhA-down-R (shown as ldhA-down-R sequence in the sequence table) primers, an ldhA-down fragment (shown as ldhA-down sequence in the sequence table) is obtained by PCR amplification; a. DELTA. ldhA:. xylAB fusion fragment was obtained by overlap extension PCR using ldhA-up-F and ldhA-down-R primers using ldhA-up-BL 21 and ldhA-down as templates, and was treated with EcoRI and HindIII endonucleases and inserted into pK18mob plasmid using T4 ligase to obtain pK 18-. DELTA. ldhA:. xylAB plasmid.
The specific system of the above PCR experiment is as follows: template 1. mu.L, upstream and downstream primers 1. mu.L each, deionized water 22. mu.L and primeSTARmix (TAKARA, available from Haja, Shanghai) 25. mu.L, total 50. mu.L.
The amplification procedure for the above PCR experiment was as follows: the first step is at 95 ℃ for 10 minutes; the second step, at 95 ℃, 30 seconds; step three, the temperature is 55 ℃ and 30 seconds; a fourth step of 72 ℃ for 1 minute (time is adjusted depending on the size of the amplified fragment, generally calculated as 1 kb/min); then 30 cycles are carried out from the second step to the fourth step; the fifth step is that the temperature is 72 ℃ and the time is 10 minutes; and step six, 12 ℃ without time limitation.
The specific system of the above restriction enzyme cleavage is as follows: 50 μ L of template, 20 μ L of deionized water, 20 μ L of digestion buffer, 5 μ L each of the two restriction enzymes (both digestion buffer and restriction enzymes are brand name Thermo Fisher, purchased from Shanghai, Czert), and 100 μ L total.
The specific processes of the above connection, transformation and screening are as follows: firstly, 3.5 mu L of plasmid and 4 mu L of gene fragment after enzyme digestion are added into a 1.5mL centrifuge tube, then 7.5 mu L of ligase T4(Thermo Fisher, purchased from Shanghai, Jersey company) is added, and the mixture is placed into a low-temperature water bath kettle at 16 ℃ for half an hour after being gently mixed; then adding all the connecting liquid into 100 mu L of escherichia coli competence, gently mixing, and standing in ice water for half an hour; then, the transformation liquid is placed in a water bath kettle at 42 ℃ for heat shock for 1 minute and 30 seconds, then 0.9mL of LB culture medium is added into the transformation liquid, and the transformation liquid is placed in a shaking table at 37 ℃ for incubation for 1 hour; after the incubation, 100. mu.L of the transformation solution was spread on LK plates containing kanamycin resistance and cultured overnight in a 37 ℃ incubator; selecting colonies growing on the plate in an LK medium, taking gene upstream and downstream primers as verification primers, and screening out positive clones by a colony PCR (the PCR system and the amplification program are operated as in example 1); inoculating the positive clone into an LK culture medium for overnight culture, and pumping the plasmid every other day to a sequencing company for sequencing, wherein the plasmid with a correct sequencing result is the plasmid which is successfully connected.
Then, the integrated plasmid pK 18-delta ldhA is transferred into C.glutamicum by electrotransfer, and the strain which has the correct homologous recombination is screened out by pcr verification (same as the operation of example 1) to obtain the recombinant Corynebacterium glutamicum, which is named C.glutamicum XyltoGA 01.
The specific process of the electrical transformation is as follows: firstly, 20 mu L of plasmid is added into 100 mu L of corynebacterium glutamicum infected state, and the mixture is placed in ice water for half an hour after being mixed softly; then, adding all the conversion solution into an electric shock cup, and carrying out electric shock under the conditions of 2000V voltage and 200 omega resistance by an electric converter; sucking out all the conversion solution after electric shock, placing the conversion solution into a 1.5mL centrifuge tube, adding 0.8mL LB culture medium, and thermally shocking the mixture for 6 minutes in a water bath kettle at 46 ℃; then placing the heat-shocked transformation liquid in a shaking table at 30 ℃ for incubation for 2 hours; after the incubation, 100. mu.L of the transformation solution was applied to LK plates and incubated in an incubator at 30 ℃ for 48 hours.
And (3) carrying out fermentation comparison on the recombinant strain C.glutamicum XyltoGA01 and the original strain C.glutamicum in a 3L fermentation tank, wherein the culture medium is a high-biotin-concentration culture medium containing 60g/L glucose and 40g/L xylose, the temperature is 32 ℃, the pH is controlled to be 7.2 by ammonia water, the ventilation capacity is 1.4vvm, and the rotation speed is 600 rpm. As a result, it was found that the original strain could not utilize xylose, only glucose, and could not produce glutamic acid, whereas the recombinant strain c.
Example 2: modification of glutamate secretory channel proteins
Firstly constructing a knockout plasmid with 330 bases at the carbon end of MscCG, wherein the specific construction method comprises the following steps: using genome of C.glutamicum as a template, and using MscCG-up-F (shown as MscCG-up-F sequence in a sequence table) and MscCG-up-R (shown as MscCG-up-R sequence in the sequence table) primers to amplify by a PCR method (same with the operation of example 1) to obtain an MscCG-up fragment (shown as MscCG-up sequence in the sequence table); using genome of C.glutamcum as template, and using MscG-down-F (shown as MscCG-down-F sequence in sequence table) and MscCG-down-R (shown as MscCG-down-R sequence in sequence table) primers to amplify by PCR method (same as example 1 operation) to obtain MscCG-down fragment (shown as MscCG-down sequence in sequence table); using MscG-up and MscG-down as templates, Δ MscG 330 fusion fragments were obtained by overlap extension PCR using MscCG-up-F and MscCG-down-R primers (same as in example 1), and were treated with EcoRI and HindIII endonucleases (same as in example 1), and then inserted into pK18mob plasmid using T4 ligase to obtain pK18- Δ MscG 330 plasmid (same as in example 1). Then, the knock-out plasmid pK18- Δ MscCG330 was transferred into C.glutamicum XyltoGA01 by electrotransfer (same operation as example 1), and a strain which underwent correct homologous recombination was selected by pcr verification (same operation as example 1), so as to obtain a recombinant Corynebacterium glutamicum, which was named C.glutamicum XyltoGA 02. Recombinant strain c. glutamicum xyltota ga02 was also cultured in the environment described in example 1 and fermented, and it was found that the engineered strain could produce glutamic acid using glucose and xylose, but the synthesis of glutamic acid was less and only 10.0g/L of glutamic acid could be produced (see fig. 1).
Example 3: attenuation of expression of alpha-ketoglutarate dehydrogenase
An integration plasmid in which the original RBS sequence replacing odhA was an RBS sequence having a transcription initiation strength of 0.1 was constructed, specifically, as follows: using the genome of Glutamicum as a template, and using odhA-up-F (shown as the odhA-up-F sequence in the sequence table) and odhA-up-R (shown as the odhA-up-R sequence in the sequence table) primers, an odhA-up fragment (shown as the odhA-up sequence in the sequence table) is obtained by PCR (same as the procedure in example 1); (ii) amplifying an odhA-down fragment (shown as the odhA-down sequence in the sequence listing) by a PCR method (the same as in example 1) using an odhA-down-F (shown as the odhA-down-F sequence in the sequence listing) and an odhA-down-R (shown as the odhA-down-R sequence in the sequence listing) primer using the genome of Glutamicum as a template; an odhABRBS0.1 fusion fragment was obtained by overlap extension PCR using the odhA-up-F and odhA-down-R primers as templates (same procedure as in example 1), and was treated with EcoRI and HindIII endonucleases (same procedure as in example 1), and inserted into a pK18mob plasmid using T4 ligase to obtain a pK 18-odhABS0.1 plasmid (same procedure as in example 1). Then, the knock-out plasmid was transferred to c.glutamicum xyltota ga02 by electrotransfer (same as in example 1), and a strain that underwent correct homologous recombination was selected by pcr verification (same as in example 1), to obtain a recombinant corynebacterium glutamicum, which was named c.glutamicum xyltota ga 03. The recombinant strain C.glutamicum xyltota 03 was also cultured in the environment described in case 1 for fermentation, and it was found that the glutamic acid yield of the modified strain was greatly increased to 31.3g/L, but the xylose utilization rate was slow, and only 26.3g/L of xylose could be utilized in 48 hours (see FIG. 1).
Example 4: expression of heterologous pentose transporter araE
Firstly, constructing an araE integration plasmid, wherein the specific construction method comprises the following steps: synthesizing a PH36 promoter (shown as a PH36 sequence in a sequence table) by Czeri; taking the genome of E.coli BL21 as a template, and amplifying by using araE-F (shown as an araE-F sequence in a sequence table) and araE-R (shown as an araE-R sequence in the sequence table) primers in a PCR mode (the same operation as the example 1) to obtain an araE-up (shown as an araE-up sequence in the sequence table) fragment; using PH36 and araE as templates, and using PH36-F and araE-R primers to obtain a PH36_ araE fusion fragment by a mode of overlap extension PCR (the same operation as the example 1); taking the genome of E.coli BL21 as a template, and amplifying ack-up (shown as ack-up-F sequence in the sequence table) fragments by using ack-up-F (shown as ack-up-F sequence in the sequence table) and ack-up-R (shown as ack-up-R sequence in the sequence table) primers in a PCR mode (same as the operation of the example 1); using E.coli BL21 genome as template, using ack-down-F (as shown in ack-down-F sequence in sequence table) and ack-down-R (as shown in ack-down-R sequence in sequence table) primers to amplify by PCR (same as example 1) to obtain ack-down fragment (as shown in ack-down sequence in sequence table); A.DELTA.ack:: araE fusion fragment was obtained by overlap extension PCR using ack-up, PH36_ araE and ack-down as templates (same procedure as in example 1) and EcoRI and HindIII endonucleases (same procedure as in example 1), and inserted into pK18mob plasmid using T4 ligase to obtain pK 18-DELTA.ack:: araE plasmid (same procedure as in example 1). Subsequently, the integrated plasmid pK18- Δ ack was transferred into C.glutamicum xyltotA 03 by electrotransfer (same as the procedure in example 1), and the strain with correct homologous recombination was selected by pcr verification (same as the procedure in example 1), and the resulting recombinant C.glutamicum xyltotA 04 was named. The recombinant strain C.glutamicum xyltotA 04 was also cultured in the environment described in example 1 for fermentation, and it was found that the xylose utilization capacity of the engineered strain was greatly increased, and 40.7g/L xylose could be utilized in 48 hours (see FIG. 1).
