CN112137832A - Learning system, rehabilitation support system, method, program, and learning completion model - Google Patents
Learning system, rehabilitation support system, method, program, and learning completion model Download PDFInfo
- Publication number
- CN112137832A CN112137832A CN202010578612.4A CN202010578612A CN112137832A CN 112137832 A CN112137832 A CN 112137832A CN 202010578612 A CN202010578612 A CN 202010578612A CN 112137832 A CN112137832 A CN 112137832A
- Authority
- CN
- China
- Prior art keywords
- data
- rehabilitation
- learning
- training
- trainer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000012549 training Methods 0.000 claims abstract description 523
- 230000009471 action Effects 0.000 claims abstract description 158
- 238000011084 recovery Methods 0.000 claims abstract description 26
- 238000007621 cluster analysis Methods 0.000 claims abstract description 24
- 238000004458 analytical method Methods 0.000 claims description 32
- 208000024891 symptom Diseases 0.000 claims description 28
- 201000010099 disease Diseases 0.000 claims description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 13
- 230000006872 improvement Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 description 88
- 210000002414 leg Anatomy 0.000 description 72
- 238000004891 communication Methods 0.000 description 50
- 238000001514 detection method Methods 0.000 description 48
- 230000004044 response Effects 0.000 description 28
- 210000003127 knee Anatomy 0.000 description 21
- 230000001681 protective effect Effects 0.000 description 21
- 230000006870 function Effects 0.000 description 20
- 238000011156 evaluation Methods 0.000 description 18
- 210000000689 upper leg Anatomy 0.000 description 17
- 230000033001 locomotion Effects 0.000 description 16
- 238000007726 management method Methods 0.000 description 16
- 210000002683 foot Anatomy 0.000 description 15
- 238000007781 pre-processing Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 238000013528 artificial neural network Methods 0.000 description 11
- 210000001699 lower leg Anatomy 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 8
- 210000000544 articulatio talocruralis Anatomy 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 206010033799 Paralysis Diseases 0.000 description 5
- 210000003423 ankle Anatomy 0.000 description 5
- 210000004394 hip joint Anatomy 0.000 description 5
- 210000000629 knee joint Anatomy 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- 208000006011 Stroke Diseases 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000002354 daily effect Effects 0.000 description 4
- 238000013500 data storage Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000001624 hip Anatomy 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 210000002303 tibia Anatomy 0.000 description 3
- 210000003371 toe Anatomy 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 206010018985 Haemorrhage intracranial Diseases 0.000 description 1
- 206010019468 Hemiplegia Diseases 0.000 description 1
- 208000008574 Intracranial Hemorrhages Diseases 0.000 description 1
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 210000003489 abdominal muscle Anatomy 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 230000007103 stamina Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 210000001364 upper extremity Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0218—Drawing-out devices
- A61H1/0229—Drawing-out devices by reducing gravity forces normally applied to the body, e.g. by lifting or hanging the body or part of it
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0237—Stretching or bending or torsioning apparatus for exercising for the lower limbs
- A61H1/024—Knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0237—Stretching or bending or torsioning apparatus for exercising for the lower limbs
- A61H1/0255—Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
- A61H1/0262—Walking movement; Appliances for aiding disabled persons to walk
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H3/008—Appliances for aiding patients or disabled persons to walk about using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
- A61H2003/007—Appliances for aiding patients or disabled persons to walk about secured to the patient, e.g. with belts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/12—Driving means
- A61H2201/1207—Driving means with electric or magnetic drive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/165—Wearable interfaces
- A61H2201/1652—Harness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5023—Interfaces to the user
- A61H2201/5043—Displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5061—Force sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5069—Angle sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5084—Acceleration sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5097—Control means thereof wireless
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2203/00—Additional characteristics concerning the patient
- A61H2203/04—Position of the patient
- A61H2203/0406—Standing on the feet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2205/00—Devices for specific parts of the body
- A61H2205/10—Leg
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2230/00—Measuring physical parameters of the user
- A61H2230/62—Posture
- A61H2230/625—Posture used as a control parameter for the apparatus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Medical Informatics (AREA)
- Rehabilitation Therapy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pain & Pain Management (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Primary Health Care (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Rehabilitation Tools (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明涉及学习系统、复健辅助系统、方法、程序及学习完毕模型。取得部取得基于至少包括关于训练者利用复健辅助系统执行了的复健的表示训练助理的助理数据和表示训练者的恢复度的指标数据的第1复健数据并通过聚类分析分类了训练助理而得到的分类结果。学习部生成学习模型,该学习模型被输入至少包括表示训练助理以辅助训练者为目的执行了的辅助行动的行动数据的第2复健数据,来输出启示训练助理的接下来行动的行动数据。学习部将基于分类结果进行了前处理的第2复健数据作为教导数据,来生成学习模型。
The present invention relates to a learning system, a rehabilitation auxiliary system, a method, a program and a learning completion model. The acquisition unit acquires the first rehabilitation data including at least assistant data indicating the training assistant and index data indicating the degree of recovery of the trainer regarding the rehabilitation performed by the trainer using the rehabilitation assistance system, and classifies the training by cluster analysis. The classification results obtained by the assistant. The learning unit generates a learning model inputted with second rehabilitation data including at least action data indicating an auxiliary action performed by the training assistant for the purpose of assisting the trainer, and outputs action data indicating the training assistant's next action. The learning unit generates a learning model using the second rehabilitation data preprocessed based on the classification result as teaching data.
Description
技术领域technical field
本公开涉及学习系统、复健辅助系统、方法、程序以及学习完毕模型。The present disclosure relates to a learning system, a rehabilitation assistance system, a method, a program, and a learning completion model.
背景技术Background technique
患者等训练者在进行复健锻炼(复健)时,有时利用步行训练装置等复健辅助系统。作为步行训练装置的例子,在日本专利第6052234号公报中公开了一种具备被佩戴于训练者的腿部来辅助训练者的步行的步行辅助装置的步行训练装置。When a trainer such as a patient performs a rehabilitation exercise (rehabilitation), a rehabilitation assistance system such as a walking training device may be used. As an example of a walking training device, Japanese Patent No. 6052234 discloses a walking training device including a walking assistance device which is worn on the leg of the trainer to assist the trainer's walking.
在训练者进行复健时,根据复健辅助系统,有时医师、物理治疗师等训练工作人员进行陪同、向训练者搭话、出手帮助、以及该复健辅助系统的设定操作作为训练者的辅助。When the trainer is undergoing rehabilitation, depending on the rehabilitation assistance system, training staff such as doctors and physical therapists may accompany the trainer, talk to the trainer, offer assistance, and set the rehabilitation assistance system to assist the trainer. .
然而,为了获得良好的训练成果,需要训练工作人员对复健辅助系统的设定操作能够通过复健辅助系统对训练者实现恰当的辅助。另外,该设定操作的时机、即辅助的追加或者减除、辅助程度的变更的时机也对训练成果造成影响。因此,为了这样的设定操作,训练工作人员需要进行应该对训练者进行何种辅助的取舍选择的判断、恰当的辅助的程度、时机的判断。并且,训练工作人员需要进行应该在何种时机向训练者进行何种搭话的判断、应该在何种时机出手帮助的判断。However, in order to obtain good training results, it is necessary for the training staff to set and operate the rehabilitation assistance system so as to achieve proper assistance to the trainer through the rehabilitation assistance system. In addition, the timing of the setting operation, that is, the timing of addition or subtraction of assistance, and the timing of changing the degree of assistance also affects training results. Therefore, in order to perform such a setting operation, the training staff needs to determine what kind of assistance should be given to the trainer, and to determine the appropriate degree of assistance and timing. In addition, the training staff needs to judge when to talk to the trainer and when to help the trainer.
然而,现状是训练工作人员基于直觉、诀窍来进行上述那样的判断,另外,由于每个训练工作人员的经验年数、熟练度不同,所以根据训练工作人员不同,训练成果的差异严重。因此,期望无论训练工作人员如何均进行能获得良好的训练成果那样的恰当的辅助。因此,在复健辅助系统中,期望一种以无论训练工作人员如何均能够与优秀(训练成果所涉及的评价高)的训练工作人员进行辅助的情况同样地进行上述那样的判断的方式进行启示的技术。另外,对训练者的辅助并不局限于由训练工作人员进行,还能够设想由人工助理等其他种类的训练助理来进行。因此,在复健辅助系统中,期望一种无论训练助理如何均能够与优秀的训练助理进行辅助的情况同样地进行上述那样的判断的方式进行启示的技术。However, the current situation is that training staff make the above-mentioned judgments based on intuition and know-how, and since each training staff member has different years of experience and proficiency, training results vary greatly depending on the training staff member. Therefore, it is desired to perform appropriate assistance such that a good training result can be obtained regardless of the training staff. Therefore, in the rehabilitation support system, it is desired to suggest that the above-mentioned judgment can be made in the same way as the case where the training staff who are excellent (the evaluation of the training result is high) can assist the training staff regardless of the training staff. Technology. In addition, the assistance to the trainer is not limited to being performed by the training staff, and it is also conceivable that other types of training assistants such as human assistants are performed. Therefore, in the rehabilitation assistance system, there is a demand for a technique that can be suggested in a way that the above-mentioned judgment can be performed in the same manner as in the case of an excellent training assistant assisting, regardless of the training assistant.
发明内容SUMMARY OF THE INVENTION
本公开是为了解决这样的问题而完成的,提供生成学习模型的学习系统等,该学习模型能够在训练者利用复健辅助系统执行复健时对于对此辅助的训练助理启示优选的行动。另外,本公开还提供生成学习模型的学习系统等,该学习模型能够在训练者利用训练辅助系统执行训练时对于对此辅助的训练助理启示优选的行动。The present disclosure has been made to solve such a problem, and provides a learning system or the like that generates a learning model that can suggest a preferred action to a training assistant assisting a trainer when the trainer performs rehabilitation using the rehabilitation assisting system. In addition, the present disclosure also provides a learning system or the like that generates a learning model that can suggest a preferred action to a training assistant who assists a trainer when the training is performed using the training assistance system.
本公开的第1方式所涉及的学习系统具备:取得部,取得对于至少包括关于训练者利用复健辅助系统执行了的复健锻炼的、表示辅助上述训练者的训练助理的助理数据、表示上述训练助理以辅助上述训练者为目的执行了的辅助行动的行动数据、以及表示上述训练者的恢复度的指标数据的第1复健数据通过聚类分析分类了上述训练助理而得到的分类结果;和学习部,生成学习模型,该学习模型被输入至少包括上述行动数据的第2复健数据,来输出用于启示上述训练助理的接下来行动的上述行动数据,上述学习部将基于上述分类结果进行了前处理的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成在训练者利用复健辅助系统执行复健时可对于对此辅助的训练助理启示优选的行动的学习模型。The learning system according to the first aspect of the present disclosure includes an acquisition unit that acquires assistant data for at least including a training assistant who assists the trainer about the rehabilitation exercise performed by the trainer using the rehabilitation support system, indicating the above A classification result obtained by classifying the above-mentioned training assistant by cluster analysis on the action data of the auxiliary action performed by the training assistant for the purpose of assisting the above-mentioned trainer, and the first rehabilitation data representing the index data of the degree of recovery of the above-mentioned trainer; and a learning unit to generate a learning model, the learning model is input with the second rehabilitation data including at least the above-mentioned action data, to output the above-mentioned action data for instructing the next action of the above-mentioned training assistant, the above-mentioned learning section will be based on the above-mentioned classification result. The above-mentioned second rehabilitation data subjected to preprocessing is used as teaching data to generate the above-mentioned learning model. This makes it possible to generate a learning model that can suggest a preferred action to a training assistant assisting the trainer when the trainer performs rehabilitation using the rehabilitation assisting system.
特征还能够在于,上述第2复健数据包括上述指标数据以及上述助理数据的至少一方。由此,能够使学习完毕模型反映指标数据或者助理数据。It may also be characterized in that the second rehabilitation data includes at least one of the index data and the assistant data. Thereby, the index data or the assistant data can be reflected in the learned model.
特征还能够在于,上述学习部将与上述分类结果中的1个组所包括的上述训练助理对应的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成考虑了属于1个组的训练助理的行动的学习完毕模型。It may also be characterized in that the learning unit generates the learning model by using, as teaching data, the second rehabilitation data corresponding to the training assistant included in one group in the classification result. This makes it possible to generate a learned model that takes into account the actions of the training assistants belonging to one group.
或者,特征还能够在于,上述学习部将基于上述分类结果而加标签后的多个组和与上述多个组的各个对应的上述助理数据建立了关联的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成按组考虑了训练助理的行动的学习完毕模型。Alternatively, it may be characterized in that the learning unit uses, as teaching data, the second rehabilitation data associated with a plurality of groups tagged based on the classification result and the assistant data corresponding to each of the plurality of groups, to generate the above learning model. This makes it possible to generate a learned model in which the actions of the training assistants are considered in groups.
特征还能够在于,上述学习系统具备分析部,该分析部对于上述第1复健数据执行上述聚类分析来分类上述训练助理,上述取得部从上述分析部取得分类了上述训练助理而得到的分类结果。由此,学习系统能够从分析的阶段进行处理。It may be further characterized in that the learning system includes an analysis unit that performs the cluster analysis on the first rehabilitation data to classify the training assistants, and the obtaining unit obtains a classification obtained by classifying the training assistants from the analysis unit. result. Thus, the learning system can proceed from the analysis stage.
特征还能够在于,上述第1复健数据以及上述第2复健数据包括表示上述训练者的特征的训练者数据。由此,能够使学习完毕模型反映训练者的特征。It may be characterized in that the first rehabilitation data and the second rehabilitation data include trainer data indicating the characteristics of the trainer. Thereby, the characteristics of the trainer can be reflected in the learned model.
特征还能够在于,上述训练者数据包括表示上述训练者的疾病以及症状的至少一方的症状数据。由此,能够使学习完毕模型反映症状数据。It may also be characterized in that the trainer data includes symptom data indicating at least one of a disease and a symptom of the trainer. Thereby, the symptom data can be reflected in the learned model.
特征还能够在于,上述行动数据包括对变更了上述复健辅助系统中的设定值的操作进行表示的数据以及表示对于上述训练者的帮助动作的数据中的至少一方。由此,能够使学习完毕模型反映设定值变更操作或者帮助动作的状况。It may also be characterized in that the action data includes at least one of data indicating an operation for changing the set value in the rehabilitation assistance system and data indicating an assisting action for the trainer. Thereby, the state of the setting value changing operation or the assisting operation can be reflected in the learned model.
特征还能够在于,表示上述操作的数据包括表示上述操作的熟练度的数据。由此,能够使学习完毕模型反映操作的熟练度。It can also be characterized in that the data indicating the above-mentioned operation includes data indicating the proficiency of the above-mentioned operation. This makes it possible to reflect the proficiency of the operation in the learned model.
特征还能够在于,上述学习部针对上述分类结果中的多个组的每一个,将与上述组所包括的上述训练助理对应的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成多种学习完毕模型。It may also be characterized in that the learning unit generates the learning model by using the second rehabilitation data corresponding to the training assistant included in the group as teaching data for each of the plurality of groups in the classification result. Thereby, a plurality of learned models can be generated.
特征还能够在于,上述学习系统具备对上述分类结果中的一个组进行指定的组指定部,上述学习部将与由上述组指定部指定的上述组所包括的上述训练助理对应的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成仅被指定的组的学习完毕模型。The learning system may be further characterized in that the learning system includes a group specifying unit for specifying a group in the classification result, and the learning unit specifies the second complex corresponding to the training assistant included in the group specified by the group specifying unit. The health data is used as teaching data to generate the above-mentioned learning model. Thereby, the learned model of only the designated group can be generated.
本公开的第2方式所涉及的学习系统具备:取得部,取得对于至少包括关于训练者利用训练辅助系统执行了的训练的、表示辅助上述训练者的训练助理的助理数据、表示上述训练助理以辅助上述训练者为目的执行了的辅助行动的行动数据、以及表示上述训练者的身体功能提高度的指标数据的第1数据通过聚类分析分类了上述训练助理而得到的分类结果;和学习部,生成学习模型,该学习模型被输入至少包括上述行动数据的第2数据,来输出用于启示上述训练助理的接下来行动的上述行动数据,上述学习部将基于上述分类结果进行了前处理的上述第2数据作为教导数据,来生成上述学习模型。由此,能够生成在训练者利用训练辅助系统执行训练时能对于对此辅助的训练助理启示优选的行动的学习模型。A learning system according to a second aspect of the present disclosure includes an acquisition unit that acquires assistant data indicating a training assistant who assists the trainer, including at least the training performed by the trainer using the training assistance system, and indicating that the training assistant A classification result obtained by classifying the above-mentioned training assistants by cluster analysis on the action data of the auxiliary action performed for the purpose of assisting the above-mentioned trainer, and the first data of the index data indicating the degree of improvement of the physical function of the above-mentioned trainer; and a learning unit , generating a learning model that is input with second data including at least the above-mentioned action data, to output the above-mentioned action data for instructing the next action of the above-mentioned training assistant, and the above-mentioned learning unit will be based on the above-mentioned classification result. The above-mentioned second data is used as teaching data to generate the above-mentioned learning model. This makes it possible to generate a learning model that can suggest a preferred action to a training assistant assisting the trainer when the trainer executes the training using the training assistance system.
本公开的第3方式所涉及的复健辅助系统是能够访问利用第1方式所涉及的学习系统学习而得到的学习模型即学习完毕模型的复健辅助系统,具备:输出部,将与训练者使用上述复健辅助系统进行的复健锻炼相关的上述第2复健数据作为向上述学习完毕模型的输入来进行输出;和通知部,将从上述学习完毕模型输出的上述行动数据通知给在上述复健锻炼中辅助上述训练者的上述训练助理。由此,能够在训练者利用复健辅助系统执行复健时对于对此辅助的训练助理启示优选的行动。A rehabilitation assistance system according to a third aspect of the present disclosure is a rehabilitation assistance system capable of accessing a learned model, which is a learned model learned by the learning system according to the first aspect, and includes an output unit that communicates with a trainer The second rehabilitation data related to the rehabilitation exercise performed using the rehabilitation assistance system is output as an input to the learned model; and a notification unit notifies the action data output from the learned model to the above-mentioned model. The above-mentioned training assistant assisting the above-mentioned trainer in the rehabilitation exercise. Thereby, when the trainer performs rehabilitation using the rehabilitation assistance system, it is possible to suggest a preferred action to the training assistant who assists the exercise.
特征还能够在于,上述复健辅助系统具备对在上述复健锻炼中辅助上述训练者的上述训练助理进行指定的指定部,上述复健辅助系统能够访问存储上述分类结果的分类结果存储部,当利用上述指定部指定的上述训练助理是在上述学习完毕模型的生成时未采用上述教导数据的训练助理的情况下,上述输出部输出上述第2复健数据,上述通知部进行通知。由此,对于设想为不需要通知的训练助理不进行多余的通知。It may also be characterized in that the rehabilitation assistance system includes a designation unit for specifying the training assistant who assists the trainer in the rehabilitation exercise, the rehabilitation assistance system can access a classification result storage unit that stores the classification result, and when When the training assistant designated by the designation unit is a training assistant that did not use the teaching data when generating the learned model, the output unit outputs the second rehabilitation data, and the notification unit notifies the training assistant. As a result, unnecessary notifications are not performed for training assistants that are supposed to not require notification.
