CN111883868A - Method and apparatus for detecting thermal runaway of lithium ion battery - Google Patents
Method and apparatus for detecting thermal runaway of lithium ion battery Download PDFInfo
- Publication number
- CN111883868A CN111883868A CN202010353997.4A CN202010353997A CN111883868A CN 111883868 A CN111883868 A CN 111883868A CN 202010353997 A CN202010353997 A CN 202010353997A CN 111883868 A CN111883868 A CN 111883868A
- Authority
- CN
- China
- Prior art keywords
- battery
- temperature
- mod
- sens
- simulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 8
- 238000000605 extraction Methods 0.000 claims description 8
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 description 16
- 238000004088 simulation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4285—Testing apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/44—Control modes by parameter estimation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
本发明提出一种用于检测锂离子电池(2)的热失控的方法。该方法包括:(S1)对电池(2)的温度变化走向(Tmod)进行模拟;(S2)记录电池(2)的实际的温度变化走向(Tsens);(S3)将模拟的温度变化走向(Tmod)与实际的温度变化走向(Tsens)进行比较;和(S4)在模拟的温度变化走向(Tmod)与实际的温度变化走向(Tsens)之间存在偏差的情况下,检测到热失控。此外还提出一种控制器和一种机动车。
The present invention proposes a method for detecting thermal runaway of a lithium ion battery (2). The method includes: (S1) simulating the temperature change trend (T mod ) of the battery (2); (S2) recording the actual temperature change trend (T sens ) of the battery (2); (S3) simulating the simulated temperature change trend The trend (T mod ) is compared with the actual temperature change trend (T sens ); and (S4) in the case of a deviation between the simulated temperature change trend (T mod ) and the actual temperature change trend (T sens ), Thermal runaway detected. Furthermore, a controller and a motor vehicle are proposed.
Description
技术领域technical field
本发明涉及一种用于检测锂离子电池的热失控的方法和装置。The present invention relates to a method and apparatus for detecting thermal runaway of a lithium ion battery.
背景技术Background technique
在锂离子电池中可能由制造中的缺陷、超负荷或老化引起过热并且最终导致电池的所谓“热失控”(英文:thermal runaway)。在最坏的情况下,电池可能因此着火和爆炸。In lithium-ion batteries, overheating and ultimately a so-called "thermal runaway" of the battery can be caused by defects in manufacturing, overloading or aging. In the worst case, the battery could catch fire and explode.
因此需要可靠地识别锂离子电池的热失控。尤其应当警告由于热失控而引起的严重危险。Therefore, there is a need to reliably identify thermal runaway of lithium-ion batteries. In particular, serious hazards due to thermal runaway should be warned.
由专利文献DE 102014106794A1已知使用电池为地面运输工具的电驱动装置供能。因此,例如在电池放电时由于同时发生能量转化而使电池升温。为了避免因电池的温度升高而减小电池寿命或引起损坏,当电池超出极限温度时限制电池为了电驱动装置的供能的能量转化。由此防止电池温度进一步升高。From
专利文献DE 102012204410A1描述了一种用于运行机动车的电池装置的方法,其中,基于预期的从电池中的能量提取和预期的环境条件或使用参数对温度变化走向进行模拟。基于模拟的温度,通过加热装置/冷却装置调节电池装置的温度,以便建立用于电池的最佳的运行条件并且因此提高机动车的能量效率。Patent document DE 102012204410 A1 describes a method for operating a battery arrangement of a motor vehicle, in which the course of temperature changes is simulated on the basis of the expected energy extraction from the battery and the expected ambient conditions or usage parameters. Based on the simulated temperature, the temperature of the battery arrangement is adjusted by the heating/cooling device in order to establish optimal operating conditions for the battery and thus increase the energy efficiency of the motor vehicle.
上述现有技术虽然涉及对电池温度的调节,用于预防其中列出的现象、如对电池的损坏或电池的不利的能量利用率。但未提出对电池的热失控的检测。The above-mentioned prior art, although related to the regulation of battery temperature, is used to prevent the phenomena listed therein, such as damage to the battery or unfavorable energy utilization of the battery. However, detection of thermal runaway of the battery is not proposed.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是检测锂离子电池的热失控。The technical problem to be solved by the present invention is to detect the thermal runaway of the lithium ion battery.
所述技术问题通过根据权利要求1所述的方法、根据权利要求9所述的控制器和根据权利要求10所述的机动车解决。The technical problem is solved by the method according to
本发明的其它有利的设计方案由从属权利要求和以下对本发明的优选实施例的说明得出。Further advantageous embodiments of the invention emerge from the subclaims and the following description of preferred embodiments of the invention.