Example 5: comparison of fermentation Performance of recombinant strains and control strains in lignocellulose hydrolysate
The collected wheat straws are subjected to dry dilute acid pretreatment, biological detoxification and enzyme hydrolysis, and finally separated to obtain wheat straw hydrolysate containing high-concentration glucose and xylose. The engineered strain C.glutamicum xyltoGA04 for xylose utilization and glutamic acid secretion constructed by the invention and a control strain C.glutamicum WJB which can not utilize xylose are fermented and compared in a 3L fermentation tank, wherein a culture medium is a wheat straw hydrolysate containing 120g/L glucose and 40g/L xylose, the temperature is 32 ℃, the pH is controlled at 7.2 by ammonia water, the ventilation amount is 1.4vvm, and the rotation speed is 600 rpm. As a result, it was found that the control strain produced only 49.2g/L of glutamic acid using glucose, whereas the recombinant strain produced 61.7g/L of glutamic acid using glucose and xylose in common (see FIG. 2). The results show that the engineering strain which has the functions of co-fermenting glucose and xylose and can produce glutamic acid in a high-biotin environment is successfully constructed through metabolic engineering modification.
The above describes the operation example of the technical solution of the present invention in detail, and is not to be considered as limiting the application of the present invention. Equivalent substitutions of operating conditions are within the scope of the invention.
Sequence listing
<110> university of east China's college of science
<120> a method for constructing a synthetic pathway for producing glutamic acid using xylose in Corynebacterium glutamicum
<160> 42
<170> SIPOSequenceListing 1.0
<210> 1
<211> 40
<212> DNA
<213> PH36-F
<400> 1
ttgacagctt atcatcaaaa gctgggtacc tctatctggt 40
<210> 2
<211> 40
<212> DNA
<213> PH36-R
<400> 2
tttgcgatca aataatgaca tggatcccat gctactccta 40
<210> 3
<211> 95
<212> DNA
<213> PH36
<400> 3
caaaagctgg gtacctctat ctggtgccct aaacggggga atattaacgg gcccagggtg 60
gtcgcacctt ggttggtagg agtagcatgg gatcc 95
<210> 4
<211> 39
<212> DNA
<213> Peftu-F
<400> 4
ttgacagctt atcatcgaaa agcaatttgc ttttcgacg 39
<210> 5
<211> 39
<212> DNA
<213> Peftu-R
<400> 5
ggtcaaaata ggcttgcatt gtatgtcctc ctggacttc 39
<210> 6
<211> 335
<212> DNA
<213> Peftu
<400> 6
cgaaaagcaa tttgcttttc gacgccccac cccgcgcgtt ttagcgtgtc agtaggcgcg 60
tagggtaagt ggggtagcgg cttgttagat atcttgaaat cggctttcaa cagcattgat 120
ttcgatgtat ttagctggcc gttaccctgc gaatgtccac agggtagctg gtagtttgaa 180
aatcaacgcc gttgccctta ggattcagta actggcacat tttgtaatgc gctagatctg 240
tgtgctcagt cttccaggct gcttatcaca gtgaaagcaa aaccaattcg tggctgcgaa 300
agtcgtagcc accacgaagt ccaggaggac ataca 335
<210> 7
<211> 39
<212> DNA
<213> xylAB_BL21-F
<400> 7
gaagtccagg aggacataca atgcaagcct attttgacc 39
<210> 8
<211> 40
<212> DNA
<213> xylAB_BL21-R
<400> 8
ctcgaattcc atggtttacg ccattaatgg cagaagttgc 40
<210> 9
<211> 2849
<212> DNA
<213> xylAB_BL21
<400> 9
atgcaagcct attttgacca gctcgatcgc gttcgttatg aaggctcaaa atcctcaaac 60
ccgttagcat tccgtcacta caatcccgac gaactggtgt tgggtaagcg tatggaagag 120
cacttgcgtt ttgccgcctg ctactggcac accttctgct ggaacggggc ggatatgttt 180
ggtgtggggg cgtttaatcg tccgtggcag cagcctggtg aggcactggc gttggcgaag 240
cgtaaagcag atgtcgcatt tgagtttttc cacaagttac atgtgccatt ttattgcttc 300
cacgatgtgg atgtttcccc tgagggcgcg tcgttaaaag agtacatcaa taattttgcg 360
caaatggttg atgtcctggc aggcaagcaa gaagagagcg gcgtgaagct gctgtgggga 420
accgccaact gctttacaaa ccctcgctac ggcgcgggtg cggcgacgaa cccagatcct 480
gaagtcttca gctgggcggc aacgcaagtt gttacagcga tggaagcaac ccataaattg 540
ggcggtgaaa actatgtcct gtggggcggt cgtgaaggtt acgaaacgct gttaaatacc 600
gacttgcgtc aggagcgtga acaactgggc cgctttatgc agatggtggt tgagcataaa 660
cataaaatcg gtttccaggg cacgttgctt atcgaaccga aaccgcaaga accgaccaaa 720
catcaatatg attacgatgc cgcgacggtc tatggcttcc tgaaacagtt tggtctggaa 780
aaagagatta aactgaacat tgaagctaac cacgcgacgc tggcaggtca ctctttccat 840
catgaaatag ccaccgccat tgcgcttggc ctgttcggtt ctgtcgacgc caaccgtggc 900
gatgcgcaac tgggctggga caccgaccag ttcccgaaca gtgtggaaga gaatgcgctg 960
gtgatgtatg aaattctcaa agcaggcggt ttcaccaccg gtggtctgaa cttcgatgcc 1020
aaagtacgtc gtcaaagtac tgataaatat gatctgtttt acggtcatat cggcgcgatg 1080
gatacgatgg cactggcgct gaaaattgca gcgcgcatga ttgaagatgg cgagctggat 1140
aaacgcatcg cgcagcgtta ttccggctgg aatagcgaat tgggccagca aatcctgaaa 1200
ggccaaatgt cactggcaga tttagccaaa tatgctcagg aacataattt gtctccggtg 1260
catcagagtg gtcgccagga gcaactggaa aatctggtaa atcattatct gttcgacaaa 1320
taacggctaa ctgtgcagtc cgttggcccg gttatcggta gcgataccgg gcattttttt 1380
aaggaacgat cgatatgtat atcgggatag atcttggcac ctcgggcgta aaagttattt 1440
tgctcaacga gcagggtgag gtggttgctt cgcaaacgga aaagctgacc gtttcgcgcc 1500
cgcatccact ctggtcggaa caagacccgg aacagtggtg gcaggcaact gatcgcgcaa 1560
tgaaagctct gggcgatcag cattctctgc aggacgttaa agcattgggt attgccggcc 1620
agatgcatgg agcaacctta ctggatgctc aacaacgggt attgcgccct gccattttgt 1680
ggaacgacgg gcgctgtgcg caagagtgca ctttgctgga agcgagagtt ccgcaatcac 1740
gagtgattac cggcaacctg atgatgcccg gatttactgc gcctaaattg ctatgggttc 1800
agcggcatga gccggagata ttccgtcaaa tcgacaaagt attattaccg aaagattact 1860
tgcgtctgcg tatgacgggg gagtttgcca gcgatatgtc tgacgcagct ggcaccatgt 1920
ggctggatgt cgcaaagcgt gactggagtg acgtcatgct gcaggcttgc gacttatctc 1980
gtgaccagat gcccgcatta tacgaaggca gcgaaattac tggtgctttg ttacctgaag 2040
ttgcgaaagc gtggggtatg gcgacggtgc cagttgtcgc aggcggtggc gacaatgcag 2100
ctggtgcagt tggtgtggga atggttgatg ctaatcaggc aatgttatcg ctggggacgt 2160
cgggggtcta ttttgctgtc agcgaagggt tcttaagcaa gccagaaagc gccgtacata 2220
gcttttgcca tgcgctaccg caacgttggc atttaatgtc tgtgatgctg agtgcagcgt 2280
cgtgtctgga ttgggccgcg aaattaaccg gcctgagcaa tgtcccagct ttaatcgctg 2340
cagctcaaca ggctgatgaa agtgccgagc cagtttggtt tctgccttat ctttccggcg 2400
agcgtacgcc acacaataat ccccaggcga agggggtttt ctttggtttg actcatcaac 2460
atggccccaa tgaactggcg cgagcagtgc tggaaggcgt gggttatgcg ctggcagatg 2520
gcatggatgt cgtgcatgcc tgcggtatta aaccgcaaag tgttacgttg attgggggcg 2580
gggcgcgtag tgagtactgg cgtcagatgc tggcggatat cagcggtcag cagctcgatt 2640
accgtacggg aggggatgtg gggccagcac tgggcgcagc aaggctggcg cagatcgcgg 2700
cgaatccaga gaaatcgctc attgaattgt tgccgcaact accgttagaa cagtcgcatc 2760
taccagatgc gcagcgttat gccgcttatc agccacgacg agaaacgttc cgtcgcctct 2820
atcagcaact tctgccatta atggcgtaa 2849
<210> 10
<211> 37
<212> DNA
<213> araE-F
<400> 10
aggagtagca tgggatccat ggttactatc aatacgg 37
<210> 11
<211> 42
<212> DNA
<213> araE-R
<400> 11
ggtaccgagc tcgaattcca tggttcagac gccgatattt ct 42
<210> 12
<211> 1419
<212> DNA