本公开的第4方式所涉及的学习方法具有:取得步骤,取得对于至少包括关于训练者利用复健辅助系统执行了的复健锻炼的、表示辅助上述训练者的训练助理的助理数据、表示上述训练助理以辅助上述训练者为目的执行的辅助行动的行动数据、以及表示上述训练者的恢复度的指标数据的第1复健数据通过聚类分析分类了上述训练助理而得到的分类结果;和学习步骤,生成学习模型,该学习模型被输入至少包括上述行动数据的第2复健数据,来输出用于启示上述训练助理的接下来行动的上述行动数据,上述学习步骤将基于上述分类结果进行了前处理的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成在训练者利用复健辅助系统执行复健时可对于对此辅助的训练助理启示优选的行动的学习模型。A learning method according to a fourth aspect of the present disclosure includes an acquisition step of acquiring assistant data indicating a training assistant who assists the trainer, including at least the rehabilitation exercise performed by the trainer using the rehabilitation support system, indicating the above A classification result obtained by classifying the above-mentioned training assistant by cluster analysis on the action data of the auxiliary action performed by the training assistant for the purpose of assisting the above-mentioned trainer, and the first rehabilitation data indicating the index data of the above-mentioned degree of recovery of the above-mentioned trainer; and The learning step generates a learning model, the learning model is inputted with the second rehabilitation data including at least the above-mentioned action data, to output the above-mentioned action data for instructing the next action of the above-mentioned training assistant, and the above-mentioned learning step will be based on the above-mentioned classification results. The above-mentioned second rehabilitation data subjected to preprocessing is used as teaching data to generate the above-mentioned learning model. This makes it possible to generate a learning model that can suggest a preferred action to a training assistant assisting the trainer when the trainer performs rehabilitation using the rehabilitation assisting system.
本公开的第5方式所涉及的复健辅助方法(复健辅助系统的工作方法)是能够访问利用第4方式所涉及的学习方法学习而得到的学习模型即学习完毕模型的复健辅助系统中的复健辅助方法,具有:输出步骤,上述复健辅助系统将与训练者使用上述复健辅助系统进行的复健锻炼相关的上述第2复健数据作为向上述学习完毕模型的输入而进行输出;和通知步骤,上述复健辅助系统将从上述学习完毕模型输出的上述行动数据通知给在上述复健锻炼中辅助上述训练者的上述训练助理。由此,在训练者利用复健辅助系统执行复健时能够对于对此辅助的训练助理启示优选的行动。A rehabilitation assistance method (operation method of a rehabilitation assistance system) according to a fifth aspect of the present disclosure is a rehabilitation assistance system capable of accessing a learned model that is a learned model learned by the learning method according to the fourth aspect The rehabilitation assistance method, comprising: an output step, wherein the rehabilitation assistance system outputs the second rehabilitation data related to the rehabilitation exercise performed by the trainer using the rehabilitation assistance system as an input to the learned model. and a notification step, wherein the above-mentioned rehabilitation assistant system notifies the above-mentioned training assistant who assists the above-mentioned trainer in the above-mentioned rehabilitation exercise of the above-mentioned action data output from the above-mentioned learned model. Thereby, when the trainer performs rehabilitation using the rehabilitation assistance system, it is possible to suggest a preferred action to the training assistant assisting the exercise.
本公开的第6方式所涉及的程序是用于使计算机执行如下步骤的程序:取得步骤,取得对于至少包括关于训练者利用复健辅助系统执行了的复健锻炼的、表示辅助上述训练者的训练助理的助理数据、表示上述训练助理以辅助上述训练者为目的执行了的辅助行动的行动数据、以及表示上述训练者的恢复度的指标数据的第1复健数据通过聚类分析分类了上述训练助理而得到的分类结果;和学习步骤,生成学习模型,该学习模型被输入至少包括上述行动数据的第2复健数据,来输出用于启示上述训练助理的接下来行动的上述行动数据,上述学习步骤将基于上述分类结果进行了前处理的上述第2复健数据作为教导数据,来生成上述学习模型。由此,能够生成在训练者利用复健辅助系统执行复健时可对于对此辅助的训练助理启示优选的行动的学习模型。A program according to a sixth aspect of the present disclosure is a program for causing a computer to execute a step of acquiring a data indicating that the exerciser is supported, including at least the rehabilitation exercise performed by the exerciser using the rehabilitation assistance system. The assistant data of the training assistant, the action data indicating the auxiliary action performed by the training assistant for the purpose of assisting the trainer, and the first rehabilitation data indicating the index data of the degree of recovery of the trainer are classified by cluster analysis. A classification result obtained by training an assistant; and a learning step of generating a learning model that is input into the second rehabilitation data including at least the above-mentioned action data, to output the above-mentioned action data for enlightening the next action of the above-mentioned training assistant, The said learning process generates the said learning model by using the said 2nd rehabilitation data preprocessed based on the said classification result as teaching data. This makes it possible to generate a learning model that can suggest a preferred action to a training assistant assisting the trainer when the trainer performs rehabilitation using the rehabilitation assisting system.
本公开的第7方式所涉及的复健辅助程序是用于使能够访问利用第6方式所涉及的程序学习而得到的学习模型即学习完毕模型的复健辅助系统的计算机执行如下步骤的复健辅助程序:输出步骤,将与训练者使用上述复健辅助系统进行的复健锻炼相关的上述第2复健数据作为向上述学习完毕模型的输入而进行输出;和通知步骤,将从上述学习完毕模型输出的上述行动数据通知给在上述复健锻炼中辅助上述训练者的上述训练助理。由此,在训练者利用复健辅助系统执行复健时,能够对于对此辅助的训练助理启示优选的行动。A rehabilitation assistance program according to a seventh aspect of the present disclosure is a rehabilitation program for causing a computer that can access a rehabilitation assistance system of a learned model, which is a learned model obtained by using the program of the sixth aspect, to execute the following steps Auxiliary program: an output step of outputting the above-mentioned second rehabilitation data related to the rehabilitation exercise performed by the trainer using the above-mentioned rehabilitation auxiliary system as an input to the above-mentioned learning completed model; and a notification step, from the above-mentioned learning completed model. The above-mentioned action data output by the model is notified to the above-mentioned training assistant who assists the above-mentioned trainer in the above-mentioned rehabilitation exercise. Thereby, when the trainer performs rehabilitation using the rehabilitation assistance system, it is possible to suggest a preferred action to the training assistant who assists the exercise.
本公开的第8方式所涉及的学习完毕模型是利用第1(或者第2)方式所涉及的学习系统学习而得到的学习模型、利用第4方式所涉及的学习方法学习而得到的学习模型、以及利用第6方式所涉及的程序学习而得到的学习模型中的任一个学习模型。由此,能够提供在训练者利用复健辅助系统(或者训练辅助系统)执行复健(或者训练)时可对于对此辅助的训练助理启示优选的行动的学习完毕模型。The learned model according to the eighth aspect of the present disclosure is a learning model obtained by learning using the learning system according to the first (or second) aspect, a learning model obtained by learning with the learning method according to the fourth aspect, and any one of the learning models obtained by using the program learning according to the sixth aspect. Thereby, when a trainer performs rehabilitation (or training) with the rehabilitation assistance system (or training assistance system), it is possible to provide a learned model that can suggest a preferred action to a training assistant assisting the exercise.
根据本公开,能够提供生成学习模型的学习系统,该学习模型能够在训练者利用复健辅助系统执行复健时对于对此辅助的训练助理启示优选的行动。另外,根据本公开,能够提供使用所生成的学习完毕模型的复健辅助系统、学习该学习模型的方法及程序、学习完毕模型、以及使用了学习完毕模型的复健辅助的方法及程序。另外,本公开还能够应用于复健以外的训练,由此对复健以外的训练也起到同样的效果。According to the present disclosure, it is possible to provide a learning system that generates a learning model that can suggest a preferred action to a training assistant assisting a trainer when performing rehabilitation using the rehabilitation assisting system. In addition, according to the present disclosure, a rehabilitation assistance system using the generated learned model, a method and program for learning the learned model, a learned model, and a rehabilitation assistance method and program using the learned model can be provided. In addition, the present disclosure can also be applied to training other than rehabilitation, whereby the same effect can be obtained for training other than rehabilitation.
根据以下的详细描述和附图会更充分理解本公开的上述和其他目的、特征以及优点,附图仅以例示的方式给出,因此不应认为限制本公开。The above and other objects, features and advantages of the present disclosure will be more fully understood from the following detailed description and the accompanying drawings, which are given by way of illustration only and should not be considered limiting of the present disclosure.
附图说明Description of drawings
图1是表示实施方式1所涉及的复健辅助系统的一个构成例的整体示意图。FIG. 1 is an overall schematic diagram showing a configuration example of a rehabilitation assistance system according to
图2是表示图1的复健辅助系统中的步行辅助装置的一个构成例的简要立体图。FIG. 2 is a schematic perspective view showing a configuration example of a walking assistance device in the rehabilitation assistance system of FIG. 1 .
图3是表示图1的复健辅助系统中的步行训练装置的系统构成例的框图。FIG. 3 is a block diagram showing an example of a system configuration of a walking training device in the rehabilitation assistance system of FIG. 1 .
图4是表示图1的复健辅助系统中的服务器的一个构成例的框图。FIG. 4 is a block diagram showing a configuration example of a server in the rehabilitation support system of FIG. 1 .
图5是用于对图4的服务器中的学习处理的一个例子进行说明的流程图。FIG. 5 is a flowchart for explaining an example of learning processing in the server of FIG. 4 .
图6是用于对图4的服务器中的复健辅助处理的一个例子进行说明的流程图。FIG. 6 is a flowchart for explaining an example of rehabilitation assistance processing in the server of FIG. 4 .
图7是表示在图6的复健辅助处理中向训练工作人员提示的图像的一个例子的图。FIG. 7 is a diagram showing an example of an image presented to the training staff in the rehabilitation support process of FIG. 6 .
图8是表示在图6的复健辅助处理中向训练工作人员提示的图像的一个例子的图。FIG. 8 is a diagram showing an example of an image presented to the training staff in the rehabilitation support process of FIG. 6 .
图9是表示实施方式2所涉及的复健辅助系统中的服务器的一个构成例的框图。9 is a block diagram showing a configuration example of a server in the rehabilitation support system according to Embodiment 2. FIG.
图10是表示在图9的服务器中执行完的聚类分析的结果的一个例子的示意图。FIG. 10 is a schematic diagram showing an example of the result of the cluster analysis performed on the server of FIG. 9 .
图11是用于对图9的服务器中的学习处理的一个例子进行说明的流程图。FIG. 11 is a flowchart for explaining an example of learning processing in the server of FIG. 9 .
具体实施方式Detailed ways
以下,通过发明的实施方式来对本公开进行说明,但并不将技术方案所涉及的发明限定为以下的实施方式。另外,并不限定为实施方式中说明的结构全部是作为用于解决课题的构件所必需的。Hereinafter, the present disclosure will be described based on the embodiments of the invention, but the inventions according to the claims are not limited to the following embodiments. In addition, it is not limited that all the structures demonstrated in the embodiment are necessary as means for solving the problem.
<实施方式1><
以下,参照附图对实施方式1进行说明。Hereinafter,
(系统构成)(System Components)
图1是表示实施方式1所涉及的复健辅助系统的一个构成例的整体示意图。本实施方式所涉及的复健辅助系统(复健系统)主要由步行训练装置100、外部通信装置300、服务器(服务器装置)500构成。FIG. 1 is an overall schematic diagram showing a configuration example of a rehabilitation assistance system according to
步行训练装置100是对训练者(用户)900的复健(复健锻炼)进行辅助的复健辅助装置的一个具体例。步行训练装置100是用于供一条腿瘫痪的偏瘫患者亦即训练者900根据训练工作人员901的指导来进行步行训练的装置。这里,训练工作人员901能够是治疗师(物理治疗师)或者医师,由于通过指导或者帮助等来辅助训练者的训练,所以还能够称为训练指导者、训练帮助者、训练辅助者等。如这里例示那样,训练工作人员901为人。The walking
步行训练装置100主要具备:控制盘133,被安装于构成整体骨架的框架130;跑步机131,供训练者900步行;以及步行辅助装置120,被佩戴于训练者900的瘫痪侧的腿部亦即病腿。The walking
框架130立设于在地板面设置的跑步机131上。跑步机131通过未图示的马达使环状的带132旋转。跑步机131是促进训练者900的步行的装置,进行步行训练的训练者900登上带132并配合带132的移动来尝试步行动作。此外,例如如图1所示,训练工作人员901也能够站立在训练者900的背后的带132上而一同进行步行动作,但通常优选处于以跨着带132的状态站立等容易进行训练者900的帮助的状态。The
框架130对收纳进行马达、传感器的控制的整体控制部210的控制盘133、向训练者900提示训练的进展状况等的例如作为液晶面板的训练用监视器138等进行支承。另外,框架130在训练者900的头上部前方附近支承前侧抻拉部135,在头上部附近支承保护带抻拉部112,在头上部后方附近支承后侧抻拉部137。另外,框架130包括用于供训练者900抓握的扶手130a。The
扶手130a被配置于训练者900的左右两侧。各个扶手130a沿着与训练者900的步行方向平行的方向配置。扶手130a能够调整上下位置以及左右位置。即,扶手130a能够包括变更其高度以及宽度的机构。并且,扶手130a还能够构成为例如通过以使高度在步行方向的前方侧与后方侧不同的方式进行调整而能够变更其倾斜角度。例如,扶手130a能够带有沿着步行方向逐渐变高那样的倾斜角度。The
另外,在扶手130a设置有检测从训练者900受到的载荷的扶手传感器218。例如,扶手传感器218能够是电极被配置为矩阵状的阻力变化检测型的载荷检测片。另外,扶手传感器218还能够是使3轴加速度传感器(x,y,z)与3轴陀螺仪传感器(roll,pitch,yaw)复合而成的6轴传感器。其中,扶手传感器218的种类、设置位置是任意的。Moreover, the
照相机140承担作为用于观察训练者900的全身的拍摄部的功能。照相机140以与训练者相对的方式设置于训练用监视器138的附近。照相机140拍摄训练中的训练者900的静态图像、动态图像。照相机140包括成为能够捕捉训练者900的全身的程度的视场角那样的镜头与拍摄元件的套件。拍摄元件例如是CMOS(Complementary Metal-Oxide-Semiconductor)影像传感器,将成像在成像面的光学像变换为图像信号。The
通过前侧抻拉部135与后侧抻拉部137协作的动作,来以步行辅助装置120的载荷不成为病腿的负担的方式抵消该载荷,并且,根据设定的程度来辅助病腿的摆动动作。Through the cooperative operation of the front
前侧钢丝134的一端与前侧抻拉部135的卷取机构连结,另一端与步行辅助装置120连结。前侧抻拉部135的卷取机构通过使未图示的马达开/关来根据病腿的活动而卷取或导出前侧钢丝134。同样,后侧钢丝136的一端与后侧抻拉部137的卷取机构连结,另一端与步行辅助装置120连结。后侧抻拉部137的卷取机构通过使未图示的马达开/关来根据病腿的活动而卷取或导出后侧钢丝136。通过这样的前侧抻拉部135与后侧抻拉部137协作的动作,来以步行辅助装置120的载荷不成为病腿的负担的方式抵消该载荷,并且,根据设定的程度来辅助病腿的摆动动作。One end of the
例如,训练工作人员901作为操作人员来对于重度瘫痪的训练者将进行辅助的水平设定得大。若进行辅助的水平被设定得大,则前侧抻拉部135配合病腿的摆动时机以比较大的力卷取前侧钢丝134。若训练进展而不需要辅助,则训练工作人员901将进行辅助的水平设定为最小。若将进行辅助的水平设定为最小,则前侧抻拉部135配合病腿的摆动时机以仅消除步行辅助装置120的自重的力来卷取前侧钢丝134。For example, the
步行训练装置100具备以背带110、保护带钢丝111以及保护带抻拉部112为主要构成要素的、作为安全装置的防跌倒保护带装置。背带110是被卷绕于训练者900的腹部的带,例如通过面粘扣被固定于腰部。背带110具备将作为吊具的保护带钢丝111的一端连结的连结钩110a,还能够称为悬吊带。训练者900以连结钩110a位于后背部的方式佩戴背带110。The walking
保护带钢丝111的一端与背带110的连结钩110a连结,另一端与保护带抻拉部112的卷取机构连结。保护带抻拉部112的卷取机构通过使未图示的马达开/关来卷取或导出保护带钢丝111。通过这样的结构,在训练者900要跌倒的情况下,防跌倒保护带装置根据检测到该活动的整体控制部210的指示来卷取保护带钢丝111,通过背带110支承训练者900的上身而防止训练者900跌倒。One end of the
背带110具备用于检测训练者900的姿势的姿势传感器217。姿势传感器217例如是将陀螺仪传感器与加速度传感器组合而成的传感器,输出佩戴了背带110的腹部相对于重力方向的倾斜角。The
管理用监视器139被安装于框架130,是主要用于供训练工作人员901进行监视以及操作的显示输入装置。管理用监视器139例如为液晶面板,在其表面设置有触摸面板。管理用监视器139显示与训练设定相关的各种菜单项目、训练时的各种参数值、训练结果等。另外,在管理用监视器139的附近设置有紧急停止按钮232。通过训练工作人员901按压紧急停止按钮232,由此步行训练装置100紧急停止。The
步行辅助装置120被佩戴于训练者900的病腿,通过减少病腿的膝关节处的伸展以及屈曲的负荷来辅助训练者900的步行。步行辅助装置120具备测量脚底载荷的传感器等,向整体控制部210输出与移动腿相关的各种数据。另外,背带110还能够使用具有旋转部的连接部件(以下,称为称为臀部接头:a hip joint)来与步行辅助装置120连接。关于步行辅助装置120的详细将后述。The
整体控制部210生成可包含与训练设定相关的设定参数、作为训练结果而从步行辅助装置120输出的与移动腿相关的各种数据等的复健数据。该复健数据能够包含表示训练工作人员901或者其经验年数、熟练度等的数据、表示训练者900的症状、步行能力、恢复度等的数据、从设置于步行辅助装置120的外部的传感器等输出的各种数据等。其中,关于复健数据的详细将后述。The
外部通信装置300是将复健数据向外部发送的发送构件的一个具体例。外部通信装置300能够具有接受步行训练装置100所输出的复健数据并暂时进行存储的功能和将所存储的复健数据向服务器500发送的功能。The
外部通信装置300例如通过USB(Universal Serial Bus)线缆与步行训练装置100的控制盘133连接。另外,外部通信装置300经由无线通信设备410例如通过无线LAN(LocalArea Network)与因特网或者局域网等网络400连接。此外,步行训练装置100还能够具备通信装置来代替外部通信装置300。The
服务器500是存储复健数据的存储构件的一个具体例。服务器500与网络400连接,具有蓄积从外部通信装置300接收到的复健数据的功能。关于服务器500的功能将后述。The
在本实施方式1中,作为复健辅助装置的一个例子对步行训练装置100进行说明,但并不局限于此,也可以是其他结构的步行训练装置,还可以是进行训练者的复健辅助的任意复健辅助装置。例如,复健辅助装置也可以是辅助肩、臂的复健的上肢复健辅助装置。或者,复健辅助装置也可以是辅助训练者的平衡能力的复健的复健辅助装置。In the first embodiment, the walking
接下来,使用图2对步行辅助装置120进行说明。图2是表示步行辅助装置120的一个构成例的简要立体图。步行辅助装置120主要具备控制单元121、支承病腿的各部的多个框架、以及用于检测施加于脚底的载荷的载荷传感器222。Next, the
控制单元121包括进行步行辅助装置120的控制的辅助控制部220,另外,还包括产生用于对膝关节的伸展运动以及屈曲运动进行辅助的驱动力的未图示的马达。支承病腿的各部的框架包括大腿框架122和与大腿框架122连结为转动自如的小腿框架123。另外,该框架还包括与小腿框架123连结为转动自如的脚掌框架124、用于连结前侧钢丝134的前侧连结框架127、以及用于连结后侧钢丝136的后侧连结框架128。The
大腿框架122与小腿框架123绕图示的铰接轴Ha相对转动。控制单元121的马达根据辅助控制部220的指示进行旋转,以大腿框架122与小腿框架123绕铰接轴Ha相对打开或者闭合的方式施力。收纳于控制单元121的角度传感器223例如为旋转式编码器,检测大腿框架122与小腿框架123绕铰接轴Ha所成的角。小腿框架123与脚掌框架124绕图示的铰接轴Hb相对转动。相对转动的角度范围通过调整机构126预先调整。The
前侧连结框架127被设置为在大腿的前侧沿左右方向伸延并在两端与大腿框架122连接。另外,在前侧连结框架127中,在左右方向的中央附近设置有用于连结前侧钢丝134的连结钩127a。后侧连结框架128被设置为在小腿的后侧沿左右方向伸延并在两端分别与沿上下伸延的小腿框架123连接。另外,在后侧连结框架128中,在左右方向的中央附近设置有用于连结后侧钢丝136的连结钩128a。The front
大腿框架122具备大腿带129。大腿带129是一体设置于大腿框架的带,被卷绕于病腿的大腿部来将大腿框架122固定于大腿部。由此,防止了步行辅助装置120的整体相对于训练者900的腿部偏移。The
载荷传感器222是被埋入至脚掌框架124的载荷传感器。载荷传感器222检测训练者900的脚底所承受的垂直载荷的大小与分布,例如还能够构成为检测COP(Center OfPressure:载荷中心)。载荷传感器222例如是电极被配置为矩阵状的阻力变化检测型的载荷检测片。The
接下来,参照图3对步行训练装置100的系统构成例进行说明。图3是表示步行训练装置100的系统构成例的框图。如图3所示,步行训练装置100能够具备整体控制部210、跑步机驱动部211、操作受理部212、显示控制部213以及抻拉驱动部214。另外,步行训练装置100能够具备保护带驱动部215、图像处理部216、姿势传感器217、扶手传感器218、通信连接IF(接口)219、输入输出单元231以及步行辅助装置120。Next, an example of a system configuration of the walking
整体控制部210例如是MPU(Micro Processing Unit),通过执行从系统存储器读入的控制程序来执行装置整体的控制。整体控制部210能够具有后述的步行评价部210a、训练判定部210b、输入输出控制部210c以及通知控制部210d。The
跑步机驱动部211包括使带132旋转的马达和其驱动电路。整体控制部210通过向跑步机驱动部211发送驱动信号来执行带132的旋转控制。整体控制部210例如根据由训练工作人员901设定的步行速度来调整带132的旋转速度。The
操作受理部212受理来自训练工作人员901的输入操作并将操作信号向整体控制部210发送。训练工作人员901对构成操作受理部212的、设置于装置的操作按钮、与管理用监视器139重叠的触摸面板、附属的遥控器等进行操作。通过该操作,能够赋予电源的开/关、训练的开始的指示、进行与设定相关的数值的输入、菜单项目的选择。此外,操作受理部212还能够受理来自训练者900的输入操作。The
显示控制部213接受来自整体控制部210的显示信号来生成显示图像,并显示于训练用监视器138或者管理用监视器139。显示控制部213根据显示信号来生成表示训练的进展的图像、由照相机140拍摄到的实时影像。The
抻拉驱动部214包括构成前侧抻拉部135的用于抻拉前侧钢丝134的马达及其驱动电路、和构成后侧抻拉部137的用于抻拉后侧钢丝136的马达及其驱动电路。整体控制部210通过向抻拉驱动部214发送驱动信号来分别控制前侧钢丝134的卷取与后侧钢丝136的卷取。另外,并不局限于卷取动作,还通过控制马达的驱动转矩来控制各钢丝的抻拉力。整体控制部210例如根据载荷传感器222的检测结果来确定病腿从立腿状态切换为摆腿状态的时机,通过与该时机同步地使各钢丝的抻拉力增减,来辅助病腿的摆动动作。The
保护带驱动部215包括构成保护带抻拉部112的用于抻拉保护带钢丝111的马达及其驱动电路。整体控制部210通过向保护带驱动部215发送驱动信号来控制保护带钢丝111的卷取和保护带钢丝111的抻拉力。例如在预测到训练者900跌倒的情况下,整体控制部210卷取一定量的保护带钢丝111来防止训练者跌倒。The protective
图像处理部216与照相机140连接,能够从照相机140接受图像信号。图像处理部216根据来自整体控制部210的指示来从照相机140接受图像信号,对接受到的图像信号进行图像处理而生成图像数据。另外,图像处理部216还能够根据来自整体控制部210的指示来对从照相机140接受到的图像信号实施图像处理而执行特定的图像解析。例如,图像处理部216通过图像解析来检测与跑步机131接触的病腿的脚的位置(立腿位置)。具体而言,例如通过提取脚掌框架124的前端附近的图像区域并对描绘在与该前端部重叠的带132上的识别标识进行解析来运算立腿位置。The
姿势传感器217如上述那样检测训练者900的腹部相对于重力方向的倾斜角,并将检测信号向整体控制部210发送。整体控制部210使用来自姿势传感器217的检测信号来运算训练者900的姿势、具体为躯干的倾斜角。其中,整体控制部210与姿势传感器217可以通过有线连接,也可以通过近距离无线通信连接。The
扶手传感器218检测施加于扶手130a的载荷。即,训练者900无法通过两腿完全支承自身的体重的量的载荷施加于扶手130a。扶手传感器218检测该载荷,并将检测信号向整体控制部210发送。The
整体控制部210还承担作为执行与控制相关的各种运算、控制的功能执行部的作用。步行评价部210a使用从各种传感器取得的数据来评价训练者900的步行动作是否为异常步行。训练判定部210b例如基于步行评价部210a评价出的异常步行的累计数来对于一系列步行训练判定训练结果。整体控制部210能够生成该判定结果或成为其根本的异常步行的累计数等作为复健数据的一部分。The
其中,包括该判定的基准在内,判定的方法是任意的。例如,能够按每个步行相位将瘫痪体部的动作量与基准比较来进行判定。其中,步行相位将关于病腿(或者健康腿)的1个步行周期(one walking cycle)分类成处于立腿状态的立腿期、从立腿期向处于摆腿状态的摆腿期的过渡期、摆腿期、从摆腿期向立腿期的过渡期等。例如能够如上述那样根据载荷传感器222的检测结果来分类(判定)处于哪个步行相位。此外,步行周期能够如上述那样以立腿期、过渡期、摆腿期、过渡期为1个周期,但将哪个时期定义为开始时期是任意的。除此之外,步行周期例如还能够以两腿支承状态、单腿(病腿)支承状态、两腿支承状态、单腿(健康腿)支承状态为1个周期,在这种情况下,将哪个状态定义为开始状态也是任意的。However, the method of determination is arbitrary including the criterion of this determination. For example, the motion amount of the paralyzed body can be compared with a reference for each walking phase and can be determined. Among them, the walking phase classifies one walking cycle (one walking cycle) about the sick leg (or healthy leg) into a leg standing period in the standing leg state, and a transition period from the leg standing period to the leg swing period in the leg swing state. , swing leg period, transition period from swing leg period to leg standing period, etc. For example, as described above, it is possible to classify (determine) which walking phase is in based on the detection result of the
另外,关注于右腿或者左腿(健康腿或者病腿)的步行周期还能够进一步细分,例如,能够将立腿期分为初始接地与4期来表达,将摆腿期分为3期来表达。初始接地是指观察脚部接地于地板的瞬间,立腿期的4期是指载荷响应期、立腿中期、立腿末期以及前摆腿期。载荷响应期是从初始接地至相反侧的脚部离开地板的瞬间(对侧离地)为止的期间。立腿中期是从对侧离地至观察脚部的脚后跟离开的瞬间(脚后跟离地)为止的期间。立腿末期是从脚后跟离地至相反侧的初始接地为止的期间。前摆腿期是从相反侧的初始接地至观察脚部离开地板(离地)为止的期间。摆腿期的3期是指摆腿初期、摆腿中期、以及摆腿后期。摆腿初期是从前摆腿期的最后(上述离地)至双脚交叉(脚部交叉)为止的期间。摆腿中期是从脚部交叉至胫骨成为垂直(胫骨垂直)为止的期间。摆腿末期是从胫骨垂直至下一初始接地为止的期间。In addition, the walking cycle focusing on the right leg or the left leg (healthy leg or diseased leg) can be further subdivided. For example, the leg standing period can be divided into initial grounding and 4 periods, and the leg swing period can be divided into 3 periods. to express. The initial grounding refers to the moment when the foot is grounded on the floor, and the four stages of the leg-stance period are the load response period, the mid-leg-stance phase, the end-leg-stance phase, and the forward-swing leg phase. The load response period is the period from the initial grounding to the moment when the foot on the opposite side leaves the floor (the opposite side leaves the ground). The mid-leg standing period is the period from the time when the opposite side leaves the ground to the moment when the heel of the foot is observed to leave the ground (the heel leaves the ground). The end of leg stance is the period from the heel off the ground to the initial grounding on the opposite side. The forward leg swing period is the period from the initial ground contact on the opposite side to the time when the foot is observed to leave the floor (lift off the ground). Stage 3 of the leg swing period refers to the early stage of the leg swing, the middle stage of the leg swing, and the late stage of the leg swing. The initial stage of the leg swing is the period from the end of the forward leg swing period (the above-mentioned lifting off the ground) to the time when the feet are crossed (the feet are crossed). The mid-leg swing is the period from when the feet cross until the tibia becomes vertical (tibia is vertical). The end of the swing is the period from the vertical of the tibia to the next initial touchdown.
通信连接IF219是与整体控制部210连接的接口,是用于向被佩戴于训练者900的病腿的步行辅助装置120赋予指令、接受传感器信息的接口。The communication link IF 219 is an interface connected to the
步行辅助装置120能够具备与通信连接IF219通过有线或者无线连接的通信连接IF229。通信连接IF229与步行辅助装置120的辅助控制部220连接。通信连接IF219、229是符合通信标准的例如有线LAN或者无线LAN等通信接口。The
另外,步行辅助装置120能够具备辅助控制部220、关节驱动部221、载荷传感器222以及角度传感器223。辅助控制部220例如为MPU,通过根据来自整体控制部210的指示执行控制程序来执行步行辅助装置120的控制。另外,辅助控制部220将步行辅助装置120的状态经由通信连接IF219、229向整体控制部210通知。另外,辅助控制部220接受来自整体控制部210的指令而执行步行辅助装置120的起动/停止等控制。In addition, the walking assist
关节驱动部221包括控制单元121的马达及其驱动电路。辅助控制部220通过向关节驱动部221发送驱动信号来以大腿框架122与小腿框架123绕铰接轴Ha相对打开或关闭的方式施力。通过这样的动作,来辅助膝的伸展动作以及屈曲动作、防止折膝。The
载荷传感器222如上述那样检测训练者900的脚底所承受的垂直载荷的大小与分布并将检测信号向辅助控制部220发送。辅助控制部220通过接受并解析检测信号来进行摆腿/立腿的状态判别、切换推断等。The
角度传感器223如上述那样检测大腿框架122与小腿框架123绕铰接轴Ha所成的角并将检测信号向辅助控制部220发送。辅助控制部220接受该检测信号并运算膝关节的打开角。The
输入输出单元231例如包括USB(Universal Serial Bus)接口,是用于与外部的设备(外部通信装置300、其他外部设备)连接的通信接口。整体控制部210的输入输出控制部210c经由输入输出单元231与外部的设备通信,进行上述的整体控制部210内的控制程序、辅助控制部220内的控制程序的改写、指令的接受、生成的复健数据的输出等。步行训练装置100通过输入输出控制部210c的控制来经由输入输出单元231以及外部通信装置300进行与服务器500的通信。例如,输入输出控制部210c能够进行经由输入输出单元231以及外部通信装置300将复健数据发送至服务器500的控制、接收来自服务器500的指令的控制。The input/
在需要针对训练工作人员901的通知的情形下,通知控制部210d通过控制显示控制部213或者另外设置的声音控制部等来从管理用监视器139或者另外设置的扬声器进行通知。关于该通知的详细将后述,但需要针对训练工作人员901通知的情形能够是从服务器500接收到用于进行通知的指令的情况。When notification to the
接下来,对服务器500的详细进行说明。Next, the details of the
如上所述,步行训练装置100经由外部通信装置300将各种复健数据向服务器500发送。服务器500能够构成为从多个步行训练装置100接收复健数据,由此能够收集许多复健数据。而且,服务器500是处理各种数据的处理装置。例如,服务器500能够作为使用收集到的复健数据进行机器学习并构建学习完毕模型的学习装置(学习系统)发挥功能。学习装置也能够是学习器。此外,学习装置还能够称为学习模型生成装置。As described above, the walking
图4是表示服务器500的一个构成例的框图。如图4所示,服务器500能够具备控制部510、通信IF514、数据蓄积部520以及模型存储部521。控制部510例如为MPU,通过执行从系统存储器读入的控制程序来执行服务器500的控制。控制部510能够具备后述的水平判定部510a、学习部510b以及响应处理部510c,该情况下,上述的控制程序包括用于实现这些部位510a~510c的功能的程序。FIG. 4 is a block diagram showing a configuration example of the
通信IF514例如包括有线LAN接口,是用于与网络400连接的通信接口。控制部510能够经由通信IF514接收来自步行训练装置100的复健数据,能够发送向步行训练装置100的指令。The communication IF 514 includes, for example, a wired LAN interface, and is a communication interface for connecting to the
数据蓄积部520例如具有HDD(hard disk drive)、SSD(solid state drive)等存储装置,存储复健数据。控制部510将经由通信IF514从外部通信装置300接收到的复健数据向数据蓄积部520写入。The
模型存储部521也具有HDD、SSD等存储装置。此外,数据蓄积部520与模型存储部521还能够具有共通的存储装置。模型存储部521存储未学习(还包括学习中的情况)的学习模型(以下,称为未学习模型)以及学习完毕的学习模型(以下,称为学习完毕模型)的至少一方。当服务器500作为学习装置发挥功能时,模型存储部521中至少存储有未学习模型。在服务器500与步行训练装置100配合来执行复健辅助处理的情况下,模型存储部521中至少存储有能够运用的学习完毕模型。The
另外,控制部510能够构成为进行对作为学习装置的功能与通过学习完毕模型进行复健辅助处理的功能加以切换的控制。不过,服务器500也能够按照在学习阶段使用的装置和在伴有学习完毕模型的运用阶段使用的装置进行分散。水平判定部510a以及学习部510b为了使服务器500作为学习装置发挥功能而设置,响应处理部510c为了使服务器500执行复健辅助处理的一部分而设置。In addition, the
(复健数据)(rehabilitation data)
这里,在对水平判定部510a、学习部510b、以及响应处理部510c进行说明之前,对服务器500为了学习或者为了复健辅助处理而能够收集的复健数据进行说明。服务器500能够收集的复健数据主要包括:(1)步行训练装置100的设定参数、(2)由设置于步行训练装置100的传感器等检测到的检测数据、(3)与训练者900相关的数据、(4)与训练工作人员901相关的数据。上述(1)~(4)的复健数据可以与取得时间日期建立对应地收集。并且,检测数据或者设定参数可以作为按照时间序列的日志数据来收集,或者,也可以是每隔一定的时间的对于数据提取的特征量等。Here, before describing the
复健数据主要是在步行训练装置100中通过操作输入、自动输入、传感器的测量等而获得的数据。另外,复健数据还能够包括由照相机140录像的录像数据。此外,复健数据能够是复健的每个实施日的数据,该情况下,还能够称为日报数据。以下,对服务器500收集由步行训练装置100生成的复健数据进行说明,但还能够构成为服务器500从步行训练装置100以外的例如其他服务器取得复健数据的一部分。这里所说的复健数据的一部分例如能够是训练者900的症状等上述(3)的详细数据、PT的经验年数等上述(4)的详细数据等。前者能够作为训练者900的病历信息储存于其他服务器,后者能够作为PT的履历书等储存储存于其他服务器。The rehabilitation data is mainly data obtained by operation input, automatic input, measurement of sensors, and the like in the
在学习阶段中,服务器500只要在复健数据的产生时或每1天、每1周等定期地从步行训练装置100接收复健数据即可。在学习阶段与运用阶段中,能够使所使用的复健数据的种类(复健数据所包含的内容)不同。例如,在运用阶段中,服务器500只要在训练开始时从步行训练装置100接收复健数据并在训练中接收上述(1)、(2)中的存在变更的数据即可。另外,步行训练装置100与服务器500中的任一个可以成为主体来执行复健数据的收发。In the learning phase, the
对上述(1)进行说明。The above (1) will be described.
上述(1)的数据能够与上述(2)的检测数据一同被定义为由步行训练装置100在复健实施中取得的训练者900的训练数据。The data of the above (1) can be defined together with the detection data of the above (2) as the training data of the
步行训练装置100的设定参数例如是为了设定步行训练装置100的动作而由操作人员输入的数据或者自动设定的数据。其中,如上所述,操作人员通常是在训练者900的训练中实际陪同的训练工作人员901,以下以操作人员是训练工作人员901为前提来进行说明。另外,由于训练工作人员901是物理治疗师(PT:Physical Therapist)的情况较多,所以以下还存在将训练工作人员901简称为“PT”的情况。The setting parameters of the walking
在步行训练装置100中,能够通过设定参数来调整步行训练的难易度。其中,设定参数还能够包含表示难易度的水平的参数,该情况下,伴随着该水平的变更,能够使其他设定参数中的一部分或者全部变更。随着训练者900的恢复推进,训练工作人员901逐渐提高步行训练的难易度。即,随着训练者900的步行能力变高,训练工作人员901减少步行训练装置100的辅助。另外,当在步行训练中看到异常的情况下,训练工作人员901增加辅助。通过训练工作人员901恰当地调整设定参数,训练者900能够实施恰当的步行训练,能够更高效地进行复健。In the
设定参数的具体例如以下所示。Specific examples of the setting parameters are shown below.
作为设定参数,例如能够举出部分体重免载量[%]、扶手130a的上下位置[cm]、扶手130a的左右位置[cm]、臀部接头的有无、踝关节跖屈限制[deg]、踝关节背屈限制[deg]等。另外,作为设定参数,例如还能够举出跑步机速度[km/h]、摆动辅助[水平]、摆动前后比[前/后]。另外,作为设定参数,例如还能够举出膝部伸展辅助[水平]、膝部屈曲角度[deg]、膝部屈伸时间[sec]、辅高[mm]、减重阈值[%]、载荷阈值[%]。另外,作为设定参数,例如还能够举出跑步机的带的倾斜[度]、步行辅助装置对关节的活动的辅助[水平]、使步行辅助装置对关节的活动的辅助或者摆动辅助产生的频度、步行的异常或者正常的判定条件(例如判定阈值)、跌倒或者要跌倒的判定条件(例如判定阈值)、在与步行的异常或者正常建立对应地进行报告的情况下其产生条件(产生频度、产生阈值等)。这里,报告可以是基于声音、振动、显示等任一个的报告,可以包括其一部分或者全部。此外,包括这里例示的设定参数在内,复健数据所包含的数据的单位是任意的。The setting parameters include, for example, partial body weight free weight [%], vertical position of armrest 130a [cm], horizontal position of armrest 130a [cm], presence or absence of hip joint, ankle plantar flexion restriction [deg] , Ankle dorsiflexion limit [deg] and so on. In addition, as setting parameters, for example, treadmill speed [km/h], swing assist [horizontal], and swing front-to-back ratio [front/rear] can also be mentioned. In addition, as setting parameters, for example, knee extension assistance [horizontal], knee flexion angle [deg], knee extension time [sec], auxiliary height [mm], weight loss threshold [%], load can also be mentioned. Threshold [%]. In addition, the setting parameters include, for example, the inclination [degree] of the belt of the treadmill, the assistance [horizontal] of the movement of the joint by the walking assist device, the assist of the movement of the joint by the walking assist device or the swing assist. Frequency, abnormal or normal walking judgment conditions (for example, judgment thresholds), fall or fall-like judgment conditions (for example, judgment thresholds), and when reports are made in accordance with abnormal or normal walking, its occurrence conditions (occurrence frequency, generation threshold, etc.). Here, the report may be based on any one of sound, vibration, display, etc., and may include a part or all of it. In addition, the unit of the data included in the rehabilitation data is arbitrary, including the setting parameters exemplified here.
部分体重免载量是通过保护带抻拉部112拉动保护带钢丝111而将训练者900的体重免载的比例。所希望的步行训练的难易度越高,则训练工作人员901将部分体重免载量设定为越低的值。扶手130a的上下位置以及左右位置是从扶手130a的基准位置起的调整量。臀部接头的有无是指是否安装有臀部接头。踝关节跖屈限制、踝关节背屈限制规定了小腿框架123与脚掌框架124能够绕铰接轴Hb转动的角度范围。踝关节跖屈限制与前侧的上限角度对应,踝关节背屈限制与后侧的最大角度对应。即,踝关节跖屈限制、踝关节背屈限制分别是使踝关节向降低脚尖的一侧、向提高脚尖的一侧弯曲的角度的限制值。训练工作人员901以所希望的步行训练的难易度越高则角度范围越大的方式来设定踝关节跖屈限制以及踝关节背屈限制的值。The partial body weight free weight is the ratio of the weight of the
跑步机速度是基于跑步机131的步行速度。所希望的步行训练的难易度越高,则训练工作人员901将跑步机速度设定为越高的值。摆动辅助是腿的摆动时与前侧钢丝134所赋予的抻拉力对应的程度,该程度越高,则最大抻拉力越大。所希望的步行训练的难易度越高,则训练工作人员901将摆动辅助设定为越低的程度。摆动前后比是在腿的摆动时前侧钢丝134的抻拉力与后侧钢丝136的抻拉力之比。The treadmill speed is based on the walking speed of the
膝部伸展辅助是为了防止立腿时折膝而施加的与关节驱动部221的驱动转矩对应的程度,该程度越高则驱动转矩越大。所希望的步行训练的难易度越高,则训练工作人员901将膝部伸展辅助设定为越低的程度。膝部屈曲角度是进行膝部伸展辅助时的角度。膝部屈伸时间是进行膝部伸展辅助的期间,若该值大,则以缓慢地使膝部屈伸的方式进行辅助,若该值小,则以使膝部快速屈伸的方式进行辅助。The knee extension assist is applied to the extent corresponding to the drive torque of the
辅高是在与训练者900的瘫痪腿相反侧的腿(不佩戴辅助器亦即步行辅助装置120一侧的腿)的鞋底设置的缓冲物等部件的高度。减重阈值是施加于脚底的载荷的阈值之一,若低于该阈值,则解除摆动辅助。载荷阈值是施加于脚底的载荷的阈值之一,若超过该阈值,则进行摆动辅助。这样,步行辅助装置120能够构成为可通过膝部屈曲角度、膝部屈伸时间、减重阈值以及载荷阈值这4个设定参数来调整该膝部的屈伸运动。The auxiliary height is the height of a component such as a cushion provided on the sole of the leg opposite to the paralyzed leg of the trainer 900 (the leg on the side not wearing the assist device, that is, the leg on the side of the walking assist device 120 ). The weight loss threshold is one of the thresholds of the load applied to the sole of the foot, and when the threshold is lower than the threshold, the swing assist is released. The load threshold is one of the thresholds of the load applied to the sole of the foot, and when the threshold is exceeded, the swing assist is performed. In this way, the
另外,步行训练装置100例如还能够构成为通过声音从未图示的扬声器向训练者以及/或者训练工作人员反馈载荷、角度等各种参数的设定值、目标值、目标的实现率、目标的实现时机等。上述的设定参数还能够包括关于这样的反馈声的有无、音量之类的设定的参数。In addition, the walking
除此之外,上述的设定参数也可以不是与训练直接有关的设定参数。例如,上述的设定参数还能够是为了使训练者900提高积极性而用于通过训练用监视器138、未图示的扬声器提供的图像、音乐、游戏的种类、游戏的难易度等设定值等。Besides, the above-mentioned setting parameters may not be directly related to training. For example, the above-mentioned setting parameters may be set for the
此外,上述的设定参数是一个例子,也可以存在这些以外的设定参数。或者,上述中的一部分设定参数可以不存在。另外,如上述那样,上述的设定参数是用于调整训练的难易度的参数较多,但也能够还包括与难易度无关的参数。例如,步行训练装置100能够构成为显示使训练用监视器138显示的注意唤起用的图标图像。而且,作为与难易度无关的设定参数,例如能够举出这样的注意唤起用的图标图像的大小、显示间隔等用于提高训练者900对训练的集中度的参数等。另外,上述的设定参数能够预先附加完成了该设定操作的时间日期等时间信息或者时间以外的时机信息(例如表示1个步行周期内的立腿期、摆腿期等的区别的信息)。In addition, the above-mentioned setting parameters are an example, and setting parameters other than these may exist. Alternatively, some of the above-mentioned setting parameters may not exist. In addition, as described above, the above-mentioned setting parameters are many parameters for adjusting the difficulty level of training, but may also include parameters irrelevant to the level of difficulty. For example, the walking
对上述(2)进行说明。The above (2) will be described.
上述(2)的检测数据能够与上述(1)的数据一同被定义为由步行训练装置100在复健实施中取得的训练者900的训练数据。The detection data of the above (2) can be defined together with the data of the above (1) as the training data of the
作为检测数据,主要能够举出传感器数据。传感器数据是由步行训练装置100的各种传感器检测出的传感器值。例如,传感器数据是由姿势传感器217检测出的躯干的倾斜角度、由扶手传感器218检测出的载荷、倾斜角度、由角度传感器223检测出的角度等。输出传感器数据的传感器是加速度传感器、角速度传感器、位置传感器、光传感器、转矩传感器、重量传感器等。另外,可以使用设置于前侧钢丝134、后侧钢丝136、保护带钢丝111的卷取机构等的马达的编码器作为传感器。并且,可以将马达的转矩传感器(测力元件)作为传感器,可以将对驱动马达的驱动电流值进行检测的电流检测部作为传感器。The detection data mainly includes sensor data. The sensor data are sensor values detected by various sensors of the walking
另外,传感器数据例如能够包括由检测视线的视线检测传感器取得的视线数据。同样的视线数据还能够基于拍摄了训练者900的至少眼睛的图像并通过图像处理检测视线来获得,或者还能够基于拍摄了训练者900的至少面部的图像来判定面部的朝向(朝上/朝下等)而获得。这样的数据也能够包括于上述的检测数据。另外,检测数据还能够是由取得训练者900或者训练工作人员901的声音的麦克风等声音取得部取得的声音数据、或声音解析了该声音数据的文本数据、或解析了该文本数据的数据。训练工作人员901的声音能够包括对训练者900的与走法的矫正等相关的呼喊。另外,传感器数据还能够是利用脑波仪检测了训练者900的脑波的数据,还能够是利用脑波仪检测了训练工作人员901的脑波的数据。In addition, the sensor data can include, for example, line-of-sight data acquired by a line-of-sight detection sensor that detects line-of-sight. The same line of sight data can also be obtained based on taking an image of at least the eyes of the
另外,视线检测传感器、拍摄上述图像的拍摄部、麦克等能够设置于步行训练装置100的主体侧,但也能够设置于例如用于供训练者900佩戴的眼镜型可穿戴终端。只要在该终端具备通过Bluetooth(注册商标)等无线通信方式对数据进行无线通信的无线通信部,并且在步行训练装置100侧也具备无线通信部即可。由此,步行训练装置100能够通过无线通信取得由可穿戴终端取得的数据。脑波仪限于检测精度良好的脑波仪,能够构成为设置于步行训练装置100的主体侧而能够将训练者900的脑波与训练工作人员901的脑波区别来进行检测。其中,优选将脑波仪设置为成为上述的眼镜型可穿戴终端(例如眼镜的镜腿的部分等)等接近检测对象者的位置。In addition, the sight line detection sensor, the imaging unit that captures the above-mentioned image, the microphone, etc. can be installed on the main body side of the walking
另外,传感器等取得检测数据的检测部并不局限于参照图1~图3说明的结构、或作为眼镜式可穿戴终端等而例示的结构。例如,能够使训练者900穿戴搭载了穿戴式生物体传感器以及/或者穿戴式触摸传感器的衣物。这里所说的衣物并不局限于穿戴于上半身的衣物,也可以是穿戴于下半身的衣物,还可以是上下成套的衣物,例如可以是背带110等穿戴于一部分的部件。另外,在衣物以及步行训练装置100具备上述那样的无线通信部。由此,步行训练装置100能够通过无线通信来取得由穿戴式生物体传感器、穿戴式触摸传感器取得的数据。穿戴式生物体传感器能够取得穿戴者的心率等重要(vital)数据。穿戴式触摸传感器能够取得表示穿戴者亦即训练者900被从外部触摸的信息、即训练工作人员901触摸训练者900的位置的信息的数据。In addition, the detection part which acquires detection data, such as a sensor, is not limited to the structure demonstrated with reference to FIGS. 1-3, or the structure exemplified as the glasses-type wearable terminal or the like. For example, the
另外,检测数据并不局限于各种传感器等检测到的检测信号所表示的值,也能够包括基于来自多个传感器的检测信号而计算出的值、统计处理来自1个或者多个传感器等的检测信号的统计值。作为该统计值,例如能够采用平均值、最大值、最小值、标准偏差值等各种统计值,另外,也可以是静态统计的统计值,例如可以是1天、1次训练、1个步行周期等一定期间内的动态统计的统计值。In addition, the detection data is not limited to values represented by detection signals detected by various sensors, etc., and may include values calculated based on detection signals from a plurality of sensors, statistical processing of data from one or a plurality of sensors, and the like. Statistical value of the detected signal. As the statistical value, various statistical values such as an average value, a maximum value, a minimum value, and a standard deviation value can be used, and a static statistical value may be used, for example, one day, one training session, and one walking session. Statistical value of dynamic statistics within a certain period such as cycle.
例如,传感器数据能够包括根据由角度传感器223检测出的大腿框架122与小腿框架123的角度而计算出的膝关节的打开角。并且,关于角度传感器的传感器数据能够包括将角度微分所得的角速度。关于加速度传感器的传感器数据可以是将加速度积分所得的速度、将加速度两次积分所得的位置。For example, the sensor data can include the opening angle of the knee joint calculated from the angle between the
例如,检测数据能够包括关于每日或者1日内的复健的每次实施的、如下那样的平均值、合计值、最大值、最小值、代表值。作为这里的平均值,能够举出平均速度(总步行距离/总步行时间)[km/h]、步距的平均值[cm]、表示每1分钟的步数(step)的步行率[steps/min]、步行PCI[拍/m]、跌倒规避帮助[%]等。平均速度例如能够是根据跑步机131的速度设定值而计算出的值、或根据跑步机驱动部211中的驱动信号而计算出的值。步距是指单侧的脚后跟接地至同侧的脚后跟下次再次接地为止的距离。PCI是指Physiological CostIndex(生理成本指数的临床指标),步行PCI表示步行时的能量效率。跌倒规避帮助[%]是指按每1个步数计算训练工作人员901对训练者900进行了跌倒规避帮助的次数亦即跌倒规避帮助[次]的比例、即按照每1个步数进行了跌倒规避帮助的比例。For example, the detection data can include an average value, a total value, a maximum value, a minimum value, and a representative value as follows for each exercise of rehabilitation on a daily or daily basis. Examples of the average value here include an average speed (total walking distance/total walking time) [km/h], an average value of step distances [cm], and a walking rate [steps] indicating the number of steps per minute (steps). /min], walking PCI [beats/m], fall avoidance assistance [%], etc. The average speed can be, for example, a value calculated from a speed setting value of the
另外,作为这里的合计值,能够举出步行时间[秒]、步行距离[m]、步数[steps]、跌倒规避帮助[次]、跌倒规避帮助部位以及每个部位的次数[次]等。In addition, as the total value here, walking time [seconds], walking distance [m], number of steps [steps], fall avoidance assistance [times], fall avoidance assistance parts, and the number of times for each part [times], etc. .
另外,作为这里的最大值或者最小值,能够举出连续步行时间[秒]、连续步行距离[m]、连续步数[steps]等的最大值、最小值、步行PCI[拍/m]的最小值(换言之,每1拍能够步行的距离的最长值)等。作为代表值,能够举出作为跑步机131的速度而最多使用的值(代表速度[km/h])等。In addition, as the maximum value or the minimum value here, the maximum value and the minimum value of the continuous walking time [second], the continuous walking distance [m], the number of continuous steps [steps], the maximum value and the minimum value of the walking PCI [beat/m] can be mentioned. The minimum value (in other words, the longest value of the walkable distance per beat), etc. As a representative value, the value most used as the speed of the treadmill 131 (representative speed [km/h]), etc. can be mentioned.
这样,检测数据能够包括从各种传感器等检测部直接或者间接供给的数据。另外,上述的检测数据能够预先附加完成该检测的时间日期等时间信息或者时间以外的时机信息。In this way, the detection data can include data directly or indirectly supplied from detection units such as various sensors. In addition, time information such as the date and time when the detection was completed, or timing information other than time can be added to the above-mentioned detection data in advance.
此外,上述的检测数据是一个例子,也可以存在除此以外的检测数据。或者,上述中的一部分检测数据也可以不存在。即,在采用检测数据作为复健数据的情况下,服务器500只要收集一个以上检测数据即可。In addition, the above-mentioned detection data is an example, and other detection data may exist. Alternatively, some of the above-mentioned detection data may not exist. That is, when the detection data is used as the rehabilitation data, the
对上述(3)进行说明。The above (3) will be described.
与训练者900相关的数据(以下,称为训练者数据)例如表示训练者900的属性等。训练者数据能够以训练者900的年龄、性别、体格(身高、体重等)为代表而包括症状信息、Br.Stage、SIAS、初始步行FIM、最新的步行FIM等。另外,训练者数据能够包含训练者900的姓名或者ID,另外,还能够包含表示训练者900的喜好的嗜好信息、表示性格的性格信息等。另外,训练者数据能够包含步行能力所涉及的项目以外的运动项目作为FIM,另外,还能够包含认知项目。即,训练者数据能够包含表示训练者900的身体能力的各种数据。其中,训练者数据的一部分或者全部还能够称为身体信息、基本信息或训练者特征信息等。Data related to the trainer 900 (hereinafter, referred to as trainer data) indicates, for example, attributes of the
这里,症状信息能够包含表示初始症状、其发病时期、当前的症状的信息,能够理解为训练者900主要因这里所包含的症状而需要复健。但是,症状信息也能够包含与复健无直接关系的症状。另外,在症状信息中能够与中风(脑血管病)、脊髄损伤等罹患的疾病的类型(病名或者疾病名)一同包含其部位(损伤部位),能够根据类型不同而包含其分类。例如,中风能够分类为脑梗塞、头盖内出血(脑出血/蛛网膜下出血)等。Here, the symptom information can include information indicating the initial symptom, its onset time, and the current symptom, and it can be understood that the
Br.Stage是指Brunnstrom Recovery Stage,针对偏瘫的恢复过程,根据观察将其恢复阶段分为6个阶段。训练者数据能够包括Br.stage中的与步行训练装置100有关的主要项目亦即下肢项目。SIAS是指Stroke Impairment Assessment Set,是综合地评价中风的功能障碍的指标。SIAS能够包括髋屈曲测试(Hip-Flex)、膝部伸展测试(Knee-Ext)、脚底板测试(Foot-Pat)。另外,SIAS能够包括下肢触觉(TouchL/E)、下肢位置感(PositionL/E)、腹肌力(Abdominal)、以及垂直性测试(Verticality)。Br.Stage refers to Brunnstrom Recovery Stage, aiming at the recovery process of hemiplegia. According to the observation, the recovery stage is divided into 6 stages. The trainer data can include the main item related to the
FIM(Functional Independence Measure:功能独立性评价表)决定了评价ADL(Activities of Daily Life)的评价方法之一。在FIM中,根据帮助量而以1分~7分这7个阶段进行评价。FIM (Functional Independence Measure: Functional Independence Scale) determines one of the evaluation methods for evaluating ADL (Activities of Daily Life). In FIM, evaluation is performed on seven stages of 1 to 7 points according to the amount of assistance.
例如,步行FIM成为表示恢复度的通用的指标。在无帮助者且无背带(辅助器)能够步行50m以上的情况下,成为最高分的7分,在一个帮助者如何帮助也只能步行小于15m的情况下,成为最低分的1分。另外,在以最小帮助(帮助量为25%以下)能够移动50m的情况下,成为4分,在以中等程度帮助(帮助量25%以上)能够移动50m的情况下,成为3分。因此,随着恢复进展,训练者900的步行FIM逐渐变高。此外,进行步行FIM的评价的情况下的步行距离并不局限于50m,例如还存在15m的情况。For example, the walking FIM is a general indicator showing the degree of recovery. If a person can walk more than 50m without a helper and without a harness (assistant), it becomes the highest score of 7 points, and if a helper can only walk less than 15m, it becomes the lowest score of 1 point. In addition, when the movement of 50 m was possible with minimal assistance (the amount of assistance was 25% or less), it was awarded 4 points, and when the movement of 50 m was possible with the medium level of assistance (the amount of assistance was 25% or more), it was awarded 3 points. Thus, the walking FIM of the
由此也可知,由步行训练装置100管理的最新的步行FIM不仅是表示训练者900的身体能力的指标,还是表示从复健开始时刻起的训练者900的恢复度的指标。步行FIM成为表示不使用促动器的情况下的训练者900的动作能力、即步行能力的指标。换言之,在知晓训练者900的复健的进展状况的方面,步行FIM成为重要的指标。另外,从初始步行FIM向最新的步行FIM的变化量或者变化速度也成为表示恢复度的指标。变化速度还能够称为FIM效率,例如能够是将到现在为止的FIM的增益(变化量)除以复健的实施天数、表示复健的期间的经过天数、或训练者900为入院患者的情况下的入院天数等期间所得的值。From this, it can be seen that the latest walking FIM managed by the walking
另外,步行FIM能够理解为穿戴了辅助器的情况等的评价时的条件下的分数,该情况下,还能够将表示该评价时所应用的条件的信息附加至表示步行FIM的信息。条件能够包含取得该信息时的辅高、所使用的背带(例如步行辅助装置120、其他步行辅助装置、无背带等)、该背带中的膝部、脚踝的部位的角度设定等设定、平地步行还是斜面步行等。另外,通常步行FIM是平地步行下的步行FIM,表示其的平地步行信息中还能够包含平地步行评价时步行最远的距离(最大连续步行距离[m])等信息。In addition, the walking FIM can be understood as a score under evaluation conditions such as wearing an assist device, and in this case, information indicating the conditions applied during the evaluation can be added to the information indicating the walking FIM. The conditions can include settings such as the auxiliary height when the information is acquired, the harness used (for example, the
这样,上述(3)的训练者数据能够包括关于训练者900利用步行训练装置100执行的复健的、包括训练者900的症状、身体能力以及恢复度的至少一个的指标数据。此外,对于最新的步行FIM等身体能力以及恢复度双方的概念所能包含的数据而言,通常只要包含于一方即可,但也能够包含于两方。此外,同样的情况对于复健数据的全部项目而言,某个项目的数据能够视为上述(1)~(4)中的任一个或者多个数据。另外,上述的训练者数据能够预先附加步行FIM的测定时间日期等取得其的时间日期等时间信息。In this way, the trainer data of (3) above can include index data including at least one of symptoms, physical ability, and degree of recovery of the
对上述(4)进行说明。The above (4) will be described.
与训练工作人员901相关的数据(以下,称为工作人员数据)例如表示训练工作人员901的属性等。工作人员数据是训练工作人员901的姓名、ID、年龄、性别、体格(身高、体重等)、所属的医院名、作为PT或者医师的经验年数等。工作人员数据能够包含将帮助训练者900的时间数值化的值作为与帮助者相关的数据。Data related to the training staff 901 (hereinafter, referred to as staff data) indicates, for example, attributes of the
另外,在多个训练工作人员同时帮助复健的情况下,复健数据能够包含多人的工作人员数据。另外,各工作人员数据能够还包含表示是主要的训练工作人员、还是辅助的训练工作人员的信息。各工作人员数据能够除了包括这样的信息之外、或者也可以代替这样的信息而包括表示是否是进行管理用监视器139中的设定操作、图像的确认的训练工作人员、或者是否是仅起到用手支承训练者900的作用的训练工作人员的信息等。In addition, in the case of multiple training workers assisting in rehabilitation at the same time, the rehabilitation data can include data of multiple workers. In addition, each worker data may further include information indicating whether it is a main training worker or an auxiliary training worker. In addition to or instead of such information, each worker data may include a training worker indicating whether the setting operation on the management monitor 139 or the confirmation of the image is performed, or whether it is only a starter. Information and the like to the training staff who support the role of the
另外,优选步行训练装置100构成为能够输入对训练者900的复健计划。而且,这样输入的复健计划的数据也能够作为与作为其输入者的训练工作人员901相关的工作人员数据或属于其他分类的复健数据而包含。另外,为了能够应对训练工作人员901的变更,优选步行训练装置100构成为能够输入今后的对该训练者900的训练进行辅助时的注意事项、转告事项。而且,这样输入的数据也能够作为与作为其输入者的训练工作人员901相关的工作人员数据或属于其他分类的复健数据而包含。Moreover, it is preferable that the walking
使复健数据包含这些数据的理由是也可能存在某个训练工作人员正因为存在来自熟练的其他训练工作人员的注意事项、转告事项才能够顺利地推行训练者900的训练这一情形。另外,上述的工作人员数据例如能够预先附加复健计划的输入时间日期等完成该输入的时间日期等时间信息。The reason why these data are included in the rehabilitation data is that there may be a case where a certain training worker can successfully carry out the training of the
(学习阶段)(Learning phase)
接下来,一并参照图5对服务器500的控制部510的学习阶段(学习时期)中的处理进行说明。图5是用于对服务器500中的学习处理的一个例子进行说明的流程图。Next, processing in the learning phase (learning period) of the
控制部510对上述那样的复健数据所包含的信息中的一部分或者全部实施前处理,使用处理后的数据进行机器学习,从未学习模型构建学习完毕模型。水平判定部510a执行前处理(准备处理),学习部510b执行机器学习。但是,控制部510还能够构成为一并执行水平判定部510a中的处理以外的前处理。The
首先,服务器500的控制部510准备多个用于学习(实际为其前处理)的数据的集合。因此,控制部510例如准备在规定的期间内收集到的第1复健数据作为1组学习数据。例如,可以准备在1次步行训练或者步行训练的1次实施中收集到的第1复健数据作为1组学习数据。此外,在以下的说明中,将1组学习数据亦称为数据组。第1复健数据是与在训练者900利用步行训练装置100并根据需要被训练工作人员901帮助的同时执行的复健相关的数据。First, the
其中,1次步行训练是一个训练者900所进行的一系列训练,若1次步行训练结束,则下一训练者900在步行训练装置100中进行训练。1次步行训练通常为20分钟~60分钟左右。步行训练的1次实施是1次步行训练中训练者900持续步行的1个单位。1次步行训练包括多次实施。例如,1次实施为5分钟左右。具体而言,在1次步行训练中,训练者900在进行了5分钟的步行训练之后休息5分钟。即,在1次步行训练中,步行训练的实施与休息交替重复。休息与休息之间的5分钟成为1次实施的时间。当然,1次训练与1次实施的时间并不特别限定,能够针对每个训练者900恰当地设定。Among them, the one-time walking training is a series of training performed by one
另外,控制部510也可以准备在比1次实施短的期间收集到的第1复健数据作为学习数据,另外,也可以准备在比1次实施长的期间收集到的复健数据作为1组学习数据。In addition, the
而且,水平判定部510a输入这样准备的第1复健数据(步骤S1)。接下来,水平判定部510a基于被输入的第1复健数据来判定表示训练工作人员的评价(例如优秀度)的水平(步骤S2)。水平判定部510a可以说是甄别训练工作人员(例如优秀的训练工作人员)的甄别部。And the
水平判定部510a是输出表示训练工作人员的评价的程度的输出部(程度输出部)的一个例子,水平判定部510a的判定结果是来自程度输出部的输出结果的一个例子。即,水平能够是程度的一个例子,另外,虽然不特别说明,但与其他值相关的水平也同样能够是程度的一个例子。以下,举出水平判定部510a为例来对程度输出部进行说明。其中,程度输出部例如还能够是将计算基于训练工作人员的评价的指标值作为程度的一个例子并输出的部位。水平判定部510a例如能够根据这样的指标值判定表示训练工作人员的评价的水平并输出。The
上述的第1复健数据能够是上述的复健数据的一部分或者全部,至少包括工作人员数据的一部分与指标数据的一部分。换言之,第1复健数据相当于在学习的前处理阶段(水平判定阶段)使用的、至少包括工作人员数据以及指标数据的复健数据。The above-mentioned first rehabilitation data may be part or all of the above-mentioned rehabilitation data, and at least include a part of the staff data and a part of the index data. In other words, the first rehabilitation data corresponds to the rehabilitation data that is used in the preprocessing stage (level determination stage) of learning and includes at least staff data and index data.
如上述那样,工作人员数据是表示辅助训练者900的训练工作人员901的数据,例如能够包含训练工作人员901的姓名或者ID、表示所属的医院的信息。特别优选这里使用的工作人员数据包含用于确定训练工作人员901的姓名或者ID。如上述那样,指标数据是表示训练者900的恢复度的数据,例如能够包含步行FIM的FIM效率。As described above, the staff data is data indicating the
水平判定部510a能够根据规定的判定基准来进行判定。作为规定的判定基准,例如从FIM效率、步行速度、步行的稳定性等观点考虑,能够是满足以下的(a)~(d)条件中的1个或者多个的基准。但是,判定基准并不局限于此,作为最简单的例子能够举出经验年数。其中,FIM效率是表示训练者的恢复速度的值的一个例子。The
(a)对象的训练工作人员辅助过的全部训练者的FIM效率(例如,FIM变成6分以上为止的期间的长度等变得能够无帮助行走为止的期间)的平均值或者最大值为阈值以下。(a) The average or maximum value of the FIM efficiency (for example, the length of the period until the FIM becomes 6 minutes or more until it becomes possible to walk without assistance) of all the trainers assisted by the target training staff is the threshold value the following.
(b)对象的训练工作人员辅助过的全部训练者的步行速度的平均值或者最小值为阈值以上。或者,该步行速度的增加率为阈值以上。(b) The average or minimum value of the walking speed of all the trainers assisted by the target training staff is equal to or greater than the threshold value. Alternatively, the rate of increase of the walking speed is equal to or greater than the threshold value.
(c)对象的训练工作人员辅助过的全部训练者的平地步行(在跑步机131上的步行)中的异常步行的频度的平均值或者最大值为阈值以下。或者,该频度的降低率为阈值以上。(c) The average or maximum value of the frequency of abnormal walking in the flat ground walking (walking on the treadmill 131 ) of all the trainers assisted by the target training staff is equal to or less than the threshold value. Alternatively, the rate of decrease in the frequency is equal to or greater than the threshold value.
(d)对象的训练工作人员辅助过的全部训练者的步行的优美度的指标为阈值以上。其中,第1复健数据包含表示步行的优美度的指标。或者,该指标的增加率为阈值以上。(d) The index of the graceful walking of all the trainers assisted by the target training staff is equal to or greater than the threshold value. Here, the first rehabilitation data includes an index indicating the gracefulness of walking. Alternatively, the rate of increase for this metric is above a threshold.
在上述(a)~(d)中,均相对于水平数m准备由m-1个阈值构成的阈值组。另外,上述(a)~(d)的各阈值组是相互不同的阈值组。另外,在上述(a)~(d)中,对对象的训练工作人员辅助过的全部训练者的数据进行了阈值处理,但还能够对对象的训练工作人员辅助过的全部复健的数据进行阈值处理。由此,也能够考虑针对每1个训练者有2名以上训练工作人员同时或者在不同的期间进行辅助的情况。In each of the above (a) to (d), a threshold value group consisting of m−1 threshold values is prepared for the number of levels m. In addition, the respective threshold value groups of (a) to (d) described above are mutually different threshold value groups. In addition, in the above (a) to (d), the threshold processing is performed on the data of all the trainers assisted by the target training staff, but it is also possible to perform the threshold processing on all the rehabilitation data assisted by the target training staff. Thresholding. Accordingly, it is also conceivable that two or more training staff assist each trainer at the same time or during different periods.
另外,对于区别是训练工作人员作为主要的工作人员参与的复健还是作为辅助的工作人员参与复健的复健数据,也能够进行阈值处理。同样,对于区别是训练工作人员作为操作管理用监视器139的工作人员参与的复健还是作为进行帮助(用手支承)的工作人员参与的复健的复健数据,也能够进行阈值处理。In addition, threshold processing can also be performed for the rehabilitation data for distinguishing whether the training staff participates in the rehabilitation as a main staff member or as an auxiliary staff member in the rehabilitation. Similarly, it is also possible to perform threshold value processing on the rehabilitation data for distinguishing whether the training staff participates in rehabilitation as a staff member of the operation management monitor 139 or as a staff member providing assistance (hand support).
若举一个简单的例子,则水平判定部510a视为上述(a)~(d)均为水平数2并通过阈值处理求出是否是优秀的训练工作人员,能够将在3个以上条件下被判定为优秀的训练工作人员判定为是优秀的(规定水平以上)。另外,在更简单的例子中,水平判定部510a能够仅使用上述(a)作为条件并且采用2作为水平数,通过实施基于一个阈值判断是否是优秀的训练工作人员的阈值处理来判定优秀的工作人员。Taking a simple example, the
为了这样的判定,基本上需要预先区别训练工作人员。因此,为了区别训练工作人员,可以说优选如上所述工作人员数据包含姓名或者ID。此外,在工作人员数据不包含这种信息的情况下,例如还能够通过经验年数、年龄等其他信息来简要地区别训练工作人员。In order to make such a determination, it is basically necessary to discriminate and train workers in advance. Therefore, in order to distinguish training workers, it can be said that it is preferable that the worker data include names or IDs as described above. In addition, when the staff data does not include such information, the training staff can also be briefly distinguished by other information such as years of experience and age, for example.
特别优选水平判定部510a按训练者900的每个特征来判定上述水平。其中,该情况下,以第1复健数据以及后述的第2复健数据包含表示训练者900的特征的训练者数据为前提。训练者900的特征能够举出身高、体重、性别、疾病、症状等。由此,水平判定部510a例如能够按训练者900的每个性别来对于该性别的训练者分类能够称为优秀的训练工作人员。It is particularly preferable that the
特别优选该训练者数据包含表示训练者900的疾病(病名或者疾病名)以及症状的至少一方的症状数据。这是为了能根据训练者900的疾病、症状来预料产生训练工作人员的擅长、不擅长的情况。症状数据是记述了上述的症状信息的数据。特别在步行训练的情况下,作为该症状数据所包含的症状,例如能够举出躯干后方移动、躯干前倾、躯干患病侧移动、膝关节屈曲、脚尖离地困难、摆腿保持困难、躯干后倾、骨盆后退、下肢前倾、膝关节伸展、膝关节屈曲位、摆动。另外,作为该症状数据所包含的症状,例如还能够举出躯干健康侧移动、踮脚、骨盆举高、髋关节外旋、环动(circumduction)、内侧绊腿(medial whip)。由此,水平判定部510a能够按训练者900的每个疾病、症状来对于该疾病、症状的训练者分类可称为优秀的训练工作人员。It is particularly preferable that the trainer data include symptom data indicating at least one of the disease (disease name or disease name) and the symptom of the
另外,水平判定部510a还能够构成为按训练者900的初始FIM等指标数据所表示的每个值来判定上述水平。由此,水平判定部510a能够按指标数据所表示的每个值来对于具有各值的训练者分类可称为优秀的训练工作人员。In addition, the
学习部510b将与水平判定部510a中的判定的结果是判定为规定水平以上的训练工作人员(即一定以上优秀的训练工作人员)对应的第2复健数据作为教导数据来生成(构建)学习完毕模型。第2复健数据至少包括表示训练工作人员以辅助训练者为目的执行了的辅助行动的行动数据。由学习部510b生成的学习完毕模型是被输入这样的第2复健数据、输出用于启示训练工作人员的接下来行动(接下来辅助行动)的行动数据的模型。对这样的学习完毕模型的生成进行说明。The
这里,利用学习部510b学习的未学习模型的种类、其算法是任意的,作为算法,能够使用神经网络,特别优选使用将隐藏层多层化的深层神经网络(DNN)。作为DNN,例如能够使用采用了误差反向传播法的多层感知器(MLP)等前馈(正向传播型)神经网络。此外,作为学习部510b这样使用的学习手法(第3实施方式中说明的学习部所使用的学习手法也同样),能够使用公知的算法,省略其详细的说明,简单进行说明。Here, the type of the unlearned model to be learned by the
这里,举出学习部510b生成使用了MLP的学习完毕模型的例子,对在学习部510b向未学习模型输入的输入参数、以及从未学习模型输出的输出参数的例子进行说明。输入参数分别与输入层的节点对应,输出参数分别与输出层的节点(即因变量)对应。此外,如上所述,未学习模型并不局限于完全的未学习的情况,也包括处于学习中的模型的情况,学习完毕模型是指能够运用的阶段的模型。Here, an example in which the
如上所述,第2复健数据至少包括行动数据。即,向未学习模型输入的输入参数包括上述的行动数据的一部分或者全部项目。这里,行动数据的项目是指表示辅助行动的项目。行动数据的项目例如能够是表示将某个设定参数设定为某个值的操作、将该设定参数设定为其他某个值的操作、用手支承训练者的腰的动作、用手支承训练者的肩的动作等各种辅助行动中的任一个行动的信息。As described above, the second rehabilitation data includes at least action data. That is, the input parameters input to the unlearned model include a part or all of the above-mentioned action data. Here, the item of the action data refers to an item indicating an auxiliary action. Items of the action data can be, for example, an operation indicating that a certain setting parameter is set to a certain value, an operation indicating that the setting parameter is set to another value, an action of supporting the trainer's waist with a hand, a hand Information on any of various auxiliary actions such as the action of supporting the trainer's shoulders.
未学习模型以及学习完毕模型由于是输出行动数据的模型,所以输出参数也包括行动数据的一部分或者全部项目。另外,由于向未学习模型的输入参数为2个以上,所以第2复健数据包括两种以上的项目的数据,学习完毕模型也同样。当然,第2复健数据中的行动数据以及作为输出参数的行动数据均能够包含表示多种辅助行动的每一个的项目。Since the unlearned model and the learned model are models that output action data, the output parameters also include some or all of the action data items. In addition, since there are two or more input parameters to the unlearned model, the second rehabilitation data includes data of two or more items, and the same is true for the learned model. Of course, both the action data in the second rehabilitation data and the action data as output parameters can include items representing each of a plurality of auxiliary actions.
从取得路径的观点对行动数据进行说明。行动数据是上述复健数据中的上述(2)的检测数据的一部分,例如能够包括表示训练者被训练工作人员从外部触摸的信息的数据。另外,行动数据还能够包含由训练工作人员设定于步行训练装置100的上述(1)的设定参数、从录像数据提取训练工作人员的行动所得到的数据。此外,行动数据所包含的设定参数还能够包含根据默认值等自动设定的设定参数,特别优选包括继承上次实施时的设定内容而被自动设定的设定参数。The action data will be described from the viewpoint of the acquisition route. The action data is a part of the detection data of the above-mentioned (2) in the above-mentioned rehabilitation data, and can include, for example, data indicating that the trainer is touched by the training staff from the outside. In addition, the action data may include the setting parameters of the above (1) set in the walking
如上所述,学习部510b将与被判定为规定水平以上的训练工作人员对应的第2复健数据作为教导数据来生成学习完毕模型。因此,紧接着步骤S2,学习部510b选择规定水平以上的训练工作人员涉及的第2复健数据作为教导数据(步骤S3)。As described above, the
因此,水平判定部510a或者学习部510b能够构成为对于规定水平以上的训练工作人员的第2复健数据自动地赋予相同的正确答案标签。或者,水平判定部510a或者学习部510b能够构成为对于规定水平以上的训练工作人员的第2复健数据自动地赋予与水平对应的正确答案标签。举出使用全部10个水平中的水平为7以上的训练工作人员的第2复健数据作为教导数据的情况为例。该情况下,例如针对最优秀的水平为10的训练工作人员所涉及的第2复健数据,正确答案标签(正确答案变量)能够被赋予为“1.0”。而且,例如针对水平9、8、7的各个训练工作人员所涉及的第2复健数据,正确答案变量能够分别被赋予为“0.9”、“0.8”、“0.7”。这样,判定出的水平越高,则能够赋予越有助于学习模型的构建(权重系数、阈值的变更)那样的值的正确答案变量。Therefore, the
此外,以小于规定水平的训练工作人员的第2复健数据在学习中不使用为前提进行了说明,但也能够通过将关于成为正确答案的输出参数的正确答案变量设为“0”等赋予表示非正确答案的标签,来进行使用。可以说这样的小于规定水平的训练工作人员的第2复健数据的使用相当于作为反面教导数据的使用。另外,还能够通过和与水平对应的正确答案标签的赋予同样的想法来赋予与水平对应的非正确答案标签。在上述例子的情况下,例如针对水平为4、1的各个训练工作人员所涉及的第2复健数据,成为正确答案的输出参数的正确答案变量能够分别被赋予为“0.4”、“0.1”。此外,正确答案标签等还能够通过手动赋予。In addition, the explanation has been made on the premise that the second rehabilitation data of the training staff below the predetermined level is not used for learning, but it can also be given by setting the correct answer variable of the output parameter to be the correct answer to "0" or the like. Labels that indicate incorrect answers are used. It can be said that the use of the second rehabilitation data of the training staff below the predetermined level corresponds to the use of the negative teaching data. In addition, it is also possible to assign incorrect answer labels corresponding to levels in the same way as assigning correct answer labels corresponding to levels. In the case of the above example, for example, for the second rehabilitation data related to each training worker whose level is 4 and 1, the correct answer variable that becomes the output parameter of the correct answer can be assigned to "0.4" and "0.1", respectively. . In addition, correct answer labels and the like can also be assigned manually.
而且,学习部510b将选择出的教导数据输入至未学习模型,生成学习完毕模型(步骤S4)。在使用MLP那样的正向传播型神经网络的情况下,学习部510b能够输入复健开始时、复健中的各时刻的数据组作为1个数据组。其中,学习部510b能够将针对规定时间统计出的数据组作为1个数据组并按每个规定期间输入。或者,学习部510b还能够将从各时刻起针对规定期间(比单位时间长的期间)统计出的数据组作为1个数据组来按每个时刻输入。另外,在任何情况下,1个数据组均能够是针对1步、1个步行周期等一定期间实施了统计的数据组,该情况下,能够是在上述一定期间的每个开始输入的数据组。Then, the
在生成学习完毕模型时,学习部510b针对有多组的教导数据分别向未学习模型输入恰当的次数。例如,利用教导数据的一部分的组(学习的训练数据)生成学习完毕模型,使用剩余的组作为测试数据来检查该学习完毕模型的精度。对于检查的结果而言,若精度良好则保持原状安装,若精度差则变更前处理,或者在进行调整等执行了处理之后再次进行学习完毕模型的生成、评价。此外,也能够准备用于检查精度的评价数据和用于测试最终的精度的测试数据两方。另外,能够根据生成学习完毕模型时被输入的数据组的项目来生成反映了该项目的学习完毕模型。When generating the learned model, the
另外,成为调整的对象的超级参数是任意的。作为上述对象,例如能够举出神经网络的层数、各层的单元数(节点数)、使用了相同的数据组的反复学习的次数(轮数(numberof epochs))、一次转给模型的输入数据的数(批量大小)。另外,作为上述对象,例如还能够举出学习系数、激活函数的种类等。此外,学习系数还被称为学习率,能够是决定一次何种程度改变各层的权重的值。In addition, the hyperparameter to be adjusted is arbitrary. The above-mentioned objects include, for example, the number of layers of the neural network, the number of units (nodes) in each layer, the number of repetitions of learning using the same data set (number of epochs), and the input to the model at a time. The number of data (batch size). In addition, as the above-mentioned objects, for example, learning coefficients, types of activation functions, and the like can also be mentioned. In addition, the learning coefficient is also called a learning rate, and can be a value that determines how much to change the weight of each layer at a time.
通过以上那样的处理,能够构建输出对基于当前的状态应该启示的辅助行动进行表示的行动数据的学习完毕模型。而且,只要各输出参数分别与行动数据中的进行启示的项目建立关联即可。由此,如后述那样,在利用了该学习完毕模型的步行训练装置100中,能够将所取得的数据作为输入参数、输出表示应该启示的辅助行动的行动数据来向训练工作人员启示该辅助行动。Through the above processing, it is possible to construct a learned model that outputs action data representing auxiliary actions to be revealed based on the current state. Furthermore, each output parameter only needs to be associated with an item to be revealed in the action data, respectively. As a result, as will be described later, in the
另外,优选第2复健数据包括指标数据以及工作人员数据的至少一方。由此,能够根据训练工作人员的水平,或者根据训练者的指标数据的值(例如FIM效率等)而使进行启示的内容不同。In addition, it is preferable that the second rehabilitation data include at least one of index data and staff data. Thereby, it is possible to vary the content of the enlightenment according to the level of the training staff or according to the value of the index data of the trainer (for example, FIM efficiency, etc.).
另外,优选行动数据包括帮助执行数据以及设定操作数据中的至少一方。帮助执行数据是表示对于训练者的帮助动作的数据,能够将训练工作人员通过徒手帮助等帮助了训练者的数据作为从传感器、图像处理等检测到的数据。In addition, it is preferable that the action data includes at least one of assist execution data and setting operation data. The assisting execution data is data representing assisting actions for the trainer, and data in which the trainer assists the trainer by assisting with bare hands or the like can be used as data detected from sensors, image processing, and the like.
另外,设定操作数据是表示变更了步行训练装置100中的设定值的操作的数据,换言之,成为表示设定值的用法的数据。设定操作数据例如能够包含从在管理用监视器139打开设定画面起至完成该设定操作或全部的设定操作为止所需的时间等表示操作的熟练度(设定操作涉及的熟练度)的数据。这是因为根据操作的熟练度能够在某种程度上猜测出该训练工作人员是否经验丰富。此外,在操作受理部212中,虽然无法判定操作是由训练工作人员901进行的还是由训练者900进行的,但在是指定了训练工作人员901的复健的情况下,只要视为是由该训练工作人员901进行的操作来处理即可。当然,还能够构成为根据由照相机140拍摄到的拍摄数据来判定操作者是训练工作人员901还是训练者900。In addition, the setting operation data is data showing the operation of changing the setting value in the walking
从这些例子也可知,第2复健数据所包含的项目能够与第1复健数据所包含的项目相同。但是,第2复健数据还能够从第1复健数据剔除例如训练工作人员的姓名或者ID等一部分项目。As can be seen from these examples, the items included in the second rehabilitation data can be the same as the items included in the first rehabilitation data. However, the second rehabilitation data can also exclude some items such as the name and ID of the training staff from the first rehabilitation data.
接下来,对其他种类的学习模型进行例示。一部分的第2复健数据还能够作为图像数据输入至CNN(Convolutional Neural Network)中的包括卷积层以及池化层那样的特征提取部。作为图像数据,例如能够举出表示10步量的COP的轨迹的图像数据等。在设置了这样的特征提取部的情况下,还能够使在此提取到特征的结果与其他输入参数并列输入至所有连接层。Next, other kinds of learning models are exemplified. A part of the second rehabilitation data can also be input as image data to a feature extraction unit including a convolutional layer and a pooling layer in a CNN (Convolutional Neural Network). As the image data, for example, image data showing the trajectory of the COP for 10 steps, etc. can be mentioned. When such a feature extraction unit is provided, it is also possible to input the result of the feature extraction here and other input parameters to all the connection layers in parallel.
另外,作为神经网络,例如还能够使用具有RNN(Recurrent Neural Network)等递归构造的神经网络。另外,RNN还能够是扩展成具有LSTM(Long short-term memory)区块的神经网络(亦存在简称为LSTM的情况)。在使用具有RNN那样的递归模型的情况下,例如为了学习部510b依次输入1次实施中的各时刻的第2复健数据,1个数据组可以包含检测数据等时间序列数据。即,1个数据组(学习用数据组)可以包括按照时间序列的日志数据。另外,1个数据组也可以包含如上所述从日志数据提取出的特征量,也可以包括对时间序列的检测数据进行数据处理而获得的图像数据。In addition, as the neural network, for example, a neural network having a recursive structure such as RNN (Recurrent Neural Network) can also be used. In addition, the RNN can also be extended into a neural network with LSTM (Long short-term memory) blocks (there is also a case where it is referred to as LSTM for short). When using a recursive model such as an RNN, one data group may include time-series data such as detection data, for example, in order for the
另外,在使用具有RNN那样的递归模型的情况下,学习部510b例如也能够将针对规定时间统计出的数据组作为1个数据组并按每个规定期间输入。或者,在使用递归模型的情况下,学习部510b还能够将从各时刻起针对规定期间(比单位时间长的期间)统计出的数据组作为1个数据组并按每个时刻输入。另外,1个数据组还能够是针对1步、1个步行周期等一定期间实施了统计的数据组,该情况下,能够是在上述一定期间的每个开始输入的数据组。此外,这样的统计处理的范畴能够还包括上述的对时间序列的检测数据进行数据处理来获得图像数据的处理。In addition, when using a recursive model such as an RNN, the
由此,能够基于当前与稍前的过去的状态来构建适时输出仅通过从上述规定时间等1个数据组的期间与保存步骤数获得的期间而从过去预测的、表示当前应该启示的辅助行动的行动数据的学习完毕模型。而且,如后述那样,在利用了该学习完毕模型的步行训练装置100中,将在复健中取得的数据作为输入参数依次输入,能够在需要启示的情形下输出对预测为应该启示的辅助行动进行表示的行动数据。即,在步行训练装置100中,能够向训练工作人员启示预测为应该启示的辅助行动。As a result, it is possible to construct timely output based on the current and previous past states, and to timely output only the period obtained from the period of one data group such as the above-mentioned predetermined time and the period obtained from the number of storage steps, indicating that the auxiliary action to be revealed at the present, which is predicted from the past, can be constructed. The learned model of the action data. Furthermore, as will be described later, in the
从这些例子亦可知,通常,上述第2复健数据所包含的项目以及/或者时间范围根据在学习部510b使用的学习模型而不同。As can be seen from these examples, generally, the items and/or time ranges included in the second rehabilitation data described above differ depending on the learning model used in the
另外,输出参数中的m个(m为正整数)输出参数例如还能够是针对上述(1)的设定参数的1个而存在的m个设定值。同样,输出参数中的l个(l为正整数)输出参数例如还能够是针对上述(2)的检测数据的一个而存在的l个检测时机或者检测位置等。In addition, m output parameters (m is a positive integer) among the output parameters may be, for example, m setting values that exist for one of the setting parameters of the above (1). Similarly, one (1 is a positive integer) output parameter among the output parameters may be, for example, one detection timing or detection position that exists for one of the detection data in (2) above.
在这些情况下,学习完毕模型的输出层的节点数增加。因此,能够按想要输出的每个设定参数或每个检测数据来构建学习完毕模型,还能够按想要输出的每个帮助位置来构建学习完毕模型等构建多个学习完毕模型。而且,通过预先在模型存储部521存储这些学习完毕模型,能够同时运用这些学习完毕模型。In these cases, the number of nodes in the output layer of the learned model increases. Therefore, a learned model can be constructed for each set parameter or detection data to be output, and a plurality of learned models can be constructed, such as a learned model for each help position to be output. Furthermore, by storing these learned models in the
另外,在以上的例子中,以学习装置具备水平判定部510a为前提进行了说明,学习装置还能够不具备水平判定部510a。该情况下,利用服务器500例示的学习装置只要具备取得部即可,该取得部取得基于第1复健数据的判定结果中的、判定出对训练工作人员901的评价进行表示的水平的判定结果。该取得部例如能够由通信IF514和对其进行控制的控制部510内(例如响应处理部510c内)的取得控制部构成。该取得部能够采用从设置于PC、步行训练装置100等外部装置的水平判定部取得判定结果的结构。或者,例如只要人在PC等中使用表计算应用软件并基于第1复健数据来计算水平即可。这种情况下的取得部能够成为将其计算出的结果(判定结果)作为输入数据来输入的结构。In addition, in the above example, it was demonstrated on the premise that the learning apparatus includes the
另外,说明了学习部510b将与被判定为是规定水平以上的训练工作人员对应的第2复健数据作为教导数据来生成学习完毕模型的情况。由此,能够生成考虑了规定水平以上的训练助理的行动的学习完毕模型。Moreover, the case where the
另一方面,作为其代替处理,还能够构成为无论是否为规定水平以上均进行学习。例如,学习部510b还能够将基于判定结果而加标签的多个水平和与上述多个水平的各个对应的工作人员数据建立了关联的第2复健数据作为教导数据,来生成学习模型。这里的建立关联的处理相当于前处理。上述多个水平只要是被判定的全部水平中的一部分的多个水平即可,但也可以是全部的水平。通过使用这样的教导数据,能够生成按每个水平考虑了训练工作人员的行动的学习完毕模型。On the other hand, as an alternative process, it is also possible to configure learning to be performed regardless of whether or not the level is equal to or higher than a predetermined level. For example, the
换言之,在上述代替处理中,首先,对每个训练工作人员(即按每个工作人员数据)预先加上针对训练工作人员判定出的水平的标签。接下来,学习部510b使用第2复健数据(除工作人员数据以外)与工作人员数据、即使用包括工作人员数据的第2复健数据来与加了标签的水平建立关联地学习第2复健数据所包括的行动数据。In other words, in the above-described substitution processing, first, a label of the level determined for the training worker is preliminarily added to each training worker (that is, for each worker data). Next, the
例如,训练工作人员的优秀度越高,则标记为水平越高,以越是水平高的标签、则学习中的权重越高的方式进行学习的建立关联。若举出更具体的例子,则与使用规定水平以上的训练工作人员的第2复健数据的情况下的一个例子同样,能够通过判定出的水平越高、则越赋予有助于学习模型的构建(权重系数、阈值的变更)那样的值的正确答案变量来实现。但是,在上述代替处理中,所使用的第2复健数据并不局限于规定水平以上的训练工作人员的数据,只要是预先决定的多个水平(优选为连续的多个水平)的训练工作人员的数据即可。For example, the higher the degree of excellence of the training staff, the higher the level is marked, and the higher the level of the label, the higher the weight in learning is associated with learning. If a more specific example is given, similar to an example in the case of using the second rehabilitation data of the training staff of a predetermined level or higher, the higher the level that can be determined, the more helpful the learning model will be given. It is realized by constructing a correct answer variable with a value such as (change of weight coefficient and threshold). However, in the above-mentioned alternative processing, the second rehabilitation data to be used is not limited to the data for training workers at a predetermined level or higher, as long as it is training work of a plurality of predetermined levels (preferably a plurality of consecutive levels). personnel data.
如以上利用基于规定水平的阈值处理、上述代替处理例示那样,学习部510b将基于判定结果进行了前处理后的第2复健数据作为教导数据,来生成学习模型。此外,这里的前处理并不局限于上述那样的基于规定水平的阈值处理、按水平的建立关联的处理,例如也可以仅将判定结果与第2复健数据建立关联。在任何情况下,均能够生成在训练者利用步行训练装置100执行复健时能够对于对此辅助的训练工作人员启示优选的行动的学习模型。The
(运用阶段)(operation stage)
接下来,对步行训练装置100以及服务器500在运用阶段(推论阶段)的处理进行说明。如上所述,步行训练装置100通过构成为能够访问学习完毕模型,由此能够利用该学习完毕模型。此外,学习完毕模型还能够称为学习完毕模块。在运用阶段,主要是步行训练装置100和与其网络连接的服务器500配合、即作为复健辅助系统来进行复健辅助处理。Next, the processing of the walking
为了运用上述那样的学习完毕模型,步行训练装置100能够具有如下的输出部以及通知部。该输出部将与训练者使用步行训练装置100进行的复健相关的第2复健数据作为向学习完毕模型的输入而输出,能够利用输入输出控制部210c以及输入输出单元231等来例示。上述的通知部将从学习完毕模型输出的行动数据通知给在复健中辅助训练者的训练工作人员,主要能够利用通知控制部210d、显示控制部213以及管理用监视器139(或声音控制部以及扬声器)等来例示。In order to use the learned model as described above, the walking
另一方面,在服务器500侧,响应处理部510c使存储于模型存储部521的学习完毕模型运转来进行响应处理。并且,服务器500具有将从上述的输出部输出的第2复健数据输入至学习完毕模型、并将来自学习完毕模型的输出向步行训练装置100输出的输入输出部。该输入输出部利用通信IF514等来例示。On the other hand, on the
具体而言,一并参照图6对包括服务器500的复健系统中的复健辅助处理的例子进行说明。图6是用于对服务器500中的复健辅助处理的一个例子进行说明的流程图。Specifically, an example of rehabilitation assistance processing in the rehabilitation system including the
首先,输入输出控制部210c将可能成为输入参数的所取得的数据(第2复健数据)经由输入输出单元231输出至服务器500。上述所取得的数据能够是在复健开始时取得的数据,但也能够是在复健中的各时刻取得的数据。First, the input/
在经由通信IF514接收到该数据的情况下(在步骤S11中为是的情况下),服务器500的响应处理部510c开始响应处理。响应处理部510c解析接收到的数据并分为多个项目数据,将这些项目数据分别作为模型存储部521内的学习完毕模型中的输入层的输入参数的每一个而输出(步骤S12)。When the data is received via the communication IF 514 (in the case of YES in step S11 ), the response processing unit 510 c of the
响应处理部510c使学习完毕模型运转来执行运算,通过判定来自输出层的各输出参数,来对是否存在需要向训练工作人员启示(通知)的行动数据的项目(表示辅助行动的项目)的输出进行判定(步骤S13)。其中,输出参数的各个与通知对象的辅助行动的各个对应。另外,能够通过以针对各个预先准备的阈值(或者共通的阈值)对输出参数的值进行阈值处理来进行输出参数的判定。当然,在输出参数的值仅存在0与1这2个值那样的模型的情况下,只要判定是0还是1即可。The response processing unit 510c operates the learned model to perform computation, and determines whether each output parameter from the output layer has an item of action data (an item indicating an auxiliary action) that needs to be revealed (notified) to the training staff. A determination is made (step S13). Here, each of the output parameters corresponds to each of the auxiliary actions to be notified. In addition, the determination of the output parameter can be performed by subjecting the value of the output parameter to threshold processing with a threshold value (or a common threshold value) prepared in advance for each. Of course, in the case of a model in which only two values of 0 and 1 exist for the value of the output parameter, it is only necessary to determine whether it is 0 or 1.
当在步骤S13中为是的情况下,响应处理部510c将从学习完毕模型输出的表示需要通知的行动数据的信息(表示辅助行动的项目的信息)作为输出参数经由通信IF514返回至步行训练装置100侧(步骤S14)。返回的信息能够是向步行训练装置100的指令。当在步骤S13中为否的情况下,响应处理部510c不经由步骤S14而进入至后述的步骤S15。In the case of YES in step S13, the response processing unit 510c returns the information indicating the action data that needs to be notified (information indicating the item of auxiliary action) output from the learned model as an output parameter to the walking training device via the communication IF 514 100 side (step S14). The returned information can be an instruction to the
这样,在步骤S13、S14中,响应处理部510c使学习完毕模型运转来执行运算,针对来自输出层的输出参数中的作为需要启示那样的值而被输出的输出参数,生成与之对应的指令。另一方面,针对除此以外的参数,响应处理部510c不特别进行处理。即,根据运算结果不同,也存在响应处理部510c完全不输出指令的情况,这相当于不需要向训练工作人员启示(通知)的情形。其中,指令的生成例如能够通过从预先存储的指令组之中读出与输出参数对应的指令来进行。另外,指令可以仅对表示输出参数的信息(例如表示是输出层的第几个节点的信息)进行表示。响应处理部510c将生成的指令经由通信IF514发送至步行训练装置100侧。In this way, in steps S13 and S14, the response processing unit 510c operates the learned model to execute an operation, and generates a command corresponding to the output parameter that is output as a value that needs to be revealed among the output parameters from the output layer. . On the other hand, the response processing unit 510c does not particularly process the parameters other than the above. That is, depending on the calculation result, the response processing unit 510c may not output a command at all, and this corresponds to a case where there is no need to inform (notify) the training staff. Here, the generation of the command can be performed, for example, by reading out the command corresponding to the output parameter from a pre-stored command group. In addition, the instruction may only express information indicating output parameters (eg, information indicating how many nodes are in the output layer). The response processing unit 510c transmits the generated command to the
在步骤S14的处理后,响应处理部510c对第2复健数据的接收是否结束进行判定(步骤S15),在结束了的情况下结束处理,在未结束的情况下认为是复健继续中而返回至步骤S12。After the process of step S14, the response processing unit 510c judges whether or not the reception of the second rehabilitation data is completed (step S15). Return to step S12.
在步行训练装置100中,输入输出控制部210c接收在步骤S14中发送的指令,转给通知控制部210d。通知控制部210d对于显示控制部213或者未图示的声音控制部等进行与该指令对应的通知控制。在通知控制部210d中,只要存储与有可能从服务器500侧发送的指令组分别对应的通知控制即可。通知控制部210d使显示控制部213例如将用于使与指令对应的图像由管理用监视器139显示的显示控制信号输出至管理用监视器139。通知控制部210d使上述声音控制部例如将用于使与指令对应的声音从扬声器输出的声音控制信号输出至该扬声器。其中,徒手帮助的启示等一部分启示可以是基于对帮助的方法进行说明的图像、动态图像的显示的启示。In the
通过这样的处理,在步行训练装置100中,能够将所取得的数据作为输入参数、输出表示应该启示的辅助行动(优秀的训练工作人员进行过的辅助行动)的行动数据来向训练工作人员启示该辅助行动。即,在步行训练装置100中,通过这样的启示,能够建议接下来应该进行的辅助行动(设定、帮助等)。另外,由于学习完毕模型存在于服务器500,所以能够实现在多个步行训练装置100使用了共通的学习完毕模型的运用。Through such processing, the walking
若举出利用例,则例如步行训练装置100能够构成为将由在1次复健的开始前设定的设定参数构成的数据组输入至学习完毕模型、根据需要在每个复健的开始进行针对设定参数的启示。例如,步行训练装置100能够构成为使用由在上述规定期间或者上述一定期间的复健中获得的数据的统计值构成的数据组作为输入,并根据需要启示设定参数、预料为需要的徒手帮助。To give an example of use, for example, the walking
以上,以对于全部水平的训练工作人员进行输出以及通知为前提进行了说明。这是因为即便是优秀的训练工作人员也存在设定遗忘等,来防止这种情况。The above has been described on the premise that output and notification are performed to training staff of all levels. This is because even good training staff have settings forgetting etc. to prevent this.
