Nothing Special   »   [go: up one dir, main page]

CN112349781A - 一种异质集成二极管的SiC MOSFET器件 - Google Patents

一种异质集成二极管的SiC MOSFET器件 Download PDF

Info

Publication number
CN112349781A
CN112349781A CN202011220341.1A CN202011220341A CN112349781A CN 112349781 A CN112349781 A CN 112349781A CN 202011220341 A CN202011220341 A CN 202011220341A CN 112349781 A CN112349781 A CN 112349781A
Authority
CN
China
Prior art keywords
well region
region
semiconductor
source electrode
metal source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011220341.1A
Other languages
English (en)
Inventor
梁世维
王俊
刘航志
俞恒裕
彭子舜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202011220341.1A priority Critical patent/CN112349781A/zh
Publication of CN112349781A publication Critical patent/CN112349781A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公布了一种异质集成二极管的SiC MOSFET器件,其特征在于,包括自下而上依次设置有漏极、N+衬底、N‑外延层、P阱区的元胞结构;所述P阱区的表面设置有金属源极;所述N‑外延层的表面设置有半导体异质结结构;所述半导体异质结结构正面与金属源极连接;所述半导体异质结结构的两侧设置有栅极结构;所述栅极结构位于金属源极和N‑外延层之间;所述P阱区中具有N阱区;所述元胞结构最外侧的P阱区中还具有P+区,所述P+区和N阱区的引出端均与金属源极相连。本发明同时实现MOSFET正向导通特性和异质结二极管的反向续流特性,制备工艺与现有技术具有高度兼容性。