<213> araE
<400> 12
atggttacta tcaatacgga atctgcttta acgccacgtt ctttgcggga tacgcggcgt 60
atgaatatgt ttgtttcggt agctgctgcg gtcgcaggat tgttatttgg tcttgatatc 120
ggcgtaatcg ccggagcgtt gccgttcatt accgatcact ttgtgctgac cagtcgtttg 180
caggaatggg tggttagtag catgatgctc ggtgcagcaa ttggtgcgct gtttaatggt 240
tggctgtcgt tccgcctggg gcgtaaatac agcctgatgg cgggggccat cctgtttgta 300
ctcggttcta tagggtccgc ttttgcgacc agcgtagaga tgttaatcgc cgctcgtgtg 360
gtgctgggca ttgctgtcgg gatcgcgtct tacaccgctc ctctgtatct ttctgaaatg 420
gcaagtgaaa acgttcgcgg taagatgatc agtatgtacc agttgatggt cacactcggc 480
atcgtgctgg cgtttttatc cgatacagcg ttcagttata gcggtaactg gcgcgcaatg 540
ttgggggttc ttgctttacc agcagttctg ctgattattc tggtagtctt cctgccaaat 600
agcccgcgct ggctggcgga aaaggggcgt catattgagg cggaagaagt attgcgtatg 660
ctgcgcgata cgtcggaaaa agcgcgagaa gaactcaacg aaattcgtga aagcctgaag 720
ttaaaacagg gcggttgggc actgtttaag atcaaccgta acgtccgtcg tgctgtgttt 780
ctcggtatgt tgttgcaggc gatgcagcag tttaccggta tgaacatcat catgtactac 840
gcgccgcgta tcttcaaaat ggcgggcttt acgaccacag aacaacagat gattgcgact 900
ctggtcgtag ggctgacctt tatgttcgcc acctttattg cggtgtttac ggtagataaa 960
gcagggcgta aaccggctct gaaaattggt ttcagcgtga tggcgttagg cactctggtg 1020
ctgggctatt gcctgatgca gtttgataac ggtacggctt ccagtggctt gtcctggctc 1080
tctgttggca tgacgatgat gtgtattgcc ggttatgcga tgagcgccgc gccagtggtg 1140
tggatcctgt gctctgaaat tcagccgctg aaatgccgcg atttcggtat tacctgttcg 1200
accaccacga actgggtgtc gaatatgatt atcggcgcga ccttcctgac actgcttgat 1260
agcattggcg ctgccggtac gttctggctc tacactgcgc tgaacattgc gtttgtgggc 1320
attactttct ggctcattcc ggaaaccaaa aatgtcacgc tggaacatat cgaacgcaaa 1380
ctgatggcag gcgagaagtt gagaaatatc ggcgtctga 1419
<210> 13
<211> 30
<212> DNA
<213> ldhA-up-F
<400> 13
ccggaattcg gaacaccatg cgattaaggt 30
<210> 14
<211> 38
<212> DNA
<213> ldhA-up-R
<400> 14
cgaaaagcaa attgcttttc gtttcgatcc cacttcct 38
<210> 15
<211> 943
<212> DNA
<213> ldhA-up
<400> 15
ggaacaccat gcgattaagg tgcgctgctt gaattgcaga attatgcaag atgcgccgca 60
acaaaacgcg atcggccaag gtcaaagtgg tcaatgtaat gaccgaaacc gctgcgatga 120
aactaatcca cggcggtaaa aacctctcaa ttaggagctt gacctcatta atgctgtgct 180
gggttaattc gccggtgatc agcagcgcgc cgtaccccaa ggtgccgaca ctaatgcccg 240
cgatcgtctc cttcggtcca aaattcttct gcccaatcag ccggatttgg gtgcgatgcc 300
tgatcaatcc cacaaccgtg gtggtcaacg tgatggcacc agttgcgatg tgggtggcgt 360
tgtaaatttt cctggatacc cgccggttgg ttctggggag gatcgagtgg attcccgtcg 420
ctgacgcatg ccccaccgct tgtaaaacag ccaggttagc agccgtaacc caccacggtt 480
tcggcaacaa tgacggcgag agagcccacc acattgcgat ttccgctccg ataaagccag 540
cgcccatatt tgcagggagg attcgcctgc ggtttggcga cattcggatc cccggaacca 600
gctctgcaat cacctgcgcg ccgagggaag cgaggtgggt ggcaggtttt agtgcgggtt 660
taagcgttgc caggcgagtg gtgagcagag acgctagtct ggggagcgaa accatattga 720
gtcatcttgg cagagcatgc acaattctgc agggcataga ttggttttgc tcgatttaca 780
atgtgatttt ttcaacaaaa ataacacatg gtctgaccac attttcggac ataatcgggc 840
ataattaaag gtgtaacaaa ggaatccggg cacaagctct tgctgatttt ctgagctgct 900
ttgtgggttg tccggttagg gaaatcagga agtgggatcg aaa 943
<210> 16
<211> 39
<212> DNA
<213> ldhA-down-F
<400> 16
gccattaatg gcgtaaatct ttggcgccta gttggcgac 39
<210> 17
<211> 31
<212> DNA
<213> ldhA-down-R
<400> 17
cccaagcttg tctgggacgt tgatgacgct g 31
<210> 18
<211> 959
<212> DNA
<213> ldhA-down
<400> 18
atctttggcg cctagttggc gacgcaagtg tttcattgga acacttgcgc tgccaacttt 60
ttggtttacg ggcaaaatga aactgttgga tggaatttaa agtgtttgta gcttaaggag 120
ctcaaatgaa tgagtttgac caggacattc tccaggagat caagactgaa ctcgacgagt 180
taattctaga acttgatgag gtgacacaaa ctcacagcga ggccatcggg caggtctccc 240
caacccatta cgttggtgcc cgcaacctca tgcattacgc gcatcttcgc accaaagacc 300
tccgtggcct gcagcaacgc ctctcctctg tgggagctac ccgcttgact accaccgaac 360
cagcagtgca ggcccgcctc aaggccgccc gcaatgttat cggagctttc gcaggtgaag 420
gcccacttta tccaccctca gatgtcgtcg atgccttcga agatgccgat gagattctcg 480
acgagcacgc cgaaattctc cttggcgaac ccctaccgga tactccatcc tgcatcatgg 540
tcaccctgcc caccgaagcc gccaccgaca ttgaacttgt ccgtggcttc gccaaaagcg 600
gcatgaatct agctcgcatc aactgtgcac acgacgatga aaccgtctgg aagcagatga 660
tcgacaacgt ccacaccgtt gcagaagaag ttggccggga aatccgcgtc agcatggacc 720
ttgccggacc aaaagtacgc accggcgaaa tcgccccagg cgcagaagta ggtcgcgcac 780
gagtaacccg cgacgaaacc ggaaaagtac tgacgcccgc aaaactgtgg atcaccgccc 840
acggctccga accagtccca gcccccgaaa gcctgcccgg tcgccccgct ctgccgattg 900
aagtcacccc agaatggttc gacaaactag aaatcggcag cgtcatcaac gtcccagac 959
<210> 19
<211> 36
<212> DNA
<213> ack-up-F
<400> 19
ctagtctaga atggctgccc accagctgct tgatca 36
<210> 20
<211> 35
<212> DNA
<213> ack-up-R
<400> 20
atagaggtac ccagcttttg tagctgcgtc ctcct 35
<210> 21
<211> 893
<212> DNA
<213> ack-up
<400> 21
atggctgccc accagctgct tgatcaagac atctgtgaca tcacgatcct gggcgatcca 60
gtaaagatca aggagcgcgc taccgaactt ggcctgcacc ttaacactgc atacctggtc 120
aatccgctga cagatcctcg cctggaggaa ttcgccgaac aattcgcgga gctgcgcaag 180
tcaaagggcg tcactatcga tgaagcccgc gaaatcatga aggatatttc ctacttcggc 240
accatgatgg tccacaacgg cgacgccgac ggaatggtat ccggtgcagc aaacaccacc 300
gcacacacca ttaagccaag cttccagatc atcaaaactg ttccagaagc atccgtcgtt 360
tcttccatct tcctcatggt gctgcgcggg cgactgtggg cattcggcga ctgtgctgtt 420
aacccgaacc caactgctga acagcttggt gaaatcgccg ttgtgtcagc aaaaactgca 480
gcacaatttg gcattgatcc tcgcgtagcc atcttgtcct actccactgg caactccggc 540
ggaggctcag atgtggatcg cgccattgac gctcttgcag aagcacgccg actcaaccca 600
gaactatgcg tcgatggacc acttcagttc gacgccgccg tcgacccggg tgtggcgcgc 660
aagaagatgc cagactctga cgtcgctggc caggcaaatg tgtttatctt ccctgacctg 720
gaggccggaa acatcggcta caaaactgca caacgcaccg gtcacgccct ggcagttggt 780
ccgattctgc agggcctgaa caaaccagtc aacgaccttt cccgtggtgc gacagtccct 840
gacatcgtca acactgtcgc catcaccgct attcaggcag gaggacgcag cta 893
<210> 22
<211> 40
<212> DNA
<213> ack-down-F
<400> 22
gttgagaaat atcggcgtct gaggccccta gacctcttgg 40
<210> 23
<211> 30
<212> DNA
<213> ack-down-R
<400> 23
acatgcatgc ttgtctgggc aaccaacccc 30
<210> 24
<211> 793
<212> DNA
<213> ack=down
<400> 24
ggcccctaga cctcttgggg ttgcgaattt tcgtccccac cgaacattaa aaggccggtt 60
ttggtcgaaa atttgctcta acaccttgct attatgcaaa tcttcgttcg atttaagcaa 120
atcccggcaa tctgtaatga gaagttgaac gggaaaccta cagtaacccc gcagaaatca 180
catcagcccc aattgtccca aaagtaacgc ccccggaatc gcttctaagg gcctaactcg 240
cccaaagcca aactagttgg acactggagc cacaaaggcc cttaaatcgc cacctaccaa 300
atagccccaa gccaaaacag ctagaaccaa ctcagtggcc gcaccgcatt cgccatatcc 360
actagtgcgt aacggtggtg ggggaaagga gcggaacggg cctgaatccg gagtgcctcg 420
gaaatgccgg tgcgcaggcc tttttgggag aacgggtatt caaacaaagg gtttgcggag 480
gcagaagctt tgagttttcg ttctcgaagc cagctgaggc ctgctgacat gatggcaatt 540
ttgatttggt tgaagcgggg ttcgttggtg gggatttcgc tgagtcggcg ggcggctcgg 600
cggatgcggg attcactcaa attggagctg accagcaaca agatggtggt gagggtggcc 660
attcggtagt gggtggatga ttgggggagt ttatctaggg cttggactgc gagttcgatt 720
tggttttcgg ccatgagttg gcgggcgagc ccgaacgcgg aggacacagt ggtggggttg 780
gttgcccaga caa 793
<210> 25
<211> 3184
<212> DNA
<213> Peftu_xylAB_BL21
<400> 25
cgaaaagcaa tttgcttttc gacgccccac cccgcgcgtt ttagcgtgtc agtaggcgcg 60
tagggtaagt ggggtagcgg cttgttagat atcttgaaat cggctttcaa cagcattgat 120
ttcgatgtat ttagctggcc gttaccctgc gaatgtccac agggtagctg gtagtttgaa 180
aatcaacgcc gttgccctta ggattcagta actggcacat tttgtaatgc gctagatctg 240
tgtgctcagt cttccaggct gcttatcaca gtgaaagcaa aaccaattcg tggctgcgaa 300
agtcgtagcc accacgaagt ccaggaggac atacaatgca agcctatttt gaccagctcg 360
atcgcgttcg ttatgaaggc tcaaaatcct caaacccgtt agcattccgt cactacaatc 420
ccgacgaact ggtgttgggt aagcgtatgg aagagcactt gcgttttgcc gcctgctact 480
ggcacacctt ctgctggaac ggggcggata tgtttggtgt gggggcgttt aatcgtccgt 540
ggcagcagcc tggtgaggca ctggcgttgg cgaagcgtaa agcagatgtc gcatttgagt 600
ttttccacaa gttacatgtg ccattttatt gcttccacga tgtggatgtt tcccctgagg 660
gcgcgtcgtt aaaagagtac atcaataatt ttgcgcaaat ggttgatgtc ctggcaggca 720
agcaagaaga gagcggcgtg aagctgctgt ggggaaccgc caactgcttt acaaaccctc 780
gctacggcgc gggtgcggcg acgaacccag atcctgaagt cttcagctgg gcggcaacgc 840
aagttgttac agcgatggaa gcaacccata aattgggcgg tgaaaactat gtcctgtggg 900
gcggtcgtga aggttacgaa acgctgttaa ataccgactt gcgtcaggag cgtgaacaac 960
tgggccgctt tatgcagatg gtggttgagc ataaacataa aatcggtttc cagggcacgt 1020
tgcttatcga accgaaaccg caagaaccga ccaaacatca atatgattac gatgccgcga 1080
cggtctatgg cttcctgaaa cagtttggtc tggaaaaaga gattaaactg aacattgaag 1140
ctaaccacgc gacgctggca ggtcactctt tccatcatga aatagccacc gccattgcgc 1200
ttggcctgtt cggttctgtc gacgccaacc gtggcgatgc gcaactgggc tgggacaccg 1260
accagttccc gaacagtgtg gaagagaatg cgctggtgat gtatgaaatt ctcaaagcag 1320
gcggtttcac caccggtggt ctgaacttcg atgccaaagt acgtcgtcaa agtactgata 1380
aatatgatct gttttacggt catatcggcg cgatggatac gatggcactg gcgctgaaaa 1440
ttgcagcgcg catgattgaa gatggcgagc tggataaacg catcgcgcag cgttattccg 1500
gctggaatag cgaattgggc cagcaaatcc tgaaaggcca aatgtcactg gcagatttag 1560
ccaaatatgc tcaggaacat aatttgtctc cggtgcatca gagtggtcgc caggagcaac 1620
tggaaaatct ggtaaatcat tatctgttcg acaaataacg gctaactgtg cagtccgttg 1680
gcccggttat cggtagcgat accgggcatt tttttaagga acgatcgata tgtatatcgg 1740
gatagatctt ggcacctcgg gcgtaaaagt tattttgctc aacgagcagg gtgaggtggt 1800
tgcttcgcaa acggaaaagc tgaccgtttc gcgcccgcat ccactctggt cggaacaaga 1860
cccggaacag tggtggcagg caactgatcg cgcaatgaaa gctctgggcg atcagcattc 1920
tctgcaggac gttaaagcat tgggtattgc cggccagatg catggagcaa ccttactgga 1980
tgctcaacaa cgggtattgc gccctgccat tttgtggaac gacgggcgct gtgcgcaaga 2040
gtgcactttg ctggaagcga gagttccgca atcacgagtg attaccggca acctgatgat 2100
gcccggattt actgcgccta aattgctatg ggttcagcgg catgagccgg agatattccg 2160
tcaaatcgac aaagtattat taccgaaaga ttacttgcgt ctgcgtatga cgggggagtt 2220
tgccagcgat atgtctgacg cagctggcac catgtggctg gatgtcgcaa agcgtgactg 2280
gagtgacgtc atgctgcagg cttgcgactt atctcgtgac cagatgcccg cattatacga 2340
aggcagcgaa attactggtg ctttgttacc tgaagttgcg aaagcgtggg gtatggcgac 2400
ggtgccagtt gtcgcaggcg gtggcgacaa tgcagctggt gcagttggtg tgggaatggt 2460
tgatgctaat caggcaatgt tatcgctggg gacgtcgggg gtctattttg ctgtcagcga 2520
agggttctta agcaagccag aaagcgccgt acatagcttt tgccatgcgc taccgcaacg 2580
ttggcattta atgtctgtga tgctgagtgc agcgtcgtgt ctggattggg ccgcgaaatt 2640
aaccggcctg agcaatgtcc cagctttaat cgctgcagct caacaggctg atgaaagtgc 2700
cgagccagtt tggtttctgc cttatctttc cggcgagcgt acgccacaca ataatcccca 2760
ggcgaagggg gttttctttg gtttgactca tcaacatggc cccaatgaac tggcgcgagc 2820
agtgctggaa ggcgtgggtt atgcgctggc agatggcatg gatgtcgtgc atgcctgcgg 2880
tattaaaccg caaagtgtta cgttgattgg gggcggggcg cgtagtgagt actggcgtca 2940
gatgctggcg gatatcagcg gtcagcagct cgattaccgt acgggagggg atgtggggcc 3000
agcactgggc gcagcaaggc tggcgcagat cgcggcgaat ccagagaaat cgctcattga 3060
attgttgccg caactaccgt tagaacagtc gcatctacca gatgcgcagc gttatgccgc 3120
ttatcagcca cgacgagaaa cgttccgtcg cctctatcag caacttctgc cattaatggc 3180
gtaa 3184
<210> 26
<211> 5086
<212> DNA
<213> ΔldhA::xylAB
<400> 26
ggaacaccat gcgattaagg tgcgctgctt gaattgcaga attatgcaag atgcgccgca 60
acaaaacgcg atcggccaag gtcaaagtgg tcaatgtaat gaccgaaacc gctgcgatga 120
aactaatcca cggcggtaaa aacctctcaa ttaggagctt gacctcatta atgctgtgct 180
gggttaattc gccggtgatc agcagcgcgc cgtaccccaa ggtgccgaca ctaatgcccg 240
cgatcgtctc cttcggtcca aaattcttct gcccaatcag ccggatttgg gtgcgatgcc 300
tgatcaatcc cacaaccgtg gtggtcaacg tgatggcacc agttgcgatg tgggtggcgt 360
tgtaaatttt cctggatacc cgccggttgg ttctggggag gatcgagtgg attcccgtcg 420
ctgacgcatg ccccaccgct tgtaaaacag ccaggttagc agccgtaacc caccacggtt 480
tcggcaacaa tgacggcgag agagcccacc acattgcgat ttccgctccg ataaagccag 540
cgcccatatt tgcagggagg attcgcctgc ggtttggcga cattcggatc cccggaacca 600
gctctgcaat cacctgcgcg ccgagggaag cgaggtgggt ggcaggtttt agtgcgggtt 660
taagcgttgc caggcgagtg gtgagcagag acgctagtct ggggagcgaa accatattga 720
gtcatcttgg cagagcatgc acaattctgc agggcataga ttggttttgc tcgatttaca 780
atgtgatttt ttcaacaaaa ataacacatg gtctgaccac attttcggac ataatcgggc 840
ataattaaag gtgtaacaaa ggaatccggg cacaagctct tgctgatttt ctgagctgct 900
ttgtgggttg tccggttagg gaaatcagga agtgggatcg aaacgaaaag caatttgctt 960
ttcgacgccc caccccgcgc gttttagcgt gtcagtaggc gcgtagggta agtggggtag 1020
cggcttgtta gatatcttga aatcggcttt caacagcatt gatttcgatg tatttagctg 1080
gccgttaccc tgcgaatgtc cacagggtag ctggtagttt gaaaatcaac gccgttgccc 1140
ttaggattca gtaactggca cattttgtaa tgcgctagat ctgtgtgctc agtcttccag 1200
gctgcttatc acagtgaaag caaaaccaat tcgtggctgc gaaagtcgta gccaccacga 1260
agtccaggag gacatacaat gcaagcctat tttgaccagc tcgatcgcgt tcgttatgaa 1320
ggctcaaaat cctcaaaccc gttagcattc cgtcactaca atcccgacga actggtgttg 1380
ggtaagcgta tggaagagca cttgcgtttt gccgcctgct actggcacac cttctgctgg 1440
aacggggcgg atatgtttgg tgtgggggcg tttaatcgtc cgtggcagca gcctggtgag 1500
gcactggcgt tggcgaagcg taaagcagat gtcgcatttg agtttttcca caagttacat 1560
gtgccatttt attgcttcca cgatgtggat gtttcccctg agggcgcgtc gttaaaagag 1620
tacatcaata attttgcgca aatggttgat gtcctggcag gcaagcaaga agagagcggc 1680
gtgaagctgc tgtggggaac cgccaactgc tttacaaacc ctcgctacgg cgcgggtgcg 1740
gcgacgaacc cagatcctga agtcttcagc tgggcggcaa cgcaagttgt tacagcgatg 1800
gaagcaaccc ataaattggg cggtgaaaac tatgtcctgt ggggcggtcg tgaaggttac 1860
gaaacgctgt taaataccga cttgcgtcag gagcgtgaac aactgggccg ctttatgcag 1920
atggtggttg agcataaaca taaaatcggt ttccagggca cgttgcttat cgaaccgaaa 1980
ccgcaagaac cgaccaaaca tcaatatgat tacgatgccg cgacggtcta tggcttcctg 2040
aaacagtttg gtctggaaaa agagattaaa ctgaacattg aagctaacca cgcgacgctg 2100
gcaggtcact ctttccatca tgaaatagcc accgccattg cgcttggcct gttcggttct 2160
gtcgacgcca accgtggcga tgcgcaactg ggctgggaca ccgaccagtt cccgaacagt 2220
gtggaagaga atgcgctggt gatgtatgaa attctcaaag caggcggttt caccaccggt 2280
ggtctgaact tcgatgccaa agtacgtcgt caaagtactg ataaatatga tctgttttac 2340
ggtcatatcg gcgcgatgga tacgatggca ctggcgctga aaattgcagc gcgcatgatt 2400
gaagatggcg agctggataa acgcatcgcg cagcgttatt ccggctggaa tagcgaattg 2460
ggccagcaaa tcctgaaagg ccaaatgtca ctggcagatt tagccaaata tgctcaggaa 2520
cataatttgt ctccggtgca tcagagtggt cgccaggagc aactggaaaa tctggtaaat 2580
cattatctgt tcgacaaata acggctaact gtgcagtccg ttggcccggt tatcggtagc 2640
gataccgggc atttttttaa ggaacgatcg atatgtatat cgggatagat cttggcacct 2700
cgggcgtaaa agttattttg ctcaacgagc agggtgaggt ggttgcttcg caaacggaaa 2760
agctgaccgt ttcgcgcccg catccactct ggtcggaaca agacccggaa cagtggtggc 2820
aggcaactga tcgcgcaatg aaagctctgg gcgatcagca ttctctgcag gacgttaaag 2880
cattgggtat tgccggccag atgcatggag caaccttact ggatgctcaa caacgggtat 2940
tgcgccctgc cattttgtgg aacgacgggc gctgtgcgca agagtgcact ttgctggaag 3000
cgagagttcc gcaatcacga gtgattaccg gcaacctgat gatgcccgga tttactgcgc 3060
ctaaattgct atgggttcag cggcatgagc cggagatatt ccgtcaaatc gacaaagtat 3120
tattaccgaa agattacttg cgtctgcgta tgacggggga gtttgccagc gatatgtctg 3180
acgcagctgg caccatgtgg ctggatgtcg caaagcgtga ctggagtgac gtcatgctgc 3240
aggcttgcga cttatctcgt gaccagatgc ccgcattata cgaaggcagc gaaattactg 3300
gtgctttgtt acctgaagtt gcgaaagcgt ggggtatggc gacggtgcca gttgtcgcag 3360
gcggtggcga caatgcagct ggtgcagttg gtgtgggaat ggttgatgct aatcaggcaa 3420
tgttatcgct ggggacgtcg ggggtctatt ttgctgtcag cgaagggttc ttaagcaagc 3480
cagaaagcgc cgtacatagc ttttgccatg cgctaccgca acgttggcat ttaatgtctg 3540
tgatgctgag tgcagcgtcg tgtctggatt gggccgcgaa attaaccggc ctgagcaatg 3600
tcccagcttt aatcgctgca gctcaacagg ctgatgaaag tgccgagcca gtttggtttc 3660
tgccttatct ttccggcgag cgtacgccac acaataatcc ccaggcgaag ggggttttct 3720
ttggtttgac tcatcaacat ggccccaatg aactggcgcg agcagtgctg gaaggcgtgg 3780
gttatgcgct ggcagatggc atggatgtcg tgcatgcctg cggtattaaa ccgcaaagtg 3840
ttacgttgat tgggggcggg gcgcgtagtg agtactggcg tcagatgctg gcggatatca 3900
gcggtcagca gctcgattac cgtacgggag gggatgtggg gccagcactg ggcgcagcaa 3960
ggctggcgca gatcgcggcg aatccagaga aatcgctcat tgaattgttg ccgcaactac 4020
cgttagaaca gtcgcatcta ccagatgcgc agcgttatgc cgcttatcag ccacgacgag 4080
aaacgttccg tcgcctctat cagcaacttc tgccattaat ggcgtaaatc tttggcgcct 4140
agttggcgac gcaagtgttt cattggaaca cttgcgctgc caactttttg gtttacgggc 4200
aaaatgaaac tgttggatgg aatttaaagt gtttgtagct taaggagctc aaatgaatga 4260
gtttgaccag gacattctcc aggagatcaa gactgaactc gacgagttaa ttctagaact 4320
tgatgaggtg acacaaactc acagcgaggc catcgggcag gtctccccaa cccattacgt 4380
tggtgcccgc aacctcatgc attacgcgca tcttcgcacc aaagacctcc gtggcctgca 4440
gcaacgcctc tcctctgtgg gagctacccg cttgactacc accgaaccag cagtgcaggc 4500
ccgcctcaag gccgcccgca atgttatcgg agctttcgca ggtgaaggcc cactttatcc 4560
accctcagat gtcgtcgatg ccttcgaaga tgccgatgag attctcgacg agcacgccga 4620
aattctcctt ggcgaacccc taccggatac tccatcctgc atcatggtca ccctgcccac 4680
cgaagccgcc accgacattg aacttgtccg tggcttcgcc aaaagcggca tgaatctagc 4740
tcgcatcaac tgtgcacacg acgatgaaac cgtctggaag cagatgatcg acaacgtcca 4800
caccgttgca gaagaagttg gccgggaaat ccgcgtcagc atggaccttg ccggaccaaa 4860
agtacgcacc ggcgaaatcg ccccaggcgc agaagtaggt cgcgcacgag taacccgcga 4920
cgaaaccgga aaagtactga cgcccgcaaa actgtggatc accgcccacg gctccgaacc 4980
agtcccagcc cccgaaagcc tgcccggtcg ccccgctctg ccgattgaag tcaccccaga 5040
atggttcgac aaactagaaa tcggcagcgt catcaacgtc ccagac 5086
<210> 27
<211> 26
<212> DNA
<213> MscCG-up-F
<400> 27
gatccgcgcg ggcgctgcga ttccgg 26
<210> 28
<211> 22
<212> DNA
<213> MscCG-up-R
<400> 28
ttccacagtc atgaccttaa at 22
<210> 29
<211> 997
<212> DNA
<213> MscCG-up
<400> 29
gatccgcgcg ggcgctgcga ttccggcaac cattgcgtca gctgccattg gtcttggtgc 60
gcagtcgatt gttgcggact tcttggccgg atttttcatc ctgacggaaa agcaattcgg 120
cgtgggtgac tgggtgcgtt ttgagggcaa cggcatcgtt gttgaaggca cagtcattga 180
gatcaccatg cgcgcgacca aaattcgcac gattgcacaa gagaccgtga ttatccccaa 240
ctccacggcg aaagtgtgca tcaacaattc taataactgg tcgcgtgcgg ttgtcgttat 300
tccgatcccc atgttgggtt ctgaaaacat cacagatgtc atcgcgcgct ctgaagctgc 360
gactcgtcgc gcacttggcc aggagaaaat cgcgccggaa attctcggtg aactcgatgt 420
gcacccagcc acggaagtca cgccgccaac ggtggtcggc atgccgtgga tggtaaccat 480
gcgtttcctc gtgcaagtca ccgccggcaa tcaatggctg gtcgaacgcg ccatccgcac 540
ggaaatcatc agcgaattct gggaagaata cggcagcgca accactacat cgggaaccct 600
cattgattcc ttacacgttg cgcatgaaga gccaaagacc tcgcttatcg acgcctcccc 660
ccaggctctt aaggaaccga agccggaggc tgcggcgacg gttgcatcgc tagctgcatc 720
gtctaacgac gatgcagaca atgcagacga ctcggtgatc aatgcaggca atccaaagaa 780
ggaacttgat tccgatgtgc tggaacaaga actctccagc gaagaaccgg aagaaacagc 840
aaaaccagat cactctctcc gaggcttctt ccgcactgat tactacccaa atcggtggca 900
aaagatcctg tcgtttggcg gacgtgtccg catgagcact tccctgttgt tgggtgcgct 960
gctcttgctg tcactattta aggtcatgac tgtggaa 997
<210> 30
<211> 22
<212> DNA
<213> MscCG-down-F
<400> 30
ctagagcaga cgctgattac ag 22
<210> 31
<211> 25
<212> DNA
<213> MscCG-down-R
<400> 31
tgggtgcatc tgccacaata tcgcc 25
<210> 32
<211> 1012
<212> DNA
<213> MscCG-down
<400> 32
ctagagcaga cgctgattac agacgtgtcc catttcttta ctactattgg aaattatgag 60
ttcagacgca gaaaaggcat ccgtggagct ttccgaaaaa tttcacccag aacgcaccca 120
tattttgggc gccgttgttt ttggcctgat ctcattatta gtcatcggcg cagcccctca 180
gtacctgttt tggctgctcg cactccctgt catcttcggt tactgggttc taaaatcatc 240
cacgatcgtt gatgaacagg gcatcaccgc aaactacgcc ttcaagggca aaaaggttgt 300
ggcctgggaa aacctcgcag gaatcggatt caagggtgcc cgcactttcg ctcgcaccac 360
ctctgatgca gaagtcaccc tccccggcgt caccttcaac tcccttcccc gccttgaagc 420
tgcttcccac ggccgcatcc ccgatgcgat caccgcaagc aaggaagcag ccgacggcaa 480
ggttgtagtc gttcaagaag acggctactc cgtgatgatg tccaaggaag agtacttgga 540
gcgccaaaag gcactgggca agccagttca gttgagcttc gatgacgaca ccgatgggaa 600
tacaacacaa acagaaagcg ttgaatccca agagaccgga caagccgcgt ctgaaacctc 660
acatcgtgat aaccctgcgt cacagcacta gagtgtaata agccgtccga accaaaggtc 720
cacacctctg cacgagtaga agctcaccca agttttcaaa gtgccgttga ttcttgacac 780
ccccccgccg ctccttagag cagatttgaa aagcgcatca tgatcccact tcgttcaaaa 840
gtcaccaccg tcggtcgcaa tgcagctggc gctcgcgccc tttggcgtgc caccggcacc 900
aaggaaaatg agttcggcaa gccaattgtt gccatcgtga actcctacac ccagttcgtg 960
cccggacacg ttcaccttaa gaacgtcggc gatattgtgg cagatgcacc ca 1012
<210> 33
<211> 2013
<212> DNA
<213> ΔMscCG330
<400> 33
gatccgcgcg ggcgctgcga ttccggcaac cattgcgtca gctgccattg gtcttggtgc 60
gcagtcgatt gttgcggact tcttggccgg atttttcatc ctgacggaaa agcaattcgg 120
cgtgggtgac tgggtgcgtt ttgagggcaa cggcatcgtt gttgaaggca cagtcattga 180
gatcaccatg cgcgcgacca aaattcgcac gattgcacaa gagaccgtga ttatccccaa 240
ctccacggcg aaagtgtgca tcaacaattc taataactgg tcgcgtgcgg ttgtcgttat 300
tccgatcccc atgttgggtt ctgaaaacat cacagatgtc atcgcgcgct ctgaagctgc 360
gactcgtcgc gcacttggcc aggagaaaat cgcgccggaa attctcggtg aactcgatgt 420
gcacccagcc acggaagtca cgccgccaac ggtggtcggc atgccgtgga tggtaaccat 480
gcgtttcctc gtgcaagtca ccgccggcaa tcaatggctg gtcgaacgcg ccatccgcac 540
ggaaatcatc agcgaattct gggaagaata cggcagcgca accactacat cgggaaccct 600
cattgattcc ttacacgttg cgcatgaaga gccaaagacc tcgcttatcg acgcctcccc 660
ccaggctctt aaggaaccga agccggaggc tgcggcgacg gttgcatcgc tagctgcatc 720
gtctaacgac gatgcagaca atgcagacga ctcggtgatc aatgcaggca atccaaagaa 780
ggaacttgat tccgatgtgc tggaacaaga actctccagc gaagaaccgg aagaaacagc 840
aaaaccagat cactctctcc gaggcttctt ccgcactgat tactacccaa atcggtggca 900
aaagatcctg tcgtttggcg gacgtgtccg catgagcact tccctgttgt tgggtgcgct 960
gctcttgctg tcactattta aggtcatgac tgtggaatgc tctagagcag acgctgatta 1020
cagacgtgtc ccatttcttt actactattg gaaattatga gttcagacgc agaaaaggca 1080
tccgtggagc tttccgaaaa atttcaccca gaacgcaccc atattttggg cgccgttgtt 1140
tttggcctga tctcattatt agtcatcggc gcagcccctc agtacctgtt ttggctgctc 1200
gcactccctg tcatcttcgg ttactgggtt ctaaaatcat ccacgatcgt tgatgaacag 1260
ggcatcaccg caaactacgc cttcaagggc aaaaaggttg tggcctggga aaacctcgca 1320
ggaatcggat tcaagggtgc ccgcactttc gctcgcacca cctctgatgc agaagtcacc 1380
ctccccggcg tcaccttcaa ctcccttccc cgccttgaag ctgcttccca cggccgcatc 1440
cccgatgcga tcaccgcaag caaggaagca gccgacggca aggttgtagt cgttcaagaa 1500
gacggctact ccgtgatgat gtccaaggaa gagtacttgg agcgccaaaa ggcactgggc 1560
aagccagttc agttgagctt cgatgacgac accgatggga atacaacaca aacagaaagc 1620
gttgaatccc aagagaccgg acaagccgcg tctgaaacct cacatcgtga taaccctgcg 1680
tcacagcact agagtgtaat aagccgtccg aaccaaaggt ccacacctct gcacgagtag 1740
aagctcaccc aagttttcaa agtgccgttg attcttgaca cccccccgcc gctccttaga 1800
gcagatttga aaagcgcatc atgatcccac ttcgttcaaa agtcaccacc gtcggtcgca 1860
atgcagctgg cgctcgcgcc ctttggcgtg ccaccggcac caaggaaaat gagttcggca 1920
agccaattgt tgccatcgtg aactcctaca cccagttcgt gcccggacac gttcacctta 1980
agaacgtcgg cgatattgtg gcagatgcac cca 2013
<210> 34
<211> 24
<212> DNA
<213> odhA-up-F
<400> 34
tcagacgatc cgatcctaga aaac 24
<210> 35
<211> 50
<212> DNA
<213> odhA-up-R
<400> 35
cctagttatt gaactcgtgg gtgagcttct tgagggttta ttgagctttg 50
<210> 36
<211> 822
<212> DNA
<213> odhA-up
<400> 36
tcagacgatc cgatcctaga aaacgtcacc gtgcagatcg agccaggaac cactgtcgct 60
gtggtgggcc ccaccggcgc tggaaaatcc accgtggtga aactcctttc ccgtctctac 120
gaccccaatg aaggtgccgt gaaagctggc gagatcgata tcaaggactt ccccaccgct 180
gattggcgcc gcacaatcgg taccgtgcca caagaagcac acttgtttag tggaagcatc 240
gccgacaaca ttggctacgg atgcagggag gcgtcgacaa gcaaaatcga agcggcagca 300
cgtcgcgtcg gagccttaaa cgccatcgcc gccatccctg atggtttcaa ccatcaagtc 360
ggtgaacgcg ggcgcaacct gtcatccgga cagcgccaac tgatcgcgct ggcgcgcgcc 420
gaactcaccg agccttccat catgcttctc gacgaagcca cctccaccct cgaccccgcc 480
accgaagccg ttatcctcaa cgcctccgat cgagtcacta agggacgcac cagcatcatc 540
gtcgcgcacc gcttggcaac cgctaaaagg gccgaccgta ttcttgttgt tgaacaagga 600
cgtatcattg aggacggatc tcacgacgcg ttgttgtctg ctaacggcac ctacgcccgc 660
atgtggcatt taatggcctg acacgttatt tttaggagaa ctgtcaacaa attaatgcta 720
caactggggc ttaggcataa tcagccaacg accagcgtta cagtggataa aacaaagctc 780
aataaaccct caagaagctc acccacgagt tcaataacta gg 822
<210> 37
<211> 47
<212> DNA
<213> odhA-down-F
<400> 37
ctcacccacg agttcaataa ctagggtgag cagcgctagt actttcg 47
<210> 38
<211> 21
<212> DNA
<213> odhA-down-R
<400> 38
cttggtcaga cgtgggacag a 21
<210> 39
<211> 848
<212> DNA
<213> odhA-down
<400> 39
ctcacccacg agttcaataa ctagggtgag cagcgctagt actttcggcc agaatgcgtg 60
gctggtagac gagatgttcc agcagttcca gaaggacccc aagtccgtgg acaaggaatg 120
gagagaactc tttgaggcgc agggggggac caaatactac ccccgctaca acagaagcac 180
agccttcagc gcccaaggag tctgcgaaac cagcaccaaa ggctgcccct gcagccaagg 240
cagcacctcg cgtagaaacc aagccggccg acaaggccgc ccctaaggcc aaggagtcct 300
cagtgccaca gcaacctaag cttccggagc caggacaaac cccaatcagg ggtattttca 360
agtccatcgc gaagaacatg gatatctccc tggaaatccc aaccgcaacc tcggttcgcg 420
atatgccagc tcgcctcatg ttcgaaaacc gcgcgatggt caacgatcag ctcaagcgca 480
cccgcggtgg caagatctcc ttcacccaca tcattggcta cgccatggtg aaggcagtca 540
tggctcaccc ggacatgaac aactcctacg acgtcatcga cggcaagcca accctgatcg 600
tgcctgagca catcaacctg ggccttgcca tcgaccttcc tcagaaggac ggctcccgcg 660
cacttgtcgt agcagccatc aaggaaaccg agaagatgaa cttctccgag ttcctcgcag 720
catacgaaga catcgtgaca cgctcccgca agggcaagct caccatggat gactaccagg 780
gcgttaccgt ttccttgacc aacccaggtg gcatcggtac ccgccactct gtcccacgtc 840
tgaccaag 848
<210> 40
<211> 1645
<212> DNA
<213> odhARBS0.1
<400> 40
tcagacgatc cgatcctaga aaacgtcacc gtgcagatcg agccaggaac cactgtcgct 60
gtggtgggcc ccaccggcgc tggaaaatcc accgtggtga aactcctttc ccgtctctac 120
gaccccaatg aaggtgccgt gaaagctggc gagatcgata tcaaggactt ccccaccgct 180
gattggcgcc gcacaatcgg taccgtgcca caagaagcac acttgtttag tggaagcatc 240
gccgacaaca ttggctacgg atgcagggag gcgtcgacaa gcaaaatcga agcggcagca 300
cgtcgcgtcg gagccttaaa cgccatcgcc gccatccctg atggtttcaa ccatcaagtc 360
ggtgaacgcg ggcgcaacct gtcatccgga cagcgccaac tgatcgcgct ggcgcgcgcc 420
gaactcaccg agccttccat catgcttctc gacgaagcca cctccaccct cgaccccgcc 480
accgaagccg ttatcctcaa cgcctccgat cgagtcacta agggacgcac cagcatcatc 540
gtcgcgcacc gcttggcaac cgctaaaagg gccgaccgta ttcttgttgt tgaacaagga 600
cgtatcattg aggacggatc tcacgacgcg ttgttgtctg ctaacggcac ctacgcccgc 660
atgtggcatt taatggcctg acacgttatt tttaggagaa ctgtcaacaa attaatgcta 720
caactggggc ttaggcataa tcagccaacg accagcgtta cagtggataa aacaaagctc 780
aataaaccct caagaagctc acccacgagt tcaataacta gggtgagcag cgctagtact 840
ttcggccaga atgcgtggct ggtagacgag atgttccagc agttccagaa ggaccccaag 900
tccgtggaca aggaatggag agaactcttt gaggcgcagg gggggaccaa atactacccc 960
cgctacaaca gaagcacagc cttcagcgcc caaggagtct gcgaaaccag caccaaaggc 1020
tgcccctgca gccaaggcag cacctcgcgt agaaaccaag ccggccgaca aggccgcccc 1080
taaggccaag gagtcctcag tgccacagca acctaagctt ccggagccag gacaaacccc 1140
aatcaggggt attttcaagt ccatcgcgaa gaacatggat atctccctgg aaatcccaac 1200
cgcaacctcg gttcgcgata tgccagctcg cctcatgttc gaaaaccgcg cgatggtcaa 1260
cgatcagctc aagcgcaccc gcggtggcaa gatctccttc acccacatca ttggctacgc 1320
catggtgaag gcagtcatgg ctcacccgga catgaacaac tcctacgacg tcatcgacgg 1380
caagccaacc ctgatcgtgc ctgagcacat caacctgggc cttgccatcg accttcctca 1440
gaaggacggc tcccgcgcac ttgtcgtagc agccatcaag gaaaccgaga agatgaactt 1500
ctccgagttc ctcgcagcat acgaagacat cgtgacacgc tcccgcaagg gcaagctcac 1560
catggatgac taccagggcg ttaccgtttc cttgaccaac ccaggtggca tcggtacccg 1620
ccactctgtc ccacgtctga ccaag 1645
<210> 41
<211> 1514
<212> DNA
<213> PH36_araE
<400> 41
caaaagctgg gtacctctat ctggtgccct aaacggggga atattaacgg gcccagggtg 60
gtcgcacctt ggttggtagg agtagcatgg gatccatggt tactatcaat acggaatctg 120
ctttaacgcc acgttctttg cgggatacgc ggcgtatgaa tatgtttgtt tcggtagctg 180
ctgcggtcgc aggattgtta tttggtcttg atatcggcgt aatcgccgga gcgttgccgt 240
tcattaccga tcactttgtg ctgaccagtc gtttgcagga atgggtggtt agtagcatga 300
tgctcggtgc agcaattggt gcgctgttta atggttggct gtcgttccgc ctggggcgta 360
aatacagcct gatggcgggg gccatcctgt ttgtactcgg ttctataggg tccgcttttg 420
cgaccagcgt agagatgtta atcgccgctc gtgtggtgct gggcattgct gtcgggatcg 480
cgtcttacac cgctcctctg tatctttctg aaatggcaag tgaaaacgtt cgcggtaaga 540
tgatcagtat gtaccagttg atggtcacac tcggcatcgt gctggcgttt ttatccgata 600
cagcgttcag ttatagcggt aactggcgcg caatgttggg ggttcttgct ttaccagcag 660
ttctgctgat tattctggta gtcttcctgc caaatagccc gcgctggctg gcggaaaagg 720
ggcgtcatat tgaggcggaa gaagtattgc gtatgctgcg cgatacgtcg gaaaaagcgc 780
gagaagaact caacgaaatt cgtgaaagcc tgaagttaaa acagggcggt tgggcactgt 840
ttaagatcaa ccgtaacgtc cgtcgtgctg tgtttctcgg tatgttgttg caggcgatgc 900
agcagtttac cggtatgaac atcatcatgt actacgcgcc gcgtatcttc aaaatggcgg 960
gctttacgac cacagaacaa cagatgattg cgactctggt cgtagggctg acctttatgt 1020
tcgccacctt tattgcggtg tttacggtag ataaagcagg gcgtaaaccg gctctgaaaa 1080
ttggtttcag cgtgatggcg ttaggcactc tggtgctggg ctattgcctg atgcagtttg 1140
ataacggtac ggcttccagt ggcttgtcct ggctctctgt tggcatgacg atgatgtgta 1200
ttgccggtta tgcgatgagc gccgcgccag tggtgtggat cctgtgctct gaaattcagc 1260
cgctgaaatg ccgcgatttc ggtattacct gttcgaccac cacgaactgg gtgtcgaata 1320
tgattatcgg cgcgaccttc ctgacactgc ttgatagcat tggcgctgcc ggtacgttct 1380
ggctctacac tgcgctgaac attgcgtttg tgggcattac tttctggctc attccggaaa 1440
ccaaaaatgt cacgctggaa catatcgaac gcaaactgat ggcaggcgag aagttgagaa 1500
atatcggcgt ctga 1514
<210> 42
<211> 3200
<212> DNA
<213> Δack::araE
<400> 42
atggctgccc accagctgct tgatcaagac atctgtgaca tcacgatcct gggcgatcca 60
gtaaagatca aggagcgcgc taccgaactt ggcctgcacc ttaacactgc atacctggtc 120
aatccgctga cagatcctcg cctggaggaa ttcgccgaac aattcgcgga gctgcgcaag 180
tcaaagggcg tcactatcga tgaagcccgc gaaatcatga aggatatttc ctacttcggc 240
accatgatgg tccacaacgg cgacgccgac ggaatggtat ccggtgcagc aaacaccacc 300
gcacacacca ttaagccaag cttccagatc atcaaaactg ttccagaagc atccgtcgtt 360
tcttccatct tcctcatggt gctgcgcggg cgactgtggg cattcggcga ctgtgctgtt 420
aacccgaacc caactgctga acagcttggt gaaatcgccg ttgtgtcagc aaaaactgca 480
gcacaatttg gcattgatcc tcgcgtagcc atcttgtcct actccactgg caactccggc 540
ggaggctcag atgtggatcg cgccattgac gctcttgcag aagcacgccg actcaaccca 600
gaactatgcg tcgatggacc acttcagttc gacgccgccg tcgacccggg tgtggcgcgc 660
aagaagatgc cagactctga cgtcgctggc caggcaaatg tgtttatctt ccctgacctg 720
gaggccggaa acatcggcta caaaactgca caacgcaccg gtcacgccct ggcagttggt 780
ccgattctgc agggcctgaa caaaccagtc aacgaccttt cccgtggtgc gacagtccct 840
gacatcgtca acactgtcgc catcaccgct attcaggcag gaggacgcag ctacaaaagc 900
tgggtacctc tatctggtgc cctaaacggg ggaatattaa cgggcccagg gtggtcgcac 960
cttggttggt aggagtagca tgggatccat ggttactatc aatacggaat ctgctttaac 1020
gccacgttct ttgcgggata cgcggcgtat gaatatgttt gtttcggtag ctgctgcggt 1080
cgcaggattg ttatttggtc ttgatatcgg cgtaatcgcc ggagcgttgc cgttcattac 1140
cgatcacttt gtgctgacca gtcgtttgca ggaatgggtg gttagtagca tgatgctcgg 1200
tgcagcaatt ggtgcgctgt ttaatggttg gctgtcgttc cgcctggggc gtaaatacag 1260
cctgatggcg ggggccatcc tgtttgtact cggttctata gggtccgctt ttgcgaccag 1320
cgtagagatg ttaatcgccg ctcgtgtggt gctgggcatt gctgtcggga tcgcgtctta 1380
caccgctcct ctgtatcttt ctgaaatggc aagtgaaaac gttcgcggta agatgatcag 1440
tatgtaccag ttgatggtca cactcggcat cgtgctggcg tttttatccg atacagcgtt 1500
cagttatagc ggtaactggc gcgcaatgtt gggggttctt gctttaccag cagttctgct 1560
gattattctg gtagtcttcc tgccaaatag cccgcgctgg ctggcggaaa aggggcgtca 1620
tattgaggcg gaagaagtat tgcgtatgct gcgcgatacg tcggaaaaag cgcgagaaga 1680
actcaacgaa attcgtgaaa gcctgaagtt aaaacagggc ggttgggcac tgtttaagat 1740
caaccgtaac gtccgtcgtg ctgtgtttct cggtatgttg ttgcaggcga tgcagcagtt 1800
taccggtatg aacatcatca tgtactacgc gccgcgtatc ttcaaaatgg cgggctttac 1860
gaccacagaa caacagatga ttgcgactct ggtcgtaggg ctgaccttta tgttcgccac 1920
ctttattgcg gtgtttacgg tagataaagc agggcgtaaa ccggctctga aaattggttt 1980
cagcgtgatg gcgttaggca ctctggtgct gggctattgc ctgatgcagt ttgataacgg 2040
tacggcttcc agtggcttgt cctggctctc tgttggcatg acgatgatgt gtattgccgg 2100
ttatgcgatg agcgccgcgc cagtggtgtg gatcctgtgc tctgaaattc agccgctgaa 2160
atgccgcgat ttcggtatta cctgttcgac caccacgaac tgggtgtcga atatgattat 2220
cggcgcgacc ttcctgacac tgcttgatag cattggcgct gccggtacgt tctggctcta 2280
cactgcgctg aacattgcgt ttgtgggcat tactttctgg ctcattccgg aaaccaaaaa 2340
tgtcacgctg gaacatatcg aacgcaaact gatggcaggc gagaagttga gaaatatcgg 2400
cgtctgaggc ccctagacct cttggggttg cgaattttcg tccccaccga acattaaaag 2460
gccggttttg gtcgaaaatt tgctctaaca ccttgctatt atgcaaatct tcgttcgatt 2520
taagcaaatc ccggcaatct gtaatgagaa gttgaacggg aaacctacag taaccccgca 2580
gaaatcacat cagccccaat tgtcccaaaa gtaacgcccc cggaatcgct tctaagggcc 2640
taactcgccc aaagccaaac tagttggaca ctggagccac aaaggccctt aaatcgccac 2700
ctaccaaata gccccaagcc aaaacagcta gaaccaactc agtggccgca ccgcattcgc 2760
catatccact agtgcgtaac ggtggtgggg gaaaggagcg gaacgggcct gaatccggag 2820
tgcctcggaa atgccggtgc gcaggccttt ttgggagaac gggtattcaa acaaagggtt 2880
tgcggaggca gaagctttga gttttcgttc tcgaagccag ctgaggcctg ctgacatgat 2940
ggcaattttg atttggttga agcggggttc gttggtgggg atttcgctga gtcggcgggc 3000
ggctcggcgg atgcgggatt cactcaaatt ggagctgacc agcaacaaga tggtggtgag 3060
ggtggccatt cggtagtggg tggatgattg ggggagttta tctagggctt ggactgcgag 3120
ttcgatttgg ttttcggcca tgagttggcg ggcgagcccg aacgcggagg acacagtggt 3180
ggggttggtt gcccagacaa 3200

Claims (6)

1. A method for constructing a synthetic pathway for producing glutamic acid by xylose in Corynebacterium glutamicum, comprising the steps of:
(1) expressing a heterologous pentose transporter in C.glutamicum to help it take up xylose intracellularly;
(2) expressing heterologous xylose isomerase and xylulokinase in corynebacterium glutamicum, isomerizing xylose into xylulose, and then phosphorylating to xylulose-5-phosphate;
(3) the generated xylulose-5-phosphate can generate alpha-ketoglutarate through a pentose phosphate pathway and a glycolysis pathway owned by corynebacterium glutamicum, and alpha-ketoglutarate dehydrogenase is subjected to attenuation expression so that the alpha-ketoglutarate flows to the synthesis of glutamic acid more;
(4) the glutamic acid secretory protein is modified so that the corynebacterium glutamicum can not respond to the external biotin pressure any more and continuously secrete glutamic acid to the outside of cells.
2. The method according to claim 1, wherein the synthesis pathway for producing glutamic acid from xylose in Corynebacterium glutamicum comprises: the method specifically comprises the following steps:
(1) the xylAB expression cassette is integrated at the ldhA gene locus of c.glutamicum;
(2) modification of glutamate secretory channel protein;
(3) attenuating the expression of alpha-ketoglutarate dehydrogenase;
(4) expression of the heterologous pentose transporter araE.
3. The method according to claim 2, wherein the synthesis pathway for producing glutamic acid from xylose in Corynebacterium glutamicum comprises:
the step (1) integration of xylAB expression cassette into ldhA gene locus of c.glutamcum: firstly, constructing an integration plasmid of xylAB, then transferring the integration plasmid pK 18-delta ldhA of xylAB into C.glutamicum in an electrotransfer mode, and further screening out a strain which generates correct homologous recombination in a pcr verification mode to obtain recombinant corynebacterium glutamicum, which is named as C.glutamicum XyltoGA 01;
the step (2) is modification of glutamic acid secretory channel protein: firstly constructing a knockout plasmid with 330 bases at the carbon end of MscCG, then transferring the knockout plasmid pK 18-delta MscG 330 into C.glutamicum XyltoGA01 in an electric transfer mode, and screening out a strain which generates correct homologous recombination in a pcr verification mode to obtain recombinant corynebacterium glutamicum, which is named as C.glutamicum XyltoGA 02;
said step (3) attenuating the expression of alpha-ketoglutarate dehydrogenase: firstly, constructing an integrated plasmid which replaces an original RBS sequence of odhA and is an RBS sequence with the transcription initiation strength of 0.1, then transferring the knocked-out plasmid into C.glutamicum xyltotA 02 in an electric transfer mode, and screening a strain which generates correct homologous recombination in a pcr verification mode to obtain recombinant corynebacterium glutamicum, which is named as C.glutamicum xyltotA 03;
the step (4) expresses a heterologous pentose transporter araE: firstly, constructing an integration plasmid of araE, then transferring the integration plasmid pK 18-delta ack of araE into C.glutamicum xyltotGA 03 in an electrotransfer mode, further screening a strain which generates correct homologous recombination in a pcr verification mode, and finally obtaining the recombinant corynebacterium glutamicum which is named C.glutamicum xyltotGA 04.
4. The method according to claim 3, wherein the synthesis pathway for producing glutamic acid from xylose in Corynebacterium glutamicum comprises: culturing and fermenting the recombinant strain C.glutamicum xyltoGA04, wherein the culture medium is a high-biotin-concentration culture medium containing 60g/L glucose and 40g/L xylose, the temperature is 32 ℃, the pH is controlled to be 7.2 by ammonia water, the ventilation amount is 1.4vvm, and the rotation speed is 600 rpm.
5. Corynebacterium glutamicum capable of producing glutamic acid with xylose in a high biotin environment, constructed by the method according to any one of claims 1 to 4.
6. The use of C.glutamicum producing glutamic acid with xylose in a high biotin environment in a lignocellulosic fermentation process according to claim 5.
CN202011331840.8A 2020-11-24 2020-11-24 Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum Pending CN112458108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011331840.8A CN112458108A (en) 2020-11-24 2020-11-24 Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011331840.8A CN112458108A (en) 2020-11-24 2020-11-24 Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum

Publications (1)

Publication Number Publication Date
CN112458108A true CN112458108A (en) 2021-03-09

Family

ID=74799779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011331840.8A Pending CN112458108A (en) 2020-11-24 2020-11-24 Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum

Country Status (1)

Country Link
CN (1) CN112458108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004679A (en) * 2021-10-20 2023-04-25 上海凯赛生物技术股份有限公司 Fusion gene, genetically engineered bacterium and PHB production method
CN116004487A (en) * 2021-10-20 2023-04-25 上海凯赛生物技术股份有限公司 Genetically engineered bacterium and method for producing poly 3-hydroxybutyrate by using genetically engineered bacterium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066553A (en) * 2008-06-17 2011-05-18 财团法人地球环境产业技术研究机构 Coryneform bacterium transformant having improved D-xylose-utilizing function
WO2013105802A2 (en) * 2012-01-10 2013-07-18 씨제이제일제당 (주) Microorganisms of corynebacterium which can utilize xylose and method for producing l-lysine using same
CN104805145A (en) * 2014-01-24 2015-07-29 华东理工大学 Method for producing glutamic acid by using lignocellulose raw material
CN107012161A (en) * 2017-04-03 2017-08-04 天津大学 Corynebacterium glutamicum and structure and application using stalk hydrolyzate high yield butanedioic acid
CN110951661A (en) * 2019-12-26 2020-04-03 新疆梅花氨基酸有限责任公司 Corynebacterium glutamicum capable of producing L-glutamine at high yield and construction method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066553A (en) * 2008-06-17 2011-05-18 财团法人地球环境产业技术研究机构 Coryneform bacterium transformant having improved D-xylose-utilizing function
WO2013105802A2 (en) * 2012-01-10 2013-07-18 씨제이제일제당 (주) Microorganisms of corynebacterium which can utilize xylose and method for producing l-lysine using same
CN104805145A (en) * 2014-01-24 2015-07-29 华东理工大学 Method for producing glutamic acid by using lignocellulose raw material
CN107012161A (en) * 2017-04-03 2017-08-04 天津大学 Corynebacterium glutamicum and structure and application using stalk hydrolyzate high yield butanedioic acid
CN110951661A (en) * 2019-12-26 2020-04-03 新疆梅花氨基酸有限责任公司 Corynebacterium glutamicum capable of producing L-glutamine at high yield and construction method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CI JIN ET AL.: ""High-Titer Glutamic Acid Production from Lignocellulose Using an Engineered Corynebacterium glutamicum with Simultaneous Co-utilization of Xylose and Glucose"", 《ACS SUSTAINABLE CHEM. ENG.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004679A (en) * 2021-10-20 2023-04-25 上海凯赛生物技术股份有限公司 Fusion gene, genetically engineered bacterium and PHB production method
CN116004487A (en) * 2021-10-20 2023-04-25 上海凯赛生物技术股份有限公司 Genetically engineered bacterium and method for producing poly 3-hydroxybutyrate by using genetically engineered bacterium

Similar Documents

Publication Publication Date Title
EP3259349B1 (en) Dehydrogenase-catalysed production of fdca
EA025990B1 (en) Polypeptides having oxidoreductase activity and their uses
CN112458108A (en) Construction method of synthetic path for generating glutamic acid by utilizing xylose in corynebacterium glutamicum
CN110964686B (en) Recombinant pseudomonas proteus and construction method and application thereof
US9206445B2 (en) Biocatalysts with enhanced inhibitor tolerance
CN107287144B (en) Metabolically-modified bacillus subtilis biotransformation cell and preparation method and application thereof
CN107858364B (en) High-temperature-resistant high-specific-activity bacterial phytase gene suitable for methanol yeast expression
CN110305855B (en) Gastrodia elata GeCPR gene and application thereof
CN113564090A (en) Construction method and application of recombinant strain for producing tetrahydropyrimidine
CN114672525A (en) Biosynthesis method and application of N-acetyl-5-methoxytryptamine
CN107299074B (en) Construction method and application of formate dehydrogenase engineering strain
CN114058560A (en) Method for producing glycine
CN114854659B (en) Ergothioneine production process and application thereof
CN115948402A (en) Recombinant Shewanella capable of producing 5-aminolevulinic acid and application thereof
CN107988128A (en) Genetic engineering bacterium for producing D-1,2, 4-butanetriol and application thereof
CN110564662B (en) Construction method of integrated bacillus subtilis for efficiently expressing acetaldehyde dehydrogenase
CN115725486A (en) Bacillus thuringiensis using methanol as carbon source and application thereof
CN101892228B (en) High-acrylamide and acrylonitrile tolerance nitrile hydratase production engineering bacterium and application thereof
CN110862952A (en) 5-aminolevulinic acid production strain and construction method and application thereof
CN115197954B (en) Recombinant DNA for fermentative production of 1, 5-pentanediamine, strain and use thereof
JPWO2015141705A1 (en) Method for imparting acid and salt tolerance and production of useful substances using acid and salt tolerant yeast
CN115786229B (en) Recombination system for rhodococcus gene knockout and application thereof
KR102253701B1 (en) Hybrid type glycolysis pathway
CN114410494B (en) Saccharomyces cerevisiae engineering bacteria for producing rosmarinic acid and construction method and application thereof
CN115125180B (en) Recombinant zymomonas mobilis for producing acetoin by double ways and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210309

WD01 Invention patent application deemed withdrawn after publication