另一方面,步行训练装置100还能够构成为仅对于需要通知那样的不能说优秀的训练工作人员901执行与通知相关的处理。具体而言,首先步行训练装置100能够具备指定部,该指定部利用姓名或者ID等来指定在复健中辅助训练者的训练工作人员901。该指定部例如能够利用具备触摸传感器的管理用监视器139来例示。而且,步行训练装置100除了具备指定部之外,还能够构成为可访问对由水平判定部510a判定出的水平进行存储的水平存储部。该水平存储部例如能够是整体控制部210内或者与整体控制部210连接的存储装置,也可以是服务器500的内部的存储装置。On the other hand, the walking
而且,对于步行训练装置100而言,在利用指定部指定的训练工作人员901不是规定水平以上的情况下,上述输出部输出第2复健数据,上述通知部进行通知。即,在辅助训练者900的训练工作人员901为规定水平以上的训练工作人员的情况下,该例子中的步行训练装置100不进行第2复健数据的输出,作为结果,不进行通知。由此,对于设想为不需要通知的训练工作人员不进行多余的通知。In addition, in the walking
这里,以基于规定水平的阈值处理为前提进行了说明。但是,并不局限于此,即便是上述代替处理那样的情况下,当利用指定部指定的训练工作人员901的水平是在学习完毕模型中作为教导数据使用的水平的情况下,步行训练装置100也只要进行输出、通知即可。Here, the description is made on the premise of threshold processing based on a predetermined level. However, it is not limited to this, and even in the case of the above-mentioned alternative processing, when the level of the
接下来,参照图7以及图8对上述那样的步行训练装置100中的向训练工作人员901启示的例子进行说明。图8是表示在图7的复健辅助处理中向训练工作人员提示的图像的一个例子的图,图9是表示这样的图像的其他例子的图。Next, with reference to FIG. 7 and FIG. 8, the example of notification to the
图7所示的GUI(Graphical User Interface)图像139a是在复健中显示于管理用监视器139的图像上重叠有弹出图像139b的图像。弹出图像139b在步行训练装置100从服务器500接收到进行将步行速度降低2个水平的启示的指令时显示。其中,被重叠弹出图像139b的对象的图像是在进行启示的时刻显示的图像,该图像包括的内容是任意的。A GUI (Graphical User Interface)
图8所示的GUI图像139c是在复健中显示于管理用监视器139的图像上重叠有弹出图像139d的图像。弹出图像139d在步行训练装置100从服务器500接收到进行将摆动辅助的水平提高1个水平的启示的指令时显示。其中,被重叠弹出图像139d的对象的图像是在进行启示的时刻显示的图像,该图像包括的内容是任意的。The
(效果)(Effect)
如以上那样,在本实施方式所涉及的学习装置中,作为准备处理,基于训练工作人员的水平区别对良好的训练工作人员所涉及的数据进行分类,使用良好的训练工作人员所涉及的数据作为输入来生成学习完毕模型。生成的学习完毕模型能够是根据需要输出良好的辅助行动(包括辅助水平的设定值的变更、搭话、徒手帮助等)的模型,另外,还能够是在需要的时机输出良好的辅助行动的模型。因此,根据本实施方式,能够构建可输出表示良好的辅助行动的信息、即能够对于训练工作人员启示优选的行动的学习完毕模型。As described above, in the learning apparatus according to the present embodiment, as the preparatory processing, the data related to the good training staff is classified based on the level distinction of the training staff, and the data related to the good training staff is used as the input to generate the learned model. The generated learned model can be a model that outputs good auxiliary actions (including changing the set value of the assist level, chatting, bare-handed assistance, etc.) as needed, and can also be a model that outputs good auxiliary actions when necessary. . Therefore, according to the present embodiment, it is possible to construct a learned model capable of outputting information indicating a good auxiliary action, that is, capable of revealing a preferable action to a training worker.
另外,根据本实施方式所涉及的步行训练装置100,由于能够访问这样生成的学习完毕模型,所以能够对于训练工作人员启示优选的行动。因此,根据这样的步行训练装置100,无论根据经验年数、熟练度、能力等可能产生的训练工作人员的优秀度如何,均能够进行启示以便与优秀的训练工作人员进行辅助的情况同样地进行。In addition, according to the walking
例如,在学习模型使用了正向传播型神经网络的情况下,作为对在复健开始前向服务器500侧发送出的第2复健数据的响应,能够启示恰当的设定参数等。也与在复健中定期向服务器500侧发送第2复健数据的情况同样,能够接受此时需要的启示。例如,在学习模型使用了具有递归构造的神经网络的情况下,能够还进一步考虑稍前的第2复健数据来预测性地实施这些启示。通过使1个数据组的统计期间、保存步骤数等恰当,能够使启示的时机也恰当。这样,在本实施方式所涉及的步行训练装置100中,能够在恰当的时机启示设定参数的变更、搭话的实施、徒手帮助的实施等。For example, when a forward propagation type neural network is used for the learning model, appropriate setting parameters and the like can be suggested as a response to the second rehabilitation data transmitted to the
(与方法、程序相关的补充)(Supplement related to methods and procedures)
在本实施方式中,根据上述的说明可知,还能够提供具有如下的取得步骤以及学习步骤的学习方法。取得步骤取得基于第1复健数据判定出对训练工作人员的评价进行表示的水平的判定结果等、输出了程度的输出结果。学习步骤输入至少包括对训练工作人员以辅助训练者为目的执行了的辅助行动进行表示的行动数据的第2复健数据,生成输出用于启示训练工作人员的接下来行动的行动数据的学习模型。另外,学习步骤将基于判定结果等输出结果进行了前处理后的第2复健数据作为教导数据,来生成学习模型。In the present embodiment, as can be seen from the above description, a learning method having the following acquisition steps and learning steps can also be provided. The obtaining step obtains output results of the output level, such as a judgment result of a level indicating a training worker's evaluation based on the first rehabilitation data. The learning step inputs second rehabilitation data including at least action data representing auxiliary actions performed by the training staff for the purpose of assisting the trainer, and generates a learning model that outputs action data for instructing the training staff's next action . In addition, the learning step generates a learning model using the second rehabilitation data preprocessed based on the output results such as the determination result as teaching data.
在本实施方式中,根据上述的说明可知,还能够提供可访问利用上述的学习方法学习而得到的学习模型亦即学习完毕模型的步行训练装置100中的复健辅助方法(步行训练装置100的工作方法),该方法具有如下的输出步骤以及通知步骤。对于输出步骤而言,步行训练装置100将与训练者使用步行训练装置100进行的复健相关的第2复健数据作为向学习完毕模型的输入而输出。对于通知步骤而言,步行训练装置100将从学习完毕模型输出的行动数据通知给在复健中辅助训练者的训练工作人员。In the present embodiment, as can be seen from the above description, it is also possible to provide a rehabilitation assistance method in the
在本实施方式中,根据上述的说明可知,还能够提供用于使计算机执行上述的取得步骤以及学习步骤的程序(学习程序),当然,还能够提供利用学习装置学习而得到的学习完毕模型、利用学习方法学习而得到的学习完毕模型、利用学习程序学习而得到的学习完毕模型。另外,在本实施方式中,根据上述的说明可知,还能够提供用于使能够访问上述那样的学习完毕模型的步行训练装置100的计算机执行上述的输出步骤以及通知步骤的复健辅助程序。In the present embodiment, as can be seen from the above description, a program (learning program) for causing a computer to execute the above-mentioned acquisition step and learning step can also be provided. A learned model obtained by learning by a learning method, and a learned model obtained by learning by a learning program. In addition, in the present embodiment, as can be seen from the above description, a rehabilitation assistance program for causing the computer of the walking
<实施方式2><Embodiment 2>
在实施方式1中,举出服务器500具备水平判定部510a以及学习部510b并在服务器500生成学习完毕模型的例子,但在本实施方式中,水平判定部等程度输出部以及学习部被装备在步行训练装置100侧(例如整体控制部210)。本实施方式所涉及的复健辅助系统只要包括步行训练装置100即可。但是,该情况下,为了在学习阶段增多复健数据的收集量,优选构成为能够收集来自其他步行训练装置的复健数据。In the first embodiment, the
另外,关于运用阶段,举出了学习完毕模型装备在服务器500、步行训练装置100向服务器500发送复健数据并接受行动数据的例子,但并不局限于此。例如,还能够在步行训练装置100侧(例如整体控制部210内的存储部)安装学习完毕模型。因此,步行训练装置100能够具有存储学习完毕模型的存储部。另外,虽然不特别说明,但在本实施方式中,也能够应用在实施方式1中说明的各种例子,起到与实施方式1同样的效果。若举出一个例子,则在本实施方式中也可以与实施方式1同样,具备取得部来代替水平判定部。即,本实施方式所涉及的步行训练装置100可以具备取得部来代替水平判定部等程度输出部。In addition, regarding the operation stage, an example in which the learned model is installed in the
<实施方式3><Embodiment 3>
参照图9~图11对实施方式3进行说明。图9是表示实施方式3所涉及的复健辅助系统中的服务器的一个构成例的框图。本实施方式所涉及的复健辅助系统省略其说明,但能够具有在实施方式1中说明过的步行训练装置100等复健辅助装置。另外,虽然不特别说明,但在本实施方式中除了以下的不同点之外,也能够应用在实施方式1中说明的各种例子。Embodiment 3 will be described with reference to FIGS. 9 to 11 . 9 is a block diagram showing a configuration example of a server in the rehabilitation support system according to the third embodiment. The rehabilitation assistance system according to the present embodiment abbreviates its description, but can include rehabilitation assistance devices such as the walking
本实施方式所涉及的学习装置与实施方式1所涉及的学习装置的不同点在于,具备如下的分析部来代替利用水平判定部510a例示的判定部等程度输出部。本实施方式所涉及的学习装置能够利用服务器501来例示,上述分析部能够为分析部511a。The learning apparatus according to the present embodiment is different from the learning apparatus according to
图9所示的服务器501能够具有与图4的服务器500的学习部510b、响应处理部510c分别对应的学习部511b、响应处理部511c。分析部511a、学习部511b以及响应处理部511c能够设置在与图4的控制部510对应的控制部511。控制部511基本上设置了分析部511a来代替控制部510中的水平判定部510a。特别是,响应处理部511c基本上能够进行与响应处理部510c同样的处理。The
(学习阶段)(Learning phase)
接下来,一并参照图10以及图11对服务器501的控制部511的学习阶段中的处理进行说明。图10是表示在该服务器中执行的聚类分析的结果的一个例子的示意图,图11是用于对服务器501中的学习处理的一个例子进行说明的流程图。Next, processing in the learning phase of the
控制部511对复健数据所包含的信息中的一部分或者全部实施前处理,使用处理后的数据进行机器学习,从未学习模型构建学习完毕模型。分析部511a执行前处理(准备处理),学习部511b执行机器学习。但是,控制部511还能够构成为一并执行分析部511a中的处理以外的前处理。The
首先,分析部511a输入第1复健数据(步骤S21)。该第1复健数据至少包含关于训练者900利用步行训练装置100执行的复健的、对辅助该训练者900的训练工作人员901进行表示的工作人员数据。另外,该第1复健数据至少包括表示训练工作人员901以辅助训练者900为目的执行了的辅助行动的行动数据和表示训练者900的恢复度的指标数据。特别是,由于根据训练者的恢复指标来判断训练工作人员是否优秀、即是否是优秀的训练工作人员涉及的第1复健数据较为妥当,所以指标数据特别重要。First, the
分析部511a对于上述那样的第1复健数据执行聚类分析,对训练工作人员进行分类(步骤S22)。分析部511a中的聚类分析例如能够使用k平均法(k-means)。作为分析结果的各聚类是第1复健数据的趋势被分类的结果,但优选调整为与按照训练工作人员的优秀度的水平分类后的各数据组对应。The
分析部511a中的聚类分析也能够使用扩展k平均法而聚类数的指定也自动进行的X平均法(X-means)。另外,分析部511a中的聚类分析也能够使用还可获得概率密度分布的混合高斯分布(GMM:Gaussian Mixture Models)、关注于连结性而进行聚类的谱聚类等其他各种手法。此外,在谱聚类中,首先将数据变换为图表,在该变换中可使用ε近邻算法、k近邻算法(k-nearest neighbor:k-NN)、全连接算法等。The cluster analysis in the
为了说明的简洁化,图10中举出了针对第1复健数据中的2个参数(2个项目)进行了聚类分析的结果的例子。在图10的例子中,将聚类(数据组)的数目指定为4来对第1复健数据进行聚类分析的结果是被分类成聚类C1~C4。此外,通常由于聚类分析的参数数目(空间轴的数目)能够为第1复健数据的项目数目,所以在本实施方式的情况下能够为3以上。In order to simplify the description, FIG. 10 shows an example of the result of cluster analysis for two parameters (two items) in the first rehabilitation data. In the example of FIG. 10 , the first rehabilitation data is classified into clusters C1 to C4 as a result of cluster analysis with the number of clusters (data groups) designated as four. In addition, since the number of parameters (the number of spatial axes) of the cluster analysis can usually be the number of items of the first rehabilitation data, it can be three or more in the case of the present embodiment.
学习部511b输入至少包括行动数据的第2复健数据来生成对用于启示训练工作人员的接下来行动的行动数据进行输出的学习完毕模型。特别是,学习部511b选择与利用分析部511a分类后的结果中的1个组(聚类)所包括的训练工作人员对应的第2复健数据作为教导数据(步骤S23)。这里,优选学习部511b使用与仅1个组包括的训练工作人员对应的第2复健数据作为教导数据。关于教导数据的选择将后述。The
然后,学习部511b将选择出的教导数据输入至未学习模型来生成学习完毕模型(步骤S24)。此外,本实施方式中的各数据的定义、其优选的例子等也基本上与在实施方式1中说明的相同,但被选择为教导数据的数据可能根据水平判定部510a与分析部511a的不同产生。Then, the
另外,学习部511b针对由分析部511a分类后的结果(分类结果)中的多个组的每一个能够将与组所包括的训练工作人员对应的第2复健数据作为教导数据。即,学习部511b能够构成为将上述多个组各个的第2复健数据作为教导数据来生成学习完毕模型。由此,能够生成多种学习完毕模型。该情况下,教导数据的选择能够由学习部511b自动地按照预先决定的顺序等来进行。该情况下,学习模型的调整者、运用者选择适于使用的学习完毕模型来进行运用。对学习完毕模型而言,例如能够将从训练者的步行稳定性、FIM效率、步行速度、身体能力等观点考虑可说正确答案率良好的模型选择为适于规格的模型。In addition, the
另外,教导数据的选择能够由调整学习模型的调整者进行。调整者例如能够选择包括已知的优秀的训练工作人员的组。因此,在服务器501中能够具备对上述组(聚类)进行指定的组指定部。其中,该组指定部还能够构成为从外部终端等受理聚类的指定。而且,学习部511b将与由组指定部指定的组所包括的训练工作人员对应的第2复健数据作为教导数据,来生成学习完毕模型。由此,能够生成仅被指定的组的学习完毕模型。In addition, the selection of the teaching data can be performed by an adjuster who adjusts the learning model. The adjuster can, for example, select a group that includes known good training staff. Therefore, the
另外,在以上的例子中,以学习装置具备分析部511a为前提进行了说明,但还能够使学习装置不具备分析部511a。该情况下,利用服务器501例示的学习装置只要具备取得通过聚类分析对于第1复健数据分类了训练工作人员的分类结果的取得部即可。该取得部例如能够由通信IF514与对其进行控制的控制部511内(例如响应处理部511c内)的取得控制部构成。该取得部例如能够采用从设置于PC、步行训练装置100等外部装置的分析部取得分类结果的结构。或者,例如只要人在PC等中使用聚类分析应用软件并基于第1复健数据来执行聚类分析即可。该情况下的取得部能够成为将其执行的结果(分类结果,例如分类后的工作人员数据)作为输入数据来输入的结构。In addition, in the above example, the description was made on the premise that the learning device includes the
另外,说明了学习部511b将与分类结果中的1个组所包括的训练工作人员对应的第2复健数据作为教导数据来生成学习模型的情况。由此,能够生成考虑了属于1个组的训练工作人员的行动的学习完毕模型。In addition, the case where the
另一方面,作为其代替处理,学习部511b例如还能够将基于分类结果而加标签后的多个组和与上述多个组的各个对应的工作人员数据建立了关联的第2复健数据作为教导数据,来生成学习模型。这里的建立关联的处理相当于前处理。上述多个组只要是分类后的全部组中的一部分组即可,但也可以是全部的组。通过使用这样的教导数据,能够生成按组考虑了训练工作人员的行动的学习完毕模型。On the other hand, as an alternative process, the
换言之,在上述代替处理中,首先对分类出的每个组加标签。接下来,学习部511b使用第2复健数据(除工作人员数据以外)与工作人员数据、即使用包括工作人员数据的第2复健数据将第2复健数据所包括的行动数据与加标签后的组建立关联而学习。例如,以权重按每个组不同的方式进行标记,进行学习的建立关联。标记(加标签)例如能够以越是包括特别优秀的训练工作人员的组、则越增大权重的方式进行,以便根据优秀度不同的任意几个训练工作人员的工作人员数据属于哪个组来使权重不同。In other words, in the above-described replacement process, each classified group is first labeled. Next, the
以上,如通过1个组涉及的处理、上述代替处理例示那样,学习部511b将基于分类结果进行了前处理的第2复健数据作为教导数据,来生成学习模型。此外,这里的前处理并不局限于上述那样的1个组涉及的处理、按组的建立关联的处理,例如也可以仅将分类结果与第2复健数据建立关联。在任何情况下,均能够生成在训练者利用步行训练装置100执行复健时能对于对此辅助的训练工作人员启示优选的行动的学习模型。As described above, the
(运用阶段)(operation stage)
接下来,对步行训练装置100以及服务器501中的运用阶段的处理进行说明。如上所述,步行训练装置100通过构成为能够访问学习完毕模型,而能够利用该学习完毕模型。在运用阶段,主要是步行训练装置100和与其网络连接的服务器501配合、即作为复健辅助系统来进行复健辅助处理。Next, processing in the operation phase in the
为了运用上述那样的学习完毕模型,本实施方式所涉及的步行训练装置100能够具备在实施方式1中说明的输出部以及通知部。当然,本实施方式中的输出部输出第2复健数据的对象成为在本实施方式中生成的学习完毕模型。In order to use the learned model as described above, the walking
在服务器501侧,响应处理部511c使存储于模型存储部521的学习完毕模型运转来进行响应处理。并且,服务器501具有将从上述的输出部输出的第2复健数据输入至学习完毕模型、将来自学习完毕模型的输出输出至步行训练装置100的输入输出部。该输入输出部利用通信IF514等来例示。这样的处理基本上与参照图6说明的相同,其通知例也与在图7以及图8中例示的相同。On the
通过这样的处理,在步行训练装置100中,能够将所取得的数据作为输入参数,输出对应该启示的辅助行动(优秀的训练工作人员进行过的辅助行动)进行表示的行动数据,来向训练工作人员启示该辅助行动。即,在步行训练装置100中,通过这样的启示能够建议接下来应该进行的辅助行动(设定、帮助等)。Through such a process, the walking
另外,步行训练装置100能够具备对在上述复健中辅助训练者的训练工作人员进行指定的指定部。该指定部是在实施方式1中说明的指定部。另外,步行训练装置100能够访问对分析部511a中的分析的结果(分类结果)进行存储的分类结果存储部。该分类结果存储部例如能够是整体控制部210内或者与整体控制部210连接的存储装置,但也可以是服务器501的内部的存储装置。In addition, the walking
而且,对于步行训练装置100而言,在由指定部指定的训练工作人员是在学习完毕模型的生成时未采用教导数据的训练工作人员的情况下,输出部输出第2复健数据,通知部进行通知。因此,例如分析部511a能够构成为将与成为教导数据的第1复健数据涉及的训练工作人员的姓名或者ID等作为分析结果的一部分进行输出。由此,对于设想为不需要通知的训练工作人员不进行多余的通知。Furthermore, in the walking
此外,这样的输出、通知在上述代替处理那样的情况下也能够应用,并不局限于1个组涉及的处理。即,在由指定部指定的训练工作人员901所属的组是在学习完毕模型中作为教导数据被使用的组的情况下,步行训练装置100只要进行输出、通知即可。In addition, such output and notification are applicable also in the case of the above-mentioned alternative processing, and are not limited to the processing related to one group. That is, when the group to which the
(效果)(Effect)
在本实施方式中,如上所述,也起到与实施方式1同样的效果。即,在步行训练装置100中,能够向训练工作人员建议接下来应该进行的辅助行动(设定、帮助等)。Also in the present embodiment, as described above, the same effects as those in the first embodiment are exhibited. That is, in the
(与方法、程序相关的补充)(Supplement related to methods and procedures)
在本实施方式中,根据上述的说明可知,还能够提供具有如下的取得步骤以及学习步骤的学习方法。取得步骤取得通过聚类分析对于第1复健数据分类了训练工作人员的分类结果。该第1复健数据至少包括关于训练者利用步行训练装置100执行了的复健的工作人员数据、表示训练工作人员以辅助训练者为目的执行了的辅助行动的行动数据、以及表示训练者的恢复度的指标数据。学习步骤输入至少包括行动数据的第2复健数据,来生成对用于启示训练工作人员的接下来行动的行动数据进行输出的学习模型。另外,学习步骤将基于分类结果进行了前处理的第2复健数据作为教导数据来生成学习模型。In the present embodiment, as can be seen from the above description, a learning method having the following acquisition steps and learning steps can also be provided. The acquiring step acquires a classification result obtained by classifying the training staff with respect to the first rehabilitation data by cluster analysis. The first rehabilitation data includes at least worker data on the rehabilitation performed by the trainer using the walking
在本实施方式中,根据上述的说明可知,还能够提供可访问利用上述的学习方法学习而得到的学习模型亦即学习完毕模型的步行训练装置100中的复健辅助方法(步行训练装置100的工作方法)。该方法具有在实施方式1中说明的输出步骤以及通知步骤。In the present embodiment, as can be seen from the above description, it is also possible to provide a rehabilitation assistance method in the
在本实施方式中,根据上述的说明可知,还能够提供用于使计算机执行上述的分析步骤以及学习步骤的程序(学习程序),当然,还能够提供利用学习装置学习而得到的学习完毕模型、利用学习方法学习而得到的学习完毕模型、利用学习程序学习而得到的学习完毕模型。另外,在本实施方式中,根据上述的说明可知,还能够提供用于使可访问上述那样的学习完毕模型的步行训练装置100的计算机执行上述的输出步骤以及通知步骤的复健辅助程序。In the present embodiment, as can be seen from the above description, it is possible to provide a program (learning program) for causing a computer to execute the above-mentioned analysis step and learning step. Of course, it is also possible to provide a learned model obtained by learning by a learning device, A learned model obtained by learning by a learning method, and a learned model obtained by learning by a learning program. Further, in the present embodiment, as can be seen from the above description, it is also possible to provide a rehabilitation assistance program for causing the computer of the walking
<实施方式4><Embodiment 4>
在实施方式3中,举出了服务器501具备分析部511a以及学习部511b并在服务器501生成学习完毕模型的例子,但在本实施方式中,分析部以及学习部装备在步行训练装置100侧(例如整体控制部210)。本实施方式所涉及的复健辅助系统只要包括步行训练装置100即可。但是,该情况下,为了在学习阶段增多复健数据的收集量,优选构成为能够收集来自其他步行训练装置的复健数据。In the third embodiment, the
另外,关于运用阶段,举出了学习完毕模型装备在服务器501、步行训练装置100向服务器501发送复健数据并接受行动数据的例子,但并不局限于此。例如,还能够在步行训练装置100侧(例如整体控制部210内的存储部)安装学习完毕模型。因此,步行训练装置100能够具有存储学习完毕模型的存储部。另外,虽然不特别说明,但在本实施方式中也能够应用在实施方式1、3中说明的各种例子。若举出一个例子,则在本实施方式中也可以与实施方式3同样具备取得部来代替分析部。即,本实施方式所涉及的步行训练装置100可以具备取得部来代替分析部。In addition, regarding the operation stage, an example in which the learned model is installed in the
<实施方式5><Embodiment 5>
在实施方式1~4中,以对于训练工作人员901那样的人进行通知为前提进行了说明,但还能够对于人以外的训练助理(机械式的训练助理、即人工训练助理)进行通知。作为人工训练助理,能够举出人型的机器人、声音助理程序、显示助理程序等各种人工训练助理。若举出声音助理程序通过声音来进行辅助的例子,则例如能够进行“请使上身进一步向右倾斜”、“请抓住扶手”、“请降低步行速度”等之类的搭话。
在训练助理为程序的情况下,能够以可执行的方式安装于步行训练装置100,但还能够以可执行的方式安装于能够与步行训练装置100通信的移动电话机(还包括被称为智能手机的情况)、移动PC等可移动型终端、外部服务器等。另外,人工训练助理还能够具有拥有人工智能的程序(AI程序)。In the case where the training assistant is a program, it can be installed in the walking
另外,在通过步行训练装置100的步行训练时能够利用多个人工训练助理,且能够分别区别它们各自进行管理。即,在训练助理为人工训练助理的情况下也与训练工作人员的情况同样,训练助理能够与其他训练助理区别。In addition, a plurality of human training assistants can be used in the walking training by the walking
另外,在采用人工训练助理的情况下,作为和上述(4)的训练工作人员901相关的数据所对应的与人工训练助理相关的数据(助理数据),能够举出如下那样的数据。例如,能够举出该人工训练助理(程序)所具有的功能(声音辅助功能、基于影像显示的辅助功能等)、该程序的名称、版本等,并且在该程序是运用时不断学习的类型的AI程序的情况下能够举出学习算法、学习的程度、学习时间、学习次数等。When a human training assistant is used, the following data can be exemplified as the data (assistant data) related to the human training assistant corresponding to the data related to the
另外,在多个训练助理(人还是人以外是任意的)同时帮助复健的情况下,如针对多个训练工作人员说明那样,复健数据能够包含多个人的助理数据。另外,各助理数据能够包括表示是主要的训练助理还是辅助的训练助理的信息。除了这样的信息之外、或者代替这种信息,各助理数据还能够包含表示进行何种辅助的信息。In addition, when a plurality of training assistants (anything other than a human being) assist the rehabilitation at the same time, the rehabilitation data can include assistant data of a plurality of persons, as explained for the plurality of training staff. In addition, each assistant data can include information indicating whether it is a primary training assistant or an auxiliary training assistant. In addition to or instead of such information, each assistant data can include information indicating what kind of assistance is performed.
针对本实施方式中的通知进行说明。例如,在需要对于人工训练助理而非训练工作人员901那样的人通知的情形下,通知控制部210d只要向该训练助理进行通知即可。通知能够直接通过通信来进行,但也可以与人的情况同样利用影像、声音来进行,人工训练助理对其进行检测。另外,人工训练助理能够通过通信或者直接的触摸操作等对于步行训练装置100进行设定变更等,由此,即便是人工训练助理,也能够执行在学习完毕模型的运用时被启示的行动。The notification in this embodiment will be described. For example, when it is necessary to notify a human training assistant other than the
<代替例><Alternative example>
在以上说明的各实施方式中,对训练者900表示一条腿患病的偏瘫患者的例子进行了说明,但对于两腿瘫痪的患者也能够应用步行训练装置100。该情况下,在两腿佩戴步行辅助装置120来实施训练。该情况下,可以针对每条病腿进行异常步行的评价。通过对于各条病腿独立地进行异常步行的评价,能够分别独立地判断恢复程度。In each of the above-described embodiments, the example in which the
另外,虽未图示,但步行训练装置能够是在图1的步行训练装置100中不具备跑步机131的装置,成为训练者900能够在被框架130包围而成的空间内实际移动。该情况下,只要采用如下那样的结构即可:框架130形成为在行进方向很长,伴随着训练者900的移动,保护带抻拉部112、前侧抻拉部135、后侧抻拉部137借助未图示的马达分别沿着导轨移动。由于训练者900相对于地板面实际相对移动,所以能够进一步获得复健训练的成就感。当然,步行训练装置并不局限于这些构成例。In addition, although not shown in the figure, the walking
另外,如上所述,各实施方式所涉及的复健辅助装置可以是对步行训练以外的其他种类的复健或复健以外的训练进行辅助的装置。该情况下,各实施方式所涉及的学习装置能够是生成应用于该装置的学习完毕模型的学习装置,能够采用与复健的种类或训练的种类对应的输入参数或输出参数。作为复健以外的训练,例如能够举出行走、跑步之类的运动、训练等,能够使用与训练的内容对应的训练辅助装置。另外,复健以外的训练的情况下的指标数据能够是表示训练者的身体功能提高度的数据来代替训练者的恢复度。作为身体功能提高度,能够包括通过运动等对肌肉力量的提高、持久力提高等。另外,即便在训练为复健的情况下,指标数据也能够是表示训练者的身体功能提高度的数据,该情况下,作为身体功能提高度,能够包括通过复健等带来的恢复度。另外,在复健以外的训练的情况下,第1复健数据、第2复健数据分别能够被称为第1训练数据、第2训练数据,或者分别简称为第1数据、第2数据。In addition, as described above, the rehabilitation assisting device according to each embodiment may be a device assisting other types of rehabilitation other than walking training or training other than rehabilitation. In this case, the learning device according to each embodiment can be a learning device that generates a learned model applied to the device, and can employ input parameters or output parameters corresponding to the type of rehabilitation or the type of training. Examples of training other than rehabilitation include exercise such as walking and running, training, and the like, and a training assistance device corresponding to the content of the training can be used. In addition, the index data in the case of training other than rehabilitation may be data indicating the degree of improvement of the physical function of the trainer instead of the degree of recovery of the trainer. As the degree of physical function improvement, improvement of muscle strength by exercise or the like, improvement of stamina, and the like can be included. In addition, even when the training is rehabilitation, the index data may be data indicating the degree of improvement of the physical function of the trainer, and in this case, the degree of improvement of the physical function can include the degree of recovery by rehabilitation or the like. In addition, in the case of training other than rehabilitation, the first rehabilitation data and the second rehabilitation data can be referred to as first training data and second training data, respectively, or simply referred to as first data and second data, respectively.
另外,各实施方式中说明的复健辅助装置还能够作为复健辅助系统而由多个装置构成。同样,步行训练装置能够作为步行训练系统而由多个装置构成,另外,训练辅助装置能够作为训练辅助系统而由多个装置构成。另外,各实施方式中说明的服务器(服务器装置)例如不仅能够只具备学习完毕模型而不具备学习装置,还能够仅具备学习装置的全部功能或者一部分功能。另外,各实施方式中说明的服务器装置还能够具备作为复健辅助装置的功能、部位而说明的功能、部位的至少一部分。另外,上述的复健辅助装置或者服务器装置例如能够是具有处理器、存储器以及通信接口等那样的硬件结构。这些装置能够通过处理器读入并执行存储于存储器的程序来实现。In addition, the rehabilitation assisting device described in each embodiment can also be constituted by a plurality of devices as a rehabilitation assisting system. Similarly, the walking training device can be configured by a plurality of devices as a walking training system, and the training assistance device can be configured by a plurality of devices as a training assistance system. In addition, the server (server device) described in each embodiment can include not only the learned model but not the learning device, but also all or part of the functions of the learning device, for example. In addition, the server device described in each embodiment can further include at least a part of the functions and parts described as the functions and parts of the rehabilitation assisting device. In addition, the above-mentioned rehabilitation assisting device or server device can be, for example, a hardware configuration including a processor, a memory, a communication interface, and the like. These means can be realized by a processor reading and executing a program stored in a memory.
对于这样的程序、即各实施方式中说明的学习程序、学习完毕模型进行说明。Such a program, that is, the learning program and the learned model described in each embodiment will be described.
能够使用各种类型的非暂时性计算机可读介质(non-transitory computerreadable medium)来储存这样的程序,并供给至计算机。非暂时性计算机可读介质包括各种类型的有实体的记录介质(tangible storage medium)。非暂时性计算机可读介质的例子包括磁记录介质(例如软盘、磁带、硬盘驱动器)、光磁记录介质(例如磁光盘)。并且,该例子包括CD-ROM(Read Only Memory)、CD-R、CD-R/W、半导体存储器。作为该半导体存储器,例如能够举出掩模ROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、闪速ROM、RAM(Random Access Memory)等。另外,程序可以通过各种类型的暂时性计算机可读介质(transitory computer readable medium)供给至计算机。暂时性计算机可读介质的例子包括电信号、光信号以及电磁波。暂时性计算机可读介质能够电线以及光纤等有线通信路或者无线通信路将程序供给至计算机。Such programs can be stored using various types of non-transitory computer readable media and supplied to a computer. The non-transitory computer-readable medium includes various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (eg, floppy disks, magnetic tapes, hard drives), magneto-optical recording media (eg, magneto-optical disks). In addition, this example includes CD-ROM (Read Only Memory), CD-R, CD-R/W, and semiconductor memory. Examples of the semiconductor memory include mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory), and the like. In addition, the program can be supplied to the computer through various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The transitory computer-readable medium can supply the program to the computer through wired communication channels such as electric wires and optical fibers, or wireless communication channels.
根据上述公开内容,显然本公开的实施例可以以多种方式变化。这些变化不应视为脱离本公开的精神和范围,并且对于本领域技术人员而言,显然所有这些变更旨在包括于技术方案的范围内。From the above disclosure, it will be apparent that the embodiments of the present disclosure may be varied in various ways. These changes should not be considered as a departure from the spirit and scope of the present disclosure, and it is obvious to those skilled in the art that all such changes are intended to be included within the scope of the technical solution.
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-120029 | 2019-06-27 | ||
JP2019120029A JP7147696B2 (en) | 2019-06-27 | 2019-06-27 | LEARNING DEVICE, REHABILITATION SUPPORT SYSTEM, METHOD, PROGRAM, AND LEARNED MODEL |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112137832A true CN112137832A (en) | 2020-12-29 |
CN112137832B CN112137832B (en) | 2023-04-07 |
Family
ID=73887470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010578612.4A Active CN112137832B (en) | 2019-06-27 | 2020-06-23 | Learning system, rehabilitation support system, method, program, and learning completion model |
Country Status (3)
Country | Link |
---|---|
US (1) | US11527330B2 (en) |
JP (1) | JP7147696B2 (en) |
CN (1) | CN112137832B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113680026A (en) * | 2021-10-27 | 2021-11-23 | 南通朗迪机械科技有限公司 | Intelligent auxiliary regulation and control method and device for supine plate |
CN119139113A (en) * | 2024-11-13 | 2024-12-17 | 绵阳市第三人民医院 | Lower limb joint rehabilitation training process monitoring system and method based on feedback analysis |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114067953A (en) * | 2021-10-29 | 2022-02-18 | 北航歌尔(潍坊)智能机器人有限公司 | Rehabilitation training method, system and computer readable storage medium |
CN115186319B (en) * | 2022-09-14 | 2023-04-07 | 广东时谛智能科技有限公司 | Shoe body material design method, device, equipment and medium based on pressure data |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001299840A (en) * | 2000-04-27 | 2001-10-30 | Kinryo:Kk | Upper limb rehabilitation assistance control rule based on ideal exercise pattern |
US20050020409A1 (en) * | 2003-07-22 | 2005-01-27 | Gifu University | Physical rehabilitation training and education device |
US20150294481A1 (en) * | 2012-12-28 | 2015-10-15 | Kabushiki Kaisha Toshiba | Motion information processing apparatus and method |
JP2018101242A (en) * | 2016-12-20 | 2018-06-28 | 株式会社リコー | Information processing apparatus, information processing method, and program |
WO2019069864A1 (en) * | 2017-10-02 | 2019-04-11 | 日本電気株式会社 | Medical information processing system |
CN109846677A (en) * | 2017-11-24 | 2019-06-07 | 丰田自动车株式会社 | Rehabilitation support device, rehabilitation support system, control method and control program |
CN109875834A (en) * | 2019-02-18 | 2019-06-14 | 解国强 | A kind of backbone rehabilitation equipment and its control method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6052234B2 (en) | 2014-05-27 | 2016-12-27 | トヨタ自動車株式会社 | Walking training device |
TW201611803A (en) | 2014-07-03 | 2016-04-01 | Teijin Pharma Ltd | Rehabilitation assistance device and program for controlling rehabilitation assistance device |
US20170329933A1 (en) * | 2016-05-13 | 2017-11-16 | Thomas Edwin Brust | Adaptive therapy and health monitoring using personal electronic devices |
JP6440210B2 (en) | 2016-09-06 | 2018-12-19 | トヨタ自動車株式会社 | Rehabilitation evaluation apparatus, rehabilitation evaluation method and program |
EP3649633A4 (en) * | 2017-07-06 | 2021-03-10 | Icuemotion LLC | Systems and methods for data-driven movement skill training |
JP6879178B2 (en) | 2017-11-24 | 2021-06-02 | トヨタ自動車株式会社 | Report output device, training device, report output system, report output method, and program |
-
2019
- 2019-06-27 JP JP2019120029A patent/JP7147696B2/en active Active
-
2020
- 2020-06-12 US US16/899,948 patent/US11527330B2/en active Active
- 2020-06-23 CN CN202010578612.4A patent/CN112137832B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001299840A (en) * | 2000-04-27 | 2001-10-30 | Kinryo:Kk | Upper limb rehabilitation assistance control rule based on ideal exercise pattern |
US20050020409A1 (en) * | 2003-07-22 | 2005-01-27 | Gifu University | Physical rehabilitation training and education device |
US20150294481A1 (en) * | 2012-12-28 | 2015-10-15 | Kabushiki Kaisha Toshiba | Motion information processing apparatus and method |
JP2018101242A (en) * | 2016-12-20 | 2018-06-28 | 株式会社リコー | Information processing apparatus, information processing method, and program |
WO2019069864A1 (en) * | 2017-10-02 | 2019-04-11 | 日本電気株式会社 | Medical information processing system |
CN109846677A (en) * | 2017-11-24 | 2019-06-07 | 丰田自动车株式会社 | Rehabilitation support device, rehabilitation support system, control method and control program |
CN109875834A (en) * | 2019-02-18 | 2019-06-14 | 解国强 | A kind of backbone rehabilitation equipment and its control method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113680026A (en) * | 2021-10-27 | 2021-11-23 | 南通朗迪机械科技有限公司 | Intelligent auxiliary regulation and control method and device for supine plate |
CN113680026B (en) * | 2021-10-27 | 2021-12-17 | 南通朗迪机械科技有限公司 | Intelligent auxiliary regulation and control method and device for supine plate |
CN119139113A (en) * | 2024-11-13 | 2024-12-17 | 绵阳市第三人民医院 | Lower limb joint rehabilitation training process monitoring system and method based on feedback analysis |
Also Published As
Publication number | Publication date |
---|---|
JP2021005312A (en) | 2021-01-14 |
CN112137832B (en) | 2023-04-07 |
US11527330B2 (en) | 2022-12-13 |
JP7147696B2 (en) | 2022-10-05 |
US20200411195A1 (en) | 2020-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7200851B2 (en) | LEARNING DEVICE, REHABILITATION SUPPORT SYSTEM, METHOD, PROGRAM, AND LEARNED MODEL | |
CN112138334B (en) | Processing system, walking training system, processing method, and computer-readable medium | |
CN112137832B (en) | Learning system, rehabilitation support system, method, program, and learning completion model | |
CN112137846B (en) | Learning system, gait training system, system, method, program and learned model | |
CN112137844A (en) | Rehabilitation support system, estimation device, learning method, and storage medium | |
CN112137838A (en) | Learning device, walking training system, method, program, and learning completion model | |
US20240188848A1 (en) | Learning system, walking training system, method, program, and trained model | |
CN112137839B (en) | Learning system, walking training method, program, and learning-completed model | |
CN112151145A (en) | Retrieval device, system, method and program | |
CN112137836B (en) | Learning system, rehabilitation support system, method, program, and learning completion model | |
CN112137834B (en) | Learning system, rehabilitation support system, method, program, and learning completion model | |
JP7124796B2 (en) | Rehabilitation support system, method of operating rehabilitation support device, and rehabilitation support program | |
CN112137835B (en) | Learning system, rehabilitation assisting system, method, program, and learning completion model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |