CN111968370B - 一种微波雷达智能可变车道感知系统及方法 - Google Patents
一种微波雷达智能可变车道感知系统及方法 Download PDFInfo
- Publication number
- CN111968370B CN111968370B CN202010828847.4A CN202010828847A CN111968370B CN 111968370 B CN111968370 B CN 111968370B CN 202010828847 A CN202010828847 A CN 202010828847A CN 111968370 B CN111968370 B CN 111968370B
- Authority
- CN
- China
- Prior art keywords
- lane
- variable
- virtual coil
- queuing length
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/095—Traffic lights
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明提供的一种微波雷达智能可变车道感知系统及方法,涉及交通信号控制技术领域,包括微波雷达、设置在可变换车道上的两虚拟线圈和信号控制机,采用微波雷达来实现可变换车道内车辆的实时跟踪检测和分车道排队长度,通过虚拟线圈采集可变换车道的断面交通流量、区间车辆数等数据,为智能可变换车道系统提供数据支撑和预测交通需求,进行控制可变分车道的导向,实现“可变换车道”的智能切换,有效提高车道的使用率,缓解交通压力;本发明通过对可变换车道实时车辆数据采集和多周期判定的方式,保证了可变分车道对于路况的强适应性,避免了频繁切换可变分车道属性对于驾驶人员的干扰。
Description
技术领域
本发明涉及交通信号控制技术领域,具体涉及一种微波雷达智能可变车道感知系统及方法。
背景技术
随着我国城市化的进程加快,城市机动车保有量日益增加造成车辆出行需求与现有的道路资源不匹配而产生的矛盾日益增加,主要体现在早晚通勤高峰时车道属性无法满足车辆出行需求。例如:早晚高峰的左转车辆较多而直行较少,平峰时段左转车辆较少而直行车辆较多。如何利用在现有的道路资源去满足多变的出行需求成为了需要迫切解决的问题,为了解决此类问题,一些城市在拥堵路口增设了可变换车道和可变换车道指示牌,目前所存在的可变换车道是在通过人工经验在固定时间进行车道属性调整,无法根据实际路况进行及时调整,导致部分可变换车道华而不实,无法有效解决因车道属性与出行需求所产生的矛盾,从而无法缓解交通拥堵问题。
随着前端感知设备技术和通信技术的发展,“智能可变换车道系统”逐渐成为智能交通发展的新方向之一。“智能可变换车道系统”是基于微波雷达、系统通信、系统控制平台等构成的。通过前端微波雷达采集道路的车辆信息、排队长度等数据与系统平台之间通信,进行信息交互和共享,实现当转向与直行交通流出现明显变化时,可变换车道及时调整放行方向,从而达到提高道路通行效率、缓解交通拥堵的目标。
目前国内“智能可变换车道系统”主要采用定时切换方案,由人工根据采集的历史数据进行统计分析,存在三点问题,具体为:1)制定时间长,需要通过人工采集数据并处理分析的方式来制定方案,采集数据时间周期较长,而且方案效果很大程度上依赖于工程师的经验;其次,根据经验制定的方案不具有可复制性,需要“一点一策”,增加方案制定时间。2)灵活度低,现有系统中大多数均以定时切换方案,而定时切换方式将导致系统无法根据路口的交通需求变化灵活的调整控制策略,尤其是当路口遭遇突发情况或者早晚通勤时间有明显变化时,系统无法根据实际情况及时调整可变换车道属性,导致控制策略成了“鸡肋”。3)适应性差,现有系统随时间推移,路口交通流发生明显的变化时,原有控制方案无法继续适应当前的路况,需要对路口再次进行调研并制定新的控制策略,而新的控制方案需要测试评估后才能投入使用。长此以往,反复的调研投入了大量的人力与资金,无形中给交通部门增加了需要成本。
本系统采用最新广域雷达检测器来实现区域内车辆的实时跟踪检测,采集断面的统计数据和分车道的排队数据给信号控制机,信号控制机通过分析历史数据推算交通规律以及短时间内的交通变化,预测路口当前的交通需求,进行可变换车道控制,从而实现“可变换车道”的智能切换,有效提高车道的使用率,缓解交通压力。
发明内容
本发明目的在于提供一种微波雷达智能可变车道感知系统,采用微波雷达和虚拟线圈来实现可变换车道区域内车辆的实时跟踪检测,采集断面交通流量和车道排队长度等数据,预测交通需求,进行可变换车道控制,实现“可变换车道”的智能切换,有效提高车道的使用率,缓解交通压力。
为达成上述目的,本发明提出如下技术方案:一种微波雷达智能可变车道感知系统,适用于设置有可变分车道的可变换车道,包括依次间隔设置在可变换车道各分车道上停止线后的第一虚拟线圈、第二虚拟线圈,设置在可变换车道路口的微波雷达和方向指示信号灯,以及信号控制机;所述信号控制机信号连接于微波雷达和方向指示信号灯;
定义可变换车道上车流驶入的方向为可变换车道的来向,则车辆自可变换车道的任一分车道来向依次经过第二虚拟线圈和第一虚拟线圈,并且所述第一虚拟线圈设置在可变换车道的渠化末端;
所述微波雷达信号连接于第一虚拟线圈、第二虚拟线圈,所述微波雷达用于实时探测可变换车道中可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态,并生成表示可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态的信号发送至信号控制机;
所述信号控制机根据其接收的微波雷达发来的表示可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态的信号,控制可变换车道路口的方向指示信号灯作出如下变化:
定义第二虚拟线圈至可变换车道前端停止线的长度的为y;
当可变分车道的排队长度小于y,可变分车道的两相邻分车道中一条分车道的排队长度大于或等于y、另一条分车道的排队长度小于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性不同,并且排队长度大于或等于y的分车道的排队长度大于可变车道调节排队长度,则可变分车道对应的方向指示信号灯的标志改变为排队长度大于或等于y的分车道对应的方向指示信号灯的标志;
当可变分车道的排队长度小于y,可变分车道的两相邻分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道的两相邻分车道内排队长度均大于y,并且排队长度最长的分车道的车道属性与可变分车道上一放行周期的车道属性不同,则可变分车道对应的方向指示信号灯的标志改变为排队长度最长的分车道对应的方向指示信号灯的标志;
当可变分车道及其相邻两分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道及其相邻两分车道内排队长度均大于y,并且与可变分车道上一放行周期车道属性不同的相邻分车道的排队长度大于可变车道调节排队长度,则可变分车道对应的方向指示信号灯的标志改变为与可变分车道上一放行周期车道属性不同的相邻分车道对应的方向指示信号灯的标志;
其中,可变车道调节排队长度为可变换车道调节系数n和可变分车道的排队长度、与可变分车道上一放行周期属性相同的相邻分车道的排队长度之和的乘积;
否则其他情况,可变分车道对应的方向指示信号灯的标志始终保持不变。
进一步的,还包括信号连接于信号控制机的可变分车道导向信号灯;所述可变分车道导向信号灯设置在可变换车道渠化末端远离停止线一侧,用于指导车辆向可变换车道的通行;所述可变分车道导向信号灯设置有第一频闪提示和第二频闪提示,所述第一频闪提示用于在方向指示信号灯变换前的第一设定时长内指示可变分车道的变换方向,所述第二频闪提示在用于在方向指示信号灯变换结束前的第二设定时长内指示可变分车道的变换方向。
进一步的,定义可变换车道中任一分车道上的第一虚拟线圈和第二虚拟线圈之间的间距为L,L不小于100m。
进一步的,所述第一设定时长和第二设定时长均设置为20s-120s。
进一步的,定义第二虚拟线圈至可变换车道前端停止线的长度为y,y不小于150m。
本发明进一步公开了采用上述微波雷达智能可变车道感知系统的感知方法,具体过程如下:
微波雷达实时检测可变分车道及其相邻两分车道在上一放行周期结束后的排队长度,收集可变分车道及其相邻两分车道上第一虚拟线圈、第二虚拟线圈的压占状态,并将可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和第一虚拟线圈、第二虚拟线圈的压占状态数据传送给信号控制机;
所述信号控制机接收微波雷达发送的可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和第一虚拟线圈、第二虚拟线圈的压占状态数据,并根据其接收的数据做出如下判定:
定义第二虚拟线圈至可变换车道前端停止线的长度的为y;
若可变分车道的排队长度小于y,可变分车道的两相邻分车道中一条分车道的排队长度大于或等于y、另一条分车道的排队长度小于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性不同,并且排队长度大于或等于y的分车道的排队长度大于可变车道调节排队长度,则判定可变分车道对应的方向指示信号灯的标志改变为排队长度大于或等于y的分车道对应的方向指示信号灯的标志;
若可变分车道的排队长度小于y,可变分车道的两相邻分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道的两相邻分车道内排队长度均大于y,并且排队长度最长的分车道的车道属性与可变分车道上一放行周期的车道属性不同,则判定可变分车道对应的方向指示信号灯的标志改变为排队长度最长的分车道对应的方向指示信号灯的标志;
若可变分车道及其相邻两分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道及其相邻两分车道内排队长度均大于y,并且与可变分车道上一放行周期车道属性不同的相邻分车道的排队长度大于可变车道调节排队长度,则判定可变分车道对应的方向指示信号灯的标志改变为与可变分车道上一放行周期车道属性不同的相邻分车道对应的方向指示信号灯的标志;
其中,可变车道调节排队长度为可变换车道调节系数n和可变分车道的排队长度、与可变分车道上一放行周期属性相同的相邻分车道的排队长度之和的乘积;
若其他情况,判定可变分车道对应的方向指示信号灯的标志始终保持不变。
另外,本发明还公开了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现上述的微波雷达智能可变车道感知方法。
由以上技术方案可知,本发明的技术方案提供的微波雷达智能可变车道感知系统及方法,获得了如下有益效果:
本发明公开的微波雷达智能可变车道感知系统及方法,包括微波雷达、设置在可变换车道上的两虚拟线圈和信号控制机,采用微波雷达来实现可变换车道内车辆的实时跟踪检测和分车道排队长度,通过虚拟线圈采集可变换车道的断面交通流量、区间车辆数等数据确保排队长度数据准确,为智能可变换车道系统提供数据支撑和预测交通需求,进行控制可变分车道的导向,实现“可变换车道”的智能切换,有效提高车道的使用率,缓解交通压力;本发明通过对可变换车道实时车辆数据采集和多周期判定的方式,保证了可变分车道对于路况的强适应性,避免了频繁切换可变分车道属性对于驾驶人员的干扰。
本发明技术方案的优势还在于:
1)本发明采用微波雷达与信号控制机对接,开创性的使用“虚拟线圈”取代真实线圈,减少路面破坏,同时提高数据稳定性和精度;
2)本发明采用的微波雷达提供的可变换车道的多个断面的统计数据和分车道排队长度,具有的大区域检测特点,为可变换车道中可变分车道的变换提供精准的数据支撑;
3)本发明通过微波雷达提供的路口各分车道的排队长度和虚拟线圈的压占情况,为可变换车道运行状态和道路通行效率给予评价,为进一步优化信号放行提供精准的数据支撑。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明装置应用效果图;
图2为本发明的可变分车道变换判定流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样, 除非上下文清楚地指明其它情况,否则单数形式的“一个”“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的特征、整体、步骤、操作、元素和/或组件, 并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。“上”“下”“左”“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
基于现有技术中“智能可变换车道系统”一般采用人工根据采集的历史数据进行统计分析制定定时切换方案,具有制定时间长、灵活度低和适应性差等缺点,无法根据交通运行真实情况进行调整,对交通缓解的效果较差;本发明旨在提出一种采用广域雷达和虚拟线圈配合、实时根据交通运行真实情况进行车道的可变换调整,提高车道的使用率,缓解交通压力。
结合图1所示,一种微波雷达智能可变车道感知系统,适用于设置有可变分车道的可变换车道,包括依次间隔设置在可变换车道各分车道上停止线后的第一虚拟线圈、第二虚拟线圈,设置在可变换车道路口的微波雷达和方向指示信号灯,以及信号控制机,所述信号控制机信号连接于微波雷达和方向指示信号灯。布设在可变换车道路口的微波雷达构成本装置的信息采集元件,实现对可变换车道路运行状态的监测,全天候实时采集车辆在可变换车道路上的运行信息。
定义可变换车道上车流驶入的方向为可变换车道的来向,则车辆自可变换车道的任一分车道来向依次经过第二虚拟线圈和第一虚拟线圈,并且所述第一虚拟线圈设置在可变换车道的渠化末端;通常第一虚拟线圈和第二虚拟线圈成排设置,在可变换车道上时,可以用于检测可变换车道断面的车流量。另外,为了确认车辆是处于在分车道上的排队状态,可在任一分车道上第一虚拟线圈和第二虚拟线圈之间间隔设置多排第一虚拟线圈。
所述微波雷达信号连接于第一虚拟线圈、第二虚拟线圈,用于实时探测可变换车道中可变分车道及其相邻两分车道在上一放行周期结束后的当前排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态,并生成表示可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态的信号发送至信号控制机;一般为了提高对可变换车道的利用效率、避免频繁切换可变换车道的车道属性,真实反应可变换车道的交通情况,定义第二虚拟线圈至可变换车道前端停止线的长度为y,可变换车道中任一分车道上的第一虚拟线圈和第二虚拟线圈之间的间距为L,则y不小于150m,L不小于100m。
结合图2所示,所述信号控制机根据其接收的微波雷达发来的表示可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态的信号,控制可变换车道路口的方向指示信号灯作出如下变化:
定义第二虚拟线圈至可变换车道前端停止线的长度的为y;
当可变分车道的排队长度小于y,可变分车道的两相邻分车道中一条分车道的排队长度大于或等于y、另一条分车道的排队长度小于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性不同,并且排队长度大于或等于y的分车道的排队长度大于可变车道调节排队长度,则可变分车道对应的方向指示信号灯的标志改变为排队长度大于或等于y的分车道对应的方向指示信号灯的标志;
当可变分车道的排队长度小于y,可变分车道的两相邻分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道的两相邻分车道内排队长度均大于y,并且排队长度最长的分车道的车道属性与可变分车道上一放行周期的车道属性不同,则可变分车道对应的方向指示信号灯的标志改变为排队长度最长的分车道对应的方向指示信号灯的标志;
当可变分车道及其相邻两分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道及其相邻两分车道内排队长度均大于y,并且与可变分车道上一放行周期车道属性不同的相邻分车道的排队长度大于可变车道调节排队长度,则可变分车道对应的方向指示信号灯的标志改变为与可变分车道上一放行周期车道属性不同的相邻分车道对应的方向指示信号灯的标志;
其中,可变车道调节排队长度为可变换车道调节系数n和可变分车道的排队长度、与可变分车道上一放行周期属性相同的相邻分车道的排队长度之和的乘积;可变换车道调节系数n为交管部门根据道路情况所设置的值,用于可变换车道的调节,通常取值为0<n<1。
否则其他情况,可变分车道对应的方向指示信号灯的标志始终保持不变。
其他情况,例如,可变分车道及其一相邻车道的排队长度小于y,另一相邻分车道的排队长度大于或等于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性相同,可变分车道对应的方向指示信号灯的标志不变。
在具体实施时,每隔五个信号周期,信号控制机对可变分车道相邻车道的排队长度数据和第一虚拟线圈、第二虚拟线圈的压占情况进行验证分析得出当前可变车道内交通流真实排队长度,通过确定排队长度最长的分车道的排队长度、车道属性与可变分车道上一放行周期的车道属性是否相同等判定后,输出可变车道标志灯变或可变车道标志灯不变,从而调整车道导向牌属性,如“直行”的放行需求大于“左转”时,信号控制机就会发送“切换直行”的信号给前端“可变车道标牌”将当前的车道属性切换为“直行”,通过实时的数据采集和多周期的判定方式,既保证了可变车道对于路况的强适应性,同时也避免了频繁切换可变车道属性对于驾驶人员的干扰。
微波雷达获取的各分车道的当前排队长度数据经过通信单元实现数据向信号控制机的传输和经方向指示信号灯发布,用于实现数据通信的通信单元具体为在可变换车道路口布设的有线(光纤、网线)或无线(网桥、4G)等网络传输设备。信号控制机根据接收的微波雷达提供的各分车道的当前排队长度、第一虚拟线圈及第二虚拟线圈的压占情况,来判断路口当前的交通状况和车辆的放行需求。例如,根据可变换车道路口的交通情况,以每5分钟作为一个调整周期,根据路口的需求来调整可变换车道中可变分车道的车道属性,从而实现可变换车道的智能切换,再通过方向指示信号灯根据信号控制机的变换指令作出标志变换或不变换的动作,提醒机动车驾驶人员前方为可变换车道的车道属性,提醒驾驶人员提前选择车道,提高可变换车道的利用率,提升可变换车道路口的通行效率。
为了避免车辆进入即将变换的可变换车道内,影响车辆的正常通行,微波雷达智能可变车道感知系统还设置了信号连接于信号控制机的可变分车道导向信号灯,可变分车道导向信号灯安装在可变换车道渠化末端远离停止线一侧,例如远离可变换车道渠化末端20m,用于指导车辆向可变换车道的通行。可变分车道导向信号灯至少设置有第一频闪提示和第二频闪提示,第一频闪提示用于在方向指示信号灯变换前的第一设定时长内指示可变分车道的变换方向,第二频闪提示在用于在方向指示信号灯变换结束前的第二设定时长内指示可变分车道的变换方向,第一设定时长和第二设定时长均可设置为20s-120s,其中20s为最优选择,对于特殊路段可按照路段环境延长或缩短频闪时间;例如,用于提醒司机前方的可变换车道即将由直行换向为左转,或前方车道即将左转变换结束,可直行。
另外,对于已经行驶在可变分车道内的车辆,一切按标志标牌指示通过,当其行驶需求与可变分车道的标志对应可以满足通行,对于不满足其通行需求,已进入可变分车道的车辆必须按照可变分车道标志通行,不可停车以阻碍其他车辆通行。
本发明还进一步公开了采用上述微波雷达智能可变车道感知系统对可变换车道的感知方法,具体过程如下:
微波雷达实时检测可变分车道及其相邻两分车道在上一放行周期结束后的排队长度,收集可变分车道及其相邻两分车道上第一虚拟线圈、第二虚拟线圈的压占状态,并将可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和第一虚拟线圈、第二虚拟线圈的压占状态数据传送给信号控制机;
所述信号控制机接收微波雷达发送的可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和第一虚拟线圈、第二虚拟线圈的压占状态数据,并根据其接收的数据做出如下判定:
定义第二虚拟线圈至可变换车道前端停止线的长度的为y;
若可变分车道的排队长度小于y,可变分车道的两相邻分车道中一条分车道的排队长度大于或等于y、另一条分车道的排队长度小于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性不同,并且排队长度大于或等于y的分车道的排队长度大于可变车道调节排队长度,则判定可变分车道对应的方向指示信号灯的标志改变为排队长度大于或等于y的分车道对应的方向指示信号灯的标志;
若可变分车道的排队长度小于y,可变分车道的两相邻分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道的两相邻分车道内排队长度均大于y,并且排队长度最长的分车道的车道属性与可变分车道上一放行周期的车道属性不同,则判定可变分车道对应的方向指示信号灯的标志改变为排队长度最长的分车道对应的方向指示信号灯的标志;
若可变分车道及其相邻两分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道及其相邻两分车道内排队长度均大于y,并且与可变分车道上一放行周期车道属性不同的相邻分车道的排队长度大于可变车道调节排队长度,则判定可变分车道对应的方向指示信号灯的标志改变为与可变分车道上一放行周期车道属性不同的相邻分车道对应的方向指示信号灯的标志;
其中,可变车道调节排队长度为可变换车道调节系数n和可变分车道的排队长度、与可变分车道上一放行周期属性相同的相邻分车道的排队长度之和的乘积;
若其他情况,判定可变分车道对应的方向指示信号灯的标志始终保持不变。
上述方法应用于路口交通繁忙时能有效缓解车道的交通压力,本方法通过微波雷达来实现可变换车道内车辆的实时跟踪检测和分车道排队长度、采用虚拟线圈采集可变换车道的断面车辆压占情况等数据,为信号控制机判别交通压力繁重的分车道提供数据支撑,准确预测可变换车道的交通需求,控制可变分车道的导向,实现“可变换车道”的智能切换,保证可变分车道对于路况的强适应性,有效提高车道的使用率。
本发明公开的上述微波雷达智能可变车道感知方法作为计算机程序一软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本发明上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述方法实施例的步骤和结果。其中,存储介质可为磁碟、光盘、只读存储记忆体、随机存储记忆体、快闪存储器、硬盘或固态硬盘等。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的微波雷达智能可变车道感知方法对应的程序指令/模块,处理器通过运行存储在存储器的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的微波雷达智能可变车道感知方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器所创建的数据等。此外,存储器优选但不限于高速随机存取存储器,例如,还可以是非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器还可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。本发明公开的存储介质还可以包括上述种类的存储器的组合。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。
Claims (7)
1.一种微波雷达智能可变车道感知系统,适用于设置有可变分车道的可变换车道,其特征在于,包括依次间隔设置在可变换车道各分车道上停止线后的第一虚拟线圈、第二虚拟线圈,设置在可变换车道路口的微波雷达和方向指示信号灯,以及信号控制机;所述信号控制机信号连接于微波雷达和方向指示信号灯;
定义可变换车道上车流驶入的方向为可变换车道的来向,则车辆自可变换车道的任一分车道来向依次经过第二虚拟线圈和第一虚拟线圈,并且所述第一虚拟线圈设置在可变换车道的渠化末端;
所述微波雷达信号连接于第一虚拟线圈、第二虚拟线圈,所述微波雷达用于实时探测可变换车道中可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态,并生成表示可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态的信号发送至信号控制机;
所述信号控制机根据其接收的微波雷达发来的表示可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和对应分车道上第一虚拟线圈、第二虚拟线圈的压占状态的信号,控制可变换车道路口的方向指示信号灯作出如下变化:
定义第二虚拟线圈至可变换车道前端停止线的长度的为y;
当可变分车道的排队长度小于y,可变分车道的两相邻分车道中一条分车道的排队长度大于或等于y、另一条分车道的排队长度小于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性不同,并且排队长度大于或等于y的分车道的排队长度大于可变车道调节排队长度,则可变分车道对应的方向指示信号灯的标志改变为排队长度大于或等于y的分车道对应的方向指示信号灯的标志;
当可变分车道的排队长度小于y,可变分车道的两相邻分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道的两相邻分车道内排队长度均大于y,并且排队长度最长的分车道的车道属性与可变分车道上一放行周期的车道属性不同,则可变分车道对应的方向指示信号灯的标志改变为排队长度最长的分车道对应的方向指示信号灯的标志;
当可变分车道及其相邻两分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道及其相邻两分车道内排队长度均大于y,并且与可变分车道上一放行周期车道属性不同的相邻分车道的排队长度大于可变车道调节排队长度,则可变分车道对应的方向指示信号灯的标志改变为与可变分车道上一放行周期车道属性不同的相邻分车道对应的方向指示信号灯的标志;
其中,可变车道调节排队长度为可变换车道调节系数n和可变分车道的排队长度、与可变分车道上一放行周期属性相同的相邻分车道的排队长度之和的乘积;
否则其他情况,可变分车道对应的方向指示信号灯的标志始终保持不变。
2.根据权利要求1所述的微波雷达智能可变车道感知系统,其特征在于,还包括信号连接于信号控制机的可变分车道导向信号灯;所述可变分车道导向信号灯设置在可变换车道渠化末端远离停止线一侧,用于指导车辆向可变换车道的通行;所述可变分车道导向信号灯至少设置有第一频闪提示和第二频闪提示,所述第一频闪提示用于在方向指示信号灯变换前的第一设定时长内指示可变分车道的变换方向,所述第二频闪提示在用于在方向指示信号灯变换结束前的第二设定时长内指示可变分车道的变换方向。
3.根据权利要求1所述的微波雷达智能可变车道感知系统,其特征在于,定义可变换车道中任一分车道上的第一虚拟线圈和第二虚拟线圈之间的间距为L,L不小于100m。
4.根据权利要求2所述的微波雷达智能可变车道感知系统,其特征在于,所述第一设定时长和第二设定时长均设置为20s-120s。
5.根据权利要求1所述的微波雷达智能可变车道感知系统,其特征在于,定义第二虚拟线圈至可变换车道前端停止线的长度为y,y不小于150m。
6.一种微波雷达智能可变车道感知方法,其特征在于,所述方法采用权利要求1-5任一项所述的微波雷达智能可变车道感知系统,具体过程如下:
微波雷达实时检测可变分车道及其相邻两分车道在上一放行周期结束后的排队长度,收集可变分车道及其相邻两分车道上第一虚拟线圈、第二虚拟线圈的压占状态,并将可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和第一虚拟线圈、第二虚拟线圈的压占状态数据传送给信号控制机;
所述信号控制机接收微波雷达发送的可变分车道及其相邻两分车道在上一放行周期结束后的排队长度和第一虚拟线圈、第二虚拟线圈的压占状态数据,并根据其接收的数据做出如下判定:
定义第二虚拟线圈至可变换车道前端停止线的长度的为y;
若可变分车道的排队长度小于y,可变分车道的两相邻分车道中一条分车道的排队长度大于或等于y、另一条分车道的排队长度小于y,排队长度大于或等于y的分车道属性与可变分车道上一放行周期的车道属性不同,并且排队长度大于或等于y的分车道的排队长度大于可变车道调节排队长度,则判定可变分车道对应的方向指示信号灯的标志改变为排队长度大于或等于y的分车道对应的方向指示信号灯的标志;
若可变分车道的排队长度小于y,可变分车道的两相邻分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道的两相邻分车道内排队长度均大于y,并且排队长度最长的分车道的车道属性与可变分车道上一放行周期的车道属性不同,则判定可变分车道对应的方向指示信号灯的标志改变为排队长度最长的分车道对应的方向指示信号灯的标志;
若可变分车道及其相邻两分车道上的第一虚拟线圈、第二虚拟线圈均被车辆压占,可变分车道及其相邻两分车道内排队长度均大于y,并且与可变分车道上一放行周期车道属性不同的相邻分车道的排队长度大于可变车道调节排队长度,则判定可变分车道对应的方向指示信号灯的标志改变为与可变分车道上一放行周期车道属性不同的相邻分车道对应的方向指示信号灯的标志;
其中,可变车道调节排队长度为可变换车道调节系数n和可变分车道的排队长度、与可变分车道上一放行周期属性相同的相邻分车道的排队长度之和的乘积;
若其他情况,判定可变分车道对应的方向指示信号灯的标志始终保持不变。
7.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求6所述的微波雷达智能可变车道感知方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010828847.4A CN111968370B (zh) | 2020-08-18 | 2020-08-18 | 一种微波雷达智能可变车道感知系统及方法 |
PCT/CN2020/113526 WO2022036765A1 (zh) | 2020-08-18 | 2020-09-04 | 一种微波雷达智能可变车道感知系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010828847.4A CN111968370B (zh) | 2020-08-18 | 2020-08-18 | 一种微波雷达智能可变车道感知系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111968370A CN111968370A (zh) | 2020-11-20 |
CN111968370B true CN111968370B (zh) | 2022-02-22 |
Family
ID=73388323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010828847.4A Active CN111968370B (zh) | 2020-08-18 | 2020-08-18 | 一种微波雷达智能可变车道感知系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111968370B (zh) |
WO (1) | WO2022036765A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113593264A (zh) * | 2021-07-28 | 2021-11-02 | 逸兴泰辰技术有限公司 | 交通控制指令传输处理方法、装置及电子设备 |
CN114438936B (zh) * | 2022-03-02 | 2024-02-09 | 河北扬启电力科技有限公司 | 一种用于潮汐车道的可变式围栏及其转换方法 |
CN114862011B (zh) * | 2022-04-29 | 2023-04-07 | 上海理工大学 | 一种考虑拥挤状态的道路断面分时段交通需求估计方法 |
CN115019506B (zh) * | 2022-06-01 | 2024-03-01 | 北京百车宝科技有限公司 | 一种基于多进程强化学习的可变车道控制方法 |
CN115273467B (zh) * | 2022-07-15 | 2023-07-04 | 南京莱斯信息技术股份有限公司 | 一种基于多区域检测数据的车流相互影响事件识别方法 |
CN117058900A (zh) * | 2023-04-24 | 2023-11-14 | 深圳市赛诺杰科技有限公司 | 一种基于埋地信号灯的交通信号灯系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261215A (zh) * | 2015-10-09 | 2016-01-20 | 南京慧尔视智能科技有限公司 | 基于微波的智能交通行为感知方法及系统 |
CN108053649A (zh) * | 2017-12-14 | 2018-05-18 | 迈锐数据(北京)有限公司 | 一种车辆排队长度检测系统、方法和装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043850A (en) * | 1990-01-10 | 1991-08-27 | Minnesota Mining And Manufacturing Company | Direction dependent line light source |
KR100329488B1 (ko) * | 1999-02-25 | 2002-03-20 | 김시중 | 가변차선 자동 제어장치 |
CN101650877A (zh) * | 2009-08-31 | 2010-02-17 | 吉林大学 | 交叉口自适应可变车道设置方法 |
CN102787569B (zh) * | 2012-08-27 | 2014-09-10 | 西北工业大学 | 交叉路口可变车道标识方法 |
CN102968905A (zh) * | 2012-11-23 | 2013-03-13 | 江苏大为科技股份有限公司 | 自适应路口可变车道道路交通信号控制系统 |
CN103186984B (zh) * | 2013-04-22 | 2015-01-07 | 东南大学 | 一种城市交叉口可变导向车道转向功能变换触发方法 |
CN107025792A (zh) * | 2017-05-05 | 2017-08-08 | 深圳市哈工大交通电子技术有限公司 | 基于车辆排队长度的车道及信号灯周期的调整方法及装置 |
CN107564285A (zh) * | 2017-08-29 | 2018-01-09 | 南京慧尔视智能科技有限公司 | 基于微波的车辆排队长度检测方法及系统 |
CN109493620B (zh) * | 2017-09-11 | 2022-05-24 | 阿里巴巴集团控股有限公司 | 一种交通路况分析系统、方法以及装置 |
CN110853356A (zh) * | 2019-11-29 | 2020-02-28 | 南京慧尔视智能科技有限公司 | 一种基于雷达和视频联动的车辆变道检测方法 |
CN111369816A (zh) * | 2019-11-29 | 2020-07-03 | 杭州海康威视系统技术有限公司 | 可变导向车道通行方向控制方法、装置、电子设备及系统 |
-
2020
- 2020-08-18 CN CN202010828847.4A patent/CN111968370B/zh active Active
- 2020-09-04 WO PCT/CN2020/113526 patent/WO2022036765A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105261215A (zh) * | 2015-10-09 | 2016-01-20 | 南京慧尔视智能科技有限公司 | 基于微波的智能交通行为感知方法及系统 |
CN108053649A (zh) * | 2017-12-14 | 2018-05-18 | 迈锐数据(北京)有限公司 | 一种车辆排队长度检测系统、方法和装置 |
Non-Patent Citations (1)
Title |
---|
智慧高速公路交通检测器组合布设方法研究;展凤萍;《中国博士学位论文全文数据库》;20190115;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111968370A (zh) | 2020-11-20 |
WO2022036765A1 (zh) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111968370B (zh) | 一种微波雷达智能可变车道感知系统及方法 | |
CN108806283B (zh) | 一种交通信号灯的控制方法及车联网平台 | |
CN110562258B (zh) | 一种车辆自动换道决策的方法、车载设备和存储介质 | |
CN102176284A (zh) | 一种基于gps终端的对实时路况信息分析判断的系统和方法 | |
CN112960000A (zh) | 高精地图更新方法、装置、电子设备和存储介质 | |
CN103914988A (zh) | 一种交通路况数据处理方法、装置和系统 | |
CN109816977A (zh) | 一种数据驱动的交叉口信号控制评价系统 | |
CN108647472B (zh) | 一种有轨电车优先方式的仿真方法及仿真系统 | |
CN116363891B (zh) | 基于车联网的智慧城市网外运算方法及系统 | |
CN109509357B (zh) | 一种交通控制方法及设备 | |
CN103810854B (zh) | 一种基于人工标定的智能交通参数检测方法 | |
CN111640314A (zh) | 基于大数据的智能可变车道车流控制系统及其控制方法 | |
CN114906140A (zh) | 一种巡航控制方法、装置、电子设备和存储介质 | |
CN116129650B (zh) | 一种基于大数据分析的交通预警系统及其方法 | |
US20230168368A1 (en) | Guardrail estimation method based on multi-sensor data fusion, and vehicle-mounted device | |
CN103903432A (zh) | 用于确定路链拥堵状况的设备和方法 | |
CN113516857B (zh) | 一种基于雷达监测的交叉口信号配时动态调配方法及系统 | |
CN108765988B (zh) | 一种面向互联网数据的路口信号动态优化方法 | |
CN103500505A (zh) | 一种获取汽车在道路交叉路口等待红绿灯时间的方法 | |
CN114049760A (zh) | 基于交叉路口的交通控制方法、装置及系统 | |
CN114038189B (zh) | 一种基于视频分析算法的自适应可变车道转换方法 | |
CN107730890B (zh) | 一种基于实时场景下车流车速预测的智能交通方法 | |
CN107657814B (zh) | 一种路况信息生成方法和装置 | |
CN114049761B (zh) | 一种基于智能可变车道的交叉口控制方法 | |
CN103996308A (zh) | 一种能实时监测路口信号控制效果的系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |