CN112014647B - 一种可以抑制温度漂移的电容检测方法 - Google Patents
一种可以抑制温度漂移的电容检测方法 Download PDFInfo
- Publication number
- CN112014647B CN112014647B CN202010795055.1A CN202010795055A CN112014647B CN 112014647 B CN112014647 B CN 112014647B CN 202010795055 A CN202010795055 A CN 202010795055A CN 112014647 B CN112014647 B CN 112014647B
- Authority
- CN
- China
- Prior art keywords
- link
- capacitance
- signal
- vcharge
- reference link
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 9
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 230000003071 parasitic effect Effects 0.000 claims description 8
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2605—Measuring capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/24—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
- G01D5/241—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
- G01D5/2417—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electronic Switches (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明公开了一种可以抑制温度漂移的电容检测方法,包括步骤:(1)信号链路连接到电容传感单元,参考链路信号链路相似,不接电容传感单元;(2)在PH1相位,将信号链路的电容充电至Vcharge,将参考链路的电容充电至alpha*Vcharge;(3)在PH2相位,将信号链路接入电容电压转换器的正端,将参考链路接入到电容电压转换器的负端,转移电荷量Vcharge*(Cuser+Cpath1)‑Vharge*alpha*Cpath2;(4)最终转移电荷量为Vcharge*Cuser,通过模数转换电路进行量化,得到人体接近电容Cuser。本发明所述的电容检测方法设置两路信号,一路信号为带电容传感单元的信号链路,另一路为不带传感单元的参考链路;通过给信号链路以及参考链路在输入端做加权求差的方法,匹配信号链路的环境变化,抑制温度漂移。
Description
技术领域
本发明涉及接近检测领域,尤其涉及一种可以抑制温度漂移的电容检测方法。
背景技术
电容传感器广泛应用于手机手表等电子产品中,主要用于识别人体与电子产品的距离。具体的识别原理是通过检测人体与电子产品中电容传感元件之间的电容值来分别人体与电子产品的距离。
在实际应用中,由于电容的传感单元一般位于电子产品的表面,而用于采集信号的芯片则位于内部的主板上,因此从芯片到传感单元的走线也会产生寄生电容,并且走线上的寄生电容很容易受到周围环境(温度湿度)的影响,影响人体接近信号的判断。
发明内容
发明目的:针对以上问题,本发明提出一种可以抑制温度漂移的电容检测方法,通过给信号链路以及参考链路在输入端做加权求差的方法,抑制温度漂移。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种可以抑制温度漂移的电容检测方法,设置两路信号,一路信号为带电容传感单元的信号链路,另一路为不带传感单元的参考链路,参考链路的走线与信号链路相似;通过给信号链路和参考链路加权求差,得到检测电容。
进一步地,所述加权是对参考链路乘以一个系数,将参考链路的信号等比例放大或者缩小。
进一步地,具体包括步骤:
(1)信号链路连接到电容传感单元,参考链路信号链路相似,不接电容传感单元;
(2)在PH1相位,将信号链路的电容充电至Vcharge,将参考链路的电容充电至alpha*Vcharge;
(3)在PH2相位,将信号链路接入电容电压转换器的正端,将参考链路接入到电容电压转换器的负端,转移电荷量Vcharge*(Cuser+Cpath1)-Vharge*alpha*Cpath2;
其中,Cuser为传感单元的人体接近电容信号,Cpath1为信号链路上的寄生电容信号,Cpath2为参考链路上的寄生电容信号;Cpath1/Cpath2=alpha;
(4)最终转移电荷量为Vcharge*Cuser,通过模数转换电路进行量化,得到人体接近电容Cuser。
进一步地,PH1/PH2两个波形相位相差180度,为非交叠时钟。
进一步地,参考链路的走线长度小于信号链路的走线长度,Cpath1>=Cpath2。
有益效果:本发明所述的可以抑制温度漂移的电容检测方法,需要两路信号,一路信号为带电容传感单元的信号链路,另一路为不带传感单元的参考链路,参考链路的走线与信号链路相似。通过给信号链路以及参考链路在输入端做加权求差的方法,通过对参考链路乘以一个系数,将参考链路的信号等比例放大或者缩小,从而匹配信号链路的环境变化。
附图说明
图1为本发明信号链路信号与参考链路信号加权求差的原理图;
图2为本发明提供的信号链路与参考链路的等效电容电路图;
图3为本发明提供为电容检测的等效电路图;
图4为本发明提供的芯片工作时序图;
图5为产生电压Vharge*alpha的电路图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
基于电容信号的接近检测传感器,包括电容电压转换器、模数转换电路、数字滤波器以及接近检测算法电路。
其中,电容电压转换器,用于将电容信号转化为电压信号;高精度模数转换电路ADC,用于量化电压信号;数字滤波器以及接近检测算法电路,用于将模数转换器的输出数据进行滤波降采样,并提取出有效的接近信号,判断物体与传感器的距离。
还包括固定电容补偿电容,用于补偿电容传感器上的固定电容。
其中,电容电压转换器中包括电荷放大器A。
本发明所述的可以抑制温度漂移的电容检测方法,利用上述的接近检测传感器进行检测,该方法需要两路信号,一路信号为带电容传感单元的信号链路,另一路为不带传感单元的参考链路,参考链路的走线与信号链路相似。
使用参考链路的方法可以抵消掉部分环境的影响,但由于实际应用过程中,参考链路的走线不可能与信号链路的走线完全相同,两者的环境电容变化并非完全相同,而是存在一定的比例。
通过给信号链路以及参考链路在输入端做加权求差的方法,通过对参考链路乘以一个系数,将参考链路的信号等比例放大或者缩小,从而匹配信号链路的环境变化。
如图1所示,为信号链路信号与参考链路信号加权求差的原理图,信号链路通过pcb走线连接到电容传感单元,接入电容电压转换器的正端,参考链路的pcb走线与信号链路相似,但不接电容传感单元,接入电容电压转换器的负端。
如图2所示,为信号链路与参考链路的等效电容电路图。其中,Cuser为电容传感单元感应到的人体接近电容信号,为有效信号。Cpath1为信号链路走线上的寄生电容信号。Cpath2为参考链路走线上的寄生电容信号。由于参考链路的走线与信号链路的走线存在一定的差别,通常情况下,参考链路的走线长度小于信号链路的走线,因此Cpath1>=Cpath2,Cpath1/Cpath2=alpha。
如图3所示,为电容检测的原理图。在PH1相位,将信号链路的电容充电至Vcharge,将参考链路的电容充电至alpha*Vcharge。在PH2相位,将信号链路的电容接入电容电压转换器的正端,将参考链路的电容接入到电容电压转换器的负端,因此总计转移的电荷量为Vcharge*(Cuser+Cpath1)-Vharge*alpha*Cpath2。
由于Cpath1=alpha*Cpath2,所以最终转移的电荷量为Vcharge*Cuser,转移的电荷量与走线上的电容无关。最后通过ADC量化,量化后得到的值为人体接近电容值,与走线上的环境电容无关,从而对环境漂移进行了很好抑制。Vcharge为参考电压,由芯片中的基准源产生。
如图4所示,为采样过程中PH1/PH2的波形图。两个波形相位相差180度,为非交叠时钟。
如图5所示,为产生电压Vharge*alpha的电路图,通过调整rfb1/rfb2的值,使(rfb1+rfb2)/rfb2=alpha,可以使输出电压为Vcharge*alpha。
Claims (4)
1.一种可以抑制温度漂移的电容检测方法,其特征在于,具体包括步骤:
(1)信号链路连接到电容传感单元,参考链路不接电容传感单元;
(2)在PH1相位,将信号链路的电容充电至Vcharge,将参考链路的电容充电至alpha*Vcharge;
(3)在PH2相位,将信号链路接入电容电压转换器的正端,将参考链路接入到电容电压转换器的负端,转移电荷量Vcharge*(Cuser+Cpath1)-Vharge*alpha*Cpath2;
其中,Cuser为传感单元的人体接近电容信号,Cpath1为信号链路上的寄生电容信号,Cpath2为参考链路上的寄生电容信号;Cpath1/Cpath2=alpha;
(4)最终转移电荷量为Vcharge*Cuser,通过模数转换电路进行量化,得到人体接近电容Cuser。
2.根据权利要求1所述的可以抑制温度漂移的电容检测方法,设置两路信号,一路信号为带电容传感单元的信号链路,另一路为不带传感单元的参考链路,通过给信号链路和参考链路加权求差,得到检测电容,所述加权是对参考链路乘以一个系数,将参考链路的信号等比例放大或者缩小。
3.根据权利要求1所述的可以抑制温度漂移的电容检测方法,其特征在于,PH1/PH2两个波形相位相差180度,为非交叠时钟。
4.根据权利要求1所述的可以抑制温度漂移的电容检测方法,其特征在于,参考链路的走线长度小于信号链路的走线长度,Cpath1>=Cpath2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010795055.1A CN112014647B (zh) | 2020-08-10 | 2020-08-10 | 一种可以抑制温度漂移的电容检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010795055.1A CN112014647B (zh) | 2020-08-10 | 2020-08-10 | 一种可以抑制温度漂移的电容检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112014647A CN112014647A (zh) | 2020-12-01 |
CN112014647B true CN112014647B (zh) | 2023-04-28 |
Family
ID=73499320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010795055.1A Active CN112014647B (zh) | 2020-08-10 | 2020-08-10 | 一种可以抑制温度漂移的电容检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112014647B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636714A (en) * | 1984-01-18 | 1987-01-13 | Wystron, Inc. | Capacitive transducer and method |
CN1031428A (zh) * | 1988-10-06 | 1989-03-01 | 黄松明 | 差动电容测量电路及多量程测量仪 |
US5172065A (en) * | 1990-01-23 | 1992-12-15 | Vdo Adolf Schindling Ag | Evaluation circuit for a capacitive sensor |
CN105320918A (zh) * | 2014-07-04 | 2016-02-10 | 映智科技股份有限公司 | 指纹传感器 |
CN107367639A (zh) * | 2017-08-31 | 2017-11-21 | 京东方科技集团股份有限公司 | 电容值测定方法和装置 |
CN110088637A (zh) * | 2016-12-21 | 2019-08-02 | 阿尔卑斯阿尔派株式会社 | 静电电容检测装置以及输入装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134680A1 (de) * | 2001-07-20 | 2003-02-06 | Endress & Hauser Gmbh & Co Kg | Schaltungsanrdnung für einen kapazitiven Sensor |