本公开的第一方面涉及一种用于检测尤其机动车领域中的锂离子电池的热失控的方法。所述方法包括如下步骤:A first aspect of the present disclosure relates to a method for detecting thermal runaway of lithium-ion batteries, especially in the automotive field. The method includes the following steps:
-对电池的温度变化走向进行模拟;- Simulate the temperature change trend of the battery;
-记录电池的实际的温度变化走向;- Record the actual temperature change trend of the battery;
-将模拟的温度变化走向与实际的温度变化走向进行比较;和- comparing the simulated temperature profile with the actual temperature profile; and
-在模拟的温度变化走向与实际的温度变化走向之间存在偏差的情况下,检测到热失控。- Thermal runaway is detected when there is a deviation between the simulated temperature profile and the actual temperature profile.
在此,模拟(Modellieren)例如借助于电池的温度模型进行,电池的温度模型在考虑向电池中的热输入和从电池的热输出的情况下对电池的温度变化走向进行模拟或建模。在此,“模拟”还包括对电池的尤其当前和以后的温度的预测/估计。换言之,对温度变化走向的模拟还可以预测/估计电池中的温度的预期进展。In this case, the simulation is carried out, for example, by means of a temperature model of the battery, which simulates or models the course of the temperature change of the battery taking into account the heat input into the battery and the heat output from the battery. Here, "simulation" also includes prediction/estimation of, in particular, the current and future temperature of the battery. In other words, the simulation of the course of the temperature change can also predict/estimate the expected progression of the temperature in the battery.
对电池的实际的温度变化走向的记录(或者说采集,Erfassen)通常通过(至少一个)相应的温度传感器进行。温度传感器记录电池的温度。The recording (or acquisition, Erfassen) of the actual temperature course of the battery is usually carried out by (at least one) corresponding temperature sensor. A temperature sensor records the temperature of the battery.
将模拟的温度变化走向和实际的温度变化走向相比较。如果例如在某个时刻或在预先确定的时间段之后在两种温度变化走向之间存在偏差,则检测到电池的热失控。所述某个时刻例如是当前时刻。所述预先确定的时间段例如指的是当前时刻与更早的(预先确定的)时刻之间的时间间隔。备选地也可以指过去的两个不同时刻之间的时间间隔。Compare the simulated temperature profile with the actual temperature profile. A thermal runaway of the battery is detected if, for example, at a certain point in time or after a predetermined period of time there is a deviation between the two temperature profiles. The certain time is, for example, the current time. The predetermined time period refers, for example, to the time interval between the current instant and an earlier (predetermined) instant. Alternatively, it can also refer to the time interval between two different times in the past.
通过上述方法可以特别简单地检测电池的热失控,因为在此使用的比较量、即模拟的温度变化走向和实际的温度变化走向能够以特别简单且可靠的方式得出。如此记录到不是由电池的负载引起的每个温度升高,并且因此及早地识别到热失控的风险。A thermal runaway of the battery can be detected in a particularly simple manner by the method described above, since the comparison variables used here, ie, the simulated temperature course and the actual temperature course, can be determined in a particularly simple and reliable manner. Every temperature increase that is not caused by the loading of the battery is thus recorded, and thus the risk of thermal runaway is recognized early.
此外,将模拟的温度变化走向与实际的温度变化走向进行比较还可以包括:Additionally, comparing the simulated temperature profile with the actual temperature profile can include:
-根据模拟的温度变化走向得出第一温度梯度;和- deriving a first temperature gradient from the simulated temperature profile; and
-根据实际的温度变化走向得出第二温度梯度;- the second temperature gradient is derived from the actual temperature change trend;
并且其中,当第一和第二温度梯度之间的偏差超出极限值时,记录对热失控的检测。And wherein, the detection of thermal runaway is recorded when the deviation between the first and second temperature gradients exceeds a limit value.
在此,温度梯度表示电池的温度升高还是降低以及升高和降低的程度。通常,关于同一时刻确定(模拟的)第一温度梯度和(实际的)第二温度梯度。如此可以通过第一和第二温度梯度来确定,(在同一时刻)电池的实际的温度变化走向向更高的温度发展得是否比模拟的温度变化走向快得多。尤其如果第一温度梯度和第二温度梯度之间的偏差超出极限值,则该偏差可以归因于电池的热失控。因此可以相对可靠地记录或者说采集电池的热失控。Here, the temperature gradient indicates whether the temperature of the battery increases or decreases and the degree of increase and decrease. Typically, the (simulated) first temperature gradient and the (actual) second temperature gradient are determined with respect to the same moment in time. It can thus be determined by means of the first and second temperature gradients whether (at the same instant) the actual temperature trend of the battery develops to higher temperatures much faster than the simulated temperature change trend. In particular if the deviation between the first temperature gradient and the second temperature gradient exceeds a limit value, this deviation can be attributed to a thermal runaway of the battery. The thermal runaway of the battery can thus be recorded or acquired relatively reliably.
此外,所述极限值可以是第一温度梯度和第二温度梯度之间的预先确定的比值:Furthermore, the limit value may be a predetermined ratio between the first temperature gradient and the second temperature gradient:
其中,kTR是极限值,kmod是第一温度梯度并且ksens是第二温度梯度。如果实际的温度变化走向向更高的温度发展得比模拟的温度变化走向快得多,即第二温度梯度与第一温度梯度之间的比值超出极限值kTR(参见方程1),则可以检测到电池的热失控。where k TR is the limit value, k mod is the first temperature gradient and k sens is the second temperature gradient. If the actual temperature change trend towards higher temperatures develops much faster than the simulated temperature change trend, i.e. the ratio between the second temperature gradient and the first temperature gradient exceeds the limit value k TR (see equation 1), then it is possible to Thermal runaway of the battery detected.
备选地,第一温度梯度能根据沿模拟的温度变化走向在预先确定的时间段内的第一温度升高得出,并且第二温度梯度能根据沿实际的温度变化走向在预先确定的时间段内的第二温度升高得出。Alternatively, the first temperature gradient can be derived from a first temperature increase over a predetermined time period along the simulated temperature profile, and the second temperature gradient can be derived at a predetermined time based on the actual temperature profile The second temperature increase within the segment is derived.
因此,第一温度梯度通常可以通过下式确定:Therefore, the first temperature gradient can generally be determined by:
其中,Δt是沿模拟的温度变化走向的预先确定的时间段,并且ΔT是在预先确定的时间段内模拟的温度变化走向的第一温度升高。相应地,第二温度梯度也可以通过上式来确定。通过根据式2得到温度梯度,可以相对简单地检测电池的热失控。where Δt is the predetermined time period along which the simulated temperature change goes, and ΔT is the first temperature increase over which the simulated temperature change goes over the predetermined time period. Correspondingly, the second temperature gradient can also be determined by the above formula. By obtaining the temperature gradient according to
备选地,模拟的温度变化走向与实际的温度变化走向的比较可以按照预先确定的顺序进行。在这种情况下,预先确定的顺序可以包括周期性地进行所述比较,也就是说以预先确定的时间间隔进行。所述比较也可以连续进行。在这种情况下,这种连续应当理解为准连续,因为比较步骤之间的最小时间间隔可能(出于技术上的原因)被(例如用于记录实际的温度变化走向的温度传感器的采样率)限制。备选地,预先确定的顺序可以与温度相关,从而在电池的(实际和/或模拟的)温度相对较低并且因此非临界的情况下,间隔较长的时间地进行所述比较,其中,在较高和因此临界的温度下,间隔较短时间。换言之,在预先确定的顺序与温度相关的情况下,电池的温度越高,多个比较步骤之间的时间间隔越短。尤其在预先确定的顺序与温度相关的情况下,例如可以更有效地使用控制器资源并且因此检测更节省资源。Alternatively, the comparison of the simulated temperature profile with the actual temperature profile can be performed in a predetermined sequence. In this case, the predetermined sequence may comprise performing the comparison periodically, that is to say at predetermined time intervals. The comparison can also be performed continuously. In this case, this continuous should be understood as quasi-continuous, since the minimum time interval between the comparison steps may (for technical reasons) be determined (for example by the sampling rate of the temperature sensor used to record the actual temperature change trend) )limit. Alternatively, the predetermined order may be temperature-dependent, whereby the comparisons are performed at longer intervals when the (actual and/or simulated) temperature of the battery is relatively low and thus non-critical, wherein, At higher and therefore critical temperatures, the interval is shorter. In other words, where the predetermined order is temperature dependent, the higher the temperature of the battery, the shorter the time interval between the multiple comparison steps. Especially in the case where the predetermined order is temperature-dependent, for example, controller resources can be used more efficiently and thus the detection is more resource-efficient.
此外,模拟的温度变化走向可以根据向电池中的热输入和/或从电池的热输出来确定。向电池中的热输入理解为电池的温度升高。相应地,从电池的热输出理解为电池的温度降低。Additionally, the simulated temperature profile may be determined based on heat input into and/or heat output from the battery. A heat input into the battery is understood to mean an increase in the temperature of the battery. Accordingly, the thermal output of the battery is understood as a decrease in the temperature of the battery.
备选地,向电池中的热输入可以根据从电池的能量提取来确定。热输入可以被测量和/或模拟。因此,例如可以通过公式P=(UOCV-UBAT)*IBAT计算电池的与能量提取有关的电损耗功率P,其中,UOCV是怠速电压,UBAT是电池的接线柱电压并且IBAT是电池的(与从电池提取能量的外部阱(Senke)相关的)电流负载。Alternatively, the heat input into the battery may be determined from the energy extraction from the battery. Heat input can be measured and/or simulated. Thus, for example, the electrical loss power P of the battery in relation to energy extraction can be calculated by the formula P=(U OCV - U BAT )*I BAT , where U OCV is the idle voltage, U BAT is the terminal voltage of the battery and I BAT is the current load of the battery (related to the external sink (Senke) that extracts energy from the battery).
电损耗功率转化为热量并且因此加热电池。换言之,热输入也可以根据电池的电损耗功率来确定。通过根据从电池的能量提取、尤其根据电池(在能量提取期间)的电损耗功率确定热输入,可以简单且精确地确定向电池中的热输入。Electrically lost power is converted into heat and thus heats the battery. In other words