Description

一种异质集成二极管的SiC MOSFET器件
技术领域
本发明属于半导体技术领域,具体为一种异质集成二极管的SiC MOSFET器件。
背景技术
电力电子技术是实现电能变换的一项关键技术,广泛应用于几乎所有的与电能使用相关的领域。在电力电子技术中,电力电子器件是实现电能变换的关键核心元件。近年来,随着第三代半导体材料(SiC、GaN等)不断发展成熟,第三代半导体器件也开始逐渐应用于各种电力电子装备中,比如电动汽车、充电桩等。在新一代的半导体器件中,SiC MOSFET是其中发展最为成熟且在市场上最被接受的功率开关器件。然而,SiC MOSFET在使用过程中存在双极性退化的问题,尤其采用其体二极管作为续流二极管使用时,双极性退化问题将会更加严重。在绝大部分的电力电子应用系统中,通常都需要续流通道来导通SiCMOSFET关断时的反向电流,因此续流二极管在电力电子应用系统具有很大的应用需求。
虽然SiC MOSFET的体二极管不适合作为续流二极管使用,但需要说明的是,SiCMOSFET在导通时具有双向通流的能力,也即可以采用额外的SiC MOSFET形成续流通道。不过,该方法会增加电力电子应用系统中的功率半导体成本,且该方法在实际使用过程中还需要十分严格的死区时间控制,否则很容易引起“桥臂直通”的现象,损坏电力电子应用系统。事实上,常见的做法是在SiC MOSFET上反并联一个二极管作为续流通道,但该方法仍然会增加系统成本,且由于元件互连,会在电路中引入额外的杂散参数,降低系统的动态性能。
众所周知,近年来多种新型的SiC MOSFET结构相继被发明出来,但都是在传统的SiC MOSFET元胞之间额外引入二极管结构。如发明专利 201810991192.5中提供一种碳化硅MOSFET器件及其制造方法,通过在普通碳化硅UMOSFET结构的基础上,通过形成不连续的沟槽栅极结构,并于两沟槽栅极结构之间引入两碳化硅深P注入区,同时于两碳化硅深P注入区之间引入金属或多晶硅。该金属或多晶硅与碳化硅N外延直接接触,形成具有整流特性的肖特基接触或者异质结接触,该改进对传统碳化硅UMOSFET基本特性有大幅优化作用的同时,实现了多子整流器件的集成,优化了器件第三象限工作性能。虽然该专利实现了续流二极管的单片集成,但其所形成的异质结在两相邻的沟槽栅之间,必然加宽了原有的碳化硅传统MOSFET元胞尺寸,也即需要占用传统MOSFET的芯片面积来实现续流二极管,使得原有的碳化硅UMOSFET的有效面积降低,器件的通流能力随之降低。
发明内容
本发明的目的是针对以上问题,提供一种异质集成二极管的SiC MOSFET器件结构,在平面栅MOSFET上集成异质结二极管,不仅同时实现MOSFET正向导通特性和异质结二极管的反向续流特性,而且不需要占用额外的芯片面积,同时其制备工艺和SiC MOSFET具有高度的兼容性,无需增加制备成本的同时获得高性能的器件特性。
为实现以上目的,本发明采用的技术方案是:
一种异质集成二极管的SiC MOSFET器件,包括自下而上依次设置有漏极(12)、N+衬底(11)、N-外延层(10)、P阱区(8)的元胞结构;所述P阱区(8)的表面设置有金属源极(1);所述N-外延层(10)的表面设置有半导体异质结结构;所述半导体异质结结构正面与金属源极(1)连接;所述半导体异质结结构的两侧设置有栅极结构;所述栅极结构位于金属源极(1)和N-外延层(10)之间;所述P阱区(8)中具有N阱区(7);位于所述元胞结构最外侧的P阱区(8)中还具有P+区(6),所述P+区(6)和N阱区(7)的引出端均与金属源极(1)相连。
优选的,所述半导体异质结结构包括半导体填充层(3)和N型JFET区(9);所述半导体填充层(3)底部通过N型JFET区(9)与N-外延层(10)连接,所述半导体填充层(3)与N型JFET区(9)形成异质结接触;所述半导体填充层(3)的引出端与金属源极(1)相连。
优选的,所述栅极结构包括多晶硅栅极(2)、隔离介质(4)和栅氧(5),所述多晶硅栅极(2)与金属源极(1)之间设置有隔离介质(4),所述多晶硅栅极(2)与半导体填充层(3)、N阱区(7)、P阱区(8)、N型JFET区(9)之间设置是有栅氧(5)。
优选的,所述半导体填充层(3)为Si或者Ge材料。
本发明的有益效果:
1、本发明在平面栅MOSFET的JFET区上形成异质结,构造出一个异质结二极管作为续流使用,由于平面栅MOSFET工作时,续流二极管处于不导通的状态,而续流二极管工作时平面栅MOSFET处于关断的状态,因此,通过在不同工作时刻复用JFET区,在不额外占用MOSFET有效芯片面积的同时,实现了在MOSFET中集成续流二极管的功能,可以节省一个半导体器件的成本,本发明结构的制备工艺和传统的SiC MOSFET制备工艺高度兼容,不会导致额外的制造成本。
2、本发明通过在SiC MOSFET中集成异质结二极管,可以避免其体二极管触发导通而引起的双极性退化问题,提高SiC MOSFET器件的可靠性。
3、通过集成化的芯片设计,可以免去器件间的外部互连线,极大地减小寄生参数,有利于提高SiC MOSFET的动态工作性能。
附图说明
图1为本发明的结构示意图;
图2为本发明的工作原理图;
图3为本发明和常规SiC MOSFET的I-V曲线对比图;
图4为本发明和常规SiC MOSFET的反向恢复特性对比图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。
如图1所示,一种异质集成二极管的SiC MOSFET器件,包括自下而上依次设置有漏极12、N+衬底11、N-外延层10、P阱区8的元胞结构;P阱区8的表面设置有金属源极1;N-外延层10的表面设置有半导体异质结结构;半导体异质结结构正面与金属源极1连接;半导体异质结结构的两侧设置有栅极结构;栅极结构位于金属源极1和N-外延层10之间;P阱区8中具有N阱区7;位于元胞结构最外侧的P阱区8中还具有P+区6,P+区6和N阱区7的引出端均与金属源极1相连。
在本实施例中,半导体异质结结构包括半导体填充层3和N型JFET区9;半导体填充层3底部通过N型JFET区9与N-外延层10连接,半导体填充层3与N型JFET区9形成异质结接触;半导体填充层3的引出端与金属源极1相连。其中,异质结二极管由阳极金属1、半导体填充层3、半导体填充层3与N型JFET区9接触界面形成异质结、N型JFET区9、N-外延层10、N型衬底11和漏极12构成。
在本实施例中,栅极结构包括多晶硅栅极2、隔离介质4和栅氧5,多晶硅栅极2与金属源极1之间设置有隔离介质4,多晶硅栅极2与半导体填充层3、N阱区7、P阱区8、N型JFET区9之间设置是有栅氧5。
在本实施例中,半导体填充层3为Si或者Ge材料。
可以通过如下方法制备出本实施例的SiC MOSFET器件:
(1)晶圆准备:对晶圆进行检查、清洗、干燥;
(2)淀积掩膜层并通过光刻转移器件图形至晶圆上,然后通过高能离子注入形成P阱区、N阱区和高掺杂的N型JFET区以及P+区,利用高温退火激活注入离子;
(3)通过热氧化在SiC表面形成高质量的栅氧;
(4)淀积掩膜层并通过光刻转移器件图形至晶圆上,通过刻蚀栅氧形成栅氧结构,并为异质结结构开窗;
(5)淀积多晶硅,同时形成MOSFET结构的门极结构和异质结二极管中的异质结结构;
(6)淀积隔离介质,完成MOSFET栅极结构和异质结二极管的制备;
(7)淀积接触金属,并图形化各个电极的接触,剥离光刻胶去除多余金属后,通过高温退火在SiC表面各电极位置形成欧姆接触,其中,异质结二极管的阳极与MOSFET结构的源极共用同一金属;
(8)电极金属加厚和图形化,并采用PI胶进行表面保护。
如图3、图4所示,当在SiC MOSFET的栅极加上超过阈值的正压如+15V,在N阱区7和N型JFET区9之间的P阱区8上将会形成反型层作为导通电流的沟道,继续在漏极12和源极1之间加上正向偏置电压,则电流将依次从漏极12、N+衬底11、N-外延层10、N型JFET区9,然后经过N沟道流到N阱区7,最后经源极1流出器件;当SiC MOSFET的沟道关断后,电流将被截断,SiC MOSFET将处于阻断状态;当SiC MOSFET的源极1和漏极12之间加上正压,则SiCMOSFET将进入反向导通电流的状态,此时电流将依次经过源极1、多晶硅等半导体材料3、异质结、N型JFET区9、N-外延层10、N+衬底11,最后从漏极12流出器件。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实例的说明只是用于帮助理解本发明的方法及其核心思想。以上所述仅是本发明的优选实施方式,应当指出,由于文字表达的有限性,而客观上存在无限的具体结构,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进、润饰或变化,也可以将上述技术特征以适当的方式进行组合;这些改进润饰、变化或组合,或未经改进将发明的构思和技术方案直接应用于其它场合的,均应视为本发明的保护范围。

Claims (4)

1.一种异质集成二极管的SiC MOSFET器件,其特征在于,包括自下而上依次设置有漏极(12)、N+衬底(11)、N-外延层(10)、P阱区(8)的元胞结构;所述P阱区(8)的表面设置有金属源极(1);所述N-外延层(10)的表面设置有半导体异质结结构;所述半导体异质结结构正面与金属源极(1)连接;所述半导体异质结结构的两侧设置有栅极结构;所述栅极结构位于金属源极(1)和N-外延层(10)之间;所述P阱区(8)中具有N阱区(7);位于所述元胞结构最外侧的P阱区(8)中还具有P+区(6),所述P+区(6)和N阱区(7)的引出端均与金属源极(1)相连。
2.根据权利要求1中所述的一种异质集成二极管的SiC MOSFET器件,其特征在于,所述半导体异质结结构包括半导体填充层(3)和N型JFET区(9);所述半导体填充层(3)底部通过N型JFET区(9)与N-外延层(10)连接,所述半导体填充层(3)与N型JFET区(9)形成异质结接触;所述半导体填充层(3)的引出端与金属源极(1)相连。
3.根据权利要求2中所述的一种异质集成二极管的SiC MOSFET器件,其特征在于,所述栅极结构包括多晶硅栅极(2)、隔离介质(4)和栅氧(5),所述多晶硅栅极(2)与金属源极(1)之间设置有隔离介质(4),所述多晶硅栅极(2)与半导体填充层(3)、N阱区(7)、P阱区(8)、N型JFET区(9)之间设置是有栅氧(5)。
4.根据权利要求1中所述的一种异质集成二极管的SiC MOSFET器件,其特征在于,所述半导体填充层(3)为Si或者Ge材料。
CN202011220341.1A 2020-11-05 2020-11-05 一种异质集成二极管的SiC MOSFET器件 Pending CN112349781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011220341.1A CN112349781A (zh) 2020-11-05 2020-11-05 一种异质集成二极管的SiC MOSFET器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011220341.1A CN112349781A (zh) 2020-11-05 2020-11-05 一种异质集成二极管的SiC MOSFET器件

Publications (1)

Publication Number Publication Date
CN112349781A true CN112349781A (zh) 2021-02-09

Family

ID=74429335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011220341.1A Pending CN112349781A (zh) 2020-11-05 2020-11-05 一种异质集成二极管的SiC MOSFET器件

Country Status (1)

Country Link
CN (1) CN112349781A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171597A (zh) * 2021-10-18 2022-03-11 浙江芯科半导体有限公司 一种低源极接触电阻的SiC MOSFET器件及其制备方法
CN114220860A (zh) * 2021-12-07 2022-03-22 湖南大学 一种高可靠性平面栅SiC MOSFET器件结构及其制备方法
CN114664929A (zh) * 2022-04-21 2022-06-24 电子科技大学 一种集成异质结二极管的分离栅SiC MOSFET及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236012A1 (en) * 2012-09-06 2015-08-20 Mitsubishi Electric Corporation Semiconductor device
CN107248533A (zh) * 2017-06-09 2017-10-13 电子科技大学 一种碳化硅vdmos器件及其制作方法
CN107871786A (zh) * 2016-09-28 2018-04-03 丰田自动车株式会社 半导体装置
CN110534576A (zh) * 2019-09-09 2019-12-03 电子科技大学 一种分裂栅4H-SiC VDMOS器件
CN110729356A (zh) * 2019-10-30 2020-01-24 北京工业大学 一种具有内嵌沟道二极管的SiC MOSFET结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236012A1 (en) * 2012-09-06 2015-08-20 Mitsubishi Electric Corporation Semiconductor device
CN107871786A (zh) * 2016-09-28 2018-04-03 丰田自动车株式会社 半导体装置
CN107248533A (zh) * 2017-06-09 2017-10-13 电子科技大学 一种碳化硅vdmos器件及其制作方法
CN110534576A (zh) * 2019-09-09 2019-12-03 电子科技大学 一种分裂栅4H-SiC VDMOS器件
CN110729356A (zh) * 2019-10-30 2020-01-24 北京工业大学 一种具有内嵌沟道二极管的SiC MOSFET结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, HZ 等: "Evaluation on Dynamic Switching Noise and Power Loss in High-voltage SiC IGBT", 《 PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC)》 *
赵正平 等: "《宽禁带半导体高频及微波功率器件与电路》", 31 December 2017 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171597A (zh) * 2021-10-18 2022-03-11 浙江芯科半导体有限公司 一种低源极接触电阻的SiC MOSFET器件及其制备方法
CN114171597B (zh) * 2021-10-18 2023-03-21 浙江芯科半导体有限公司 一种低源极接触电阻的SiC MOSFET器件及其制备方法
CN114220860A (zh) * 2021-12-07 2022-03-22 湖南大学 一种高可靠性平面栅SiC MOSFET器件结构及其制备方法
CN114664929A (zh) * 2022-04-21 2022-06-24 电子科技大学 一种集成异质结二极管的分离栅SiC MOSFET及其制作方法

Similar Documents

Publication Publication Date Title
EP3257085B1 (en) High voltage semiconductor devices and methods of making the devices
CN108962977B (zh) 一种集成SBD的碳化硅沟槽型MOSFETs及其制备方法
EP2165367B1 (en) Improved power switching transistors
US8946002B2 (en) Method of forming a semiconductor device having a patterned gate dielectric and structure therefor
US11322606B2 (en) Heterojunction semiconductor device having high blocking capability
US20090014719A1 (en) Semiconductor device with large blocking voltage
CN108447913B (zh) 一种集成肖特基二极管的ldmos器件
CN103383966A (zh) 具有改善的鲁棒性的半导体器件
CN112420694B (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
CN115528117B (zh) 横向双扩散场效应晶体管、制作方法、芯片及电路
JP2024526524A (ja) 高速フリーホイールダイオードを集積したトレンチ型SiC-MOSFET及びその製造方法
CN115881797A (zh) 一种碳化硅器件及其制备方法
CN112768532A (zh) 一种单片集成续流二极管的SiC MOSFET器件及其制备方法
WO2016101134A1 (zh) 一种双向mos型器件及其制造方法
CN101859703B (zh) 低开启电压二极管的制备方法
CN105895671A (zh) 超低功耗半导体功率器件及制备方法
CN112349781A (zh) 一种异质集成二极管的SiC MOSFET器件
CN110729356B (zh) 一种具有内嵌沟道二极管的SiC MOSFET结构
CN107768435A (zh) 一种双向igbt及其制造方法
Lyu et al. GaN on engineered bulk silicon power integration platform with avalanche capability enabled by built-in Si PN junctions
Nakamura et al. Large current SiC power devices for automobile applications
CN210628318U (zh) 一种Split Gate-IGBT结构及器件
JP2005235985A (ja) 半導体装置
CN101512738B (zh) 半导体器件和形成半导体器件的方法
CN110739219B (zh) 一种内嵌沟道二极管的SiC MOSFET制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210209

RJ01 Rejection of invention patent application after publication