-
2020
- 2020-08-10 CN CN202010795055.1A patent/CN112014647B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4636714A (en) * | 1984-01-18 | 1987-01-13 | Wystron, Inc. | Capacitive transducer and method |
CN1031428A (zh) * | 1988-10-06 | 1989-03-01 | 黄松明 | 差动电容测量电路及多量程测量仪 |
US5172065A (en) * | 1990-01-23 | 1992-12-15 | Vdo Adolf Schindling Ag | Evaluation circuit for a capacitive sensor |
CN105320918A (zh) * | 2014-07-04 | 2016-02-10 | 映智科技股份有限公司 | 指纹传感器 |
CN110088637A (zh) * | 2016-12-21 | 2019-08-02 | 阿尔卑斯阿尔派株式会社 | 静电电容检测装置以及输入装置 |
CN107367639A (zh) * | 2017-08-31 | 2017-11-21 | 京东方科技集团股份有限公司 | 电容值测定方法和装置 |
Non-Patent Citations (4)
Title |
---|
Non-Linear AC/DC Mixed-Mode RF Simulation to Estimate EVM Temperature Drift of a GaAs pHEMT Wideband IQ Modulator IC;Ihara, K;《2010 ASIA-PACIFIC MICROWAVE CONFERENCE》;20100101;全文 * |
Research on temperature characteristic of parasitic capacitance in MEMS capacitive accelerometer;Dong, XS.etc;《SENSORS AND ACTUATORS A-PHYSICAL》;20190101;全文 * |
一种抑制电路温度漂移影响的高温测量系统;管国云等;《电子技术应用》;20141106(第11期);全文 * |
基于COMSOL的电容触摸屏仿真研究;谢江容等;《家电科技》;20160215;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112014647A (zh) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105046194B (zh) | 一种包含积分器的电容指纹传感器 | |
US10628651B2 (en) | Capacitive fingerprint sensor | |
EP3502855B1 (en) | Capacitance detection device, touch device and terminal device | |
US10338022B2 (en) | Sensor circuit and method for measuring a physical or chemical quantity | |
Reverter et al. | Interfacing differential capacitive sensors to microcontrollers: A direct approach | |
CN107092407B (zh) | 感应电容测量装置 | |
CN105391449B (zh) | 用于多个电极的采样电路和采样方法 | |
KR20140106586A (ko) | 정전용량 센서 인터페이스 및 방법 | |
CN108124474A (zh) | 检测电容的装置、电子设备和检测压力的装置 | |
CN104748770A (zh) | 用于指纹识别的电容检测装置和具有其的指纹识别装置 | |
CN112130003B (zh) | 一种去除同频带电磁干扰信号的装置及方法 | |
CN111813260B (zh) | 解决电容式触觉传感器迟滞误差和高频噪声误差的方法 | |
CN103487662A (zh) | 电容检测电路 | |
WO2019084832A1 (zh) | 一种指纹识别电路、指纹传感器及移动终端 | |
CN114487615A (zh) | 电容测量电路及电容测量方法 | |
CN112014647B (zh) | 一种可以抑制温度漂移的电容检测方法 | |
JP2002350477A (ja) | インピーダンス検出回路 | |
CN203535119U (zh) | 电容检测电路 | |
CN102346607B (zh) | 触控感测电路及方法 | |
CN101699380A (zh) | 用于触控面板的侦测电路和触控面板 | |
CN102103107B (zh) | 利用电容效应来检测润滑油品质的检测仪及其检测方法 | |
CN106054088B (zh) | 一种提高磁通量传感器动态输出范围的自零放大电路 | |
CN101782418A (zh) | 一种非接触式电容液位计 | |
CN113741582B (zh) | 一种电容温度补偿方法及装置 | |
CN112014648B (zh) | 一种可以检测单侧电容的电容检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A capacitance detection method that can suppress temperature drift Granted publication date: 20230428 Pledgee: Nanjing Zidong sub branch of Bank of Nanjing Co.,Ltd. Pledgor: NANJING TIANYI HEXIN ELECTRONIC CO.,LTD. Registration number: Y2024980015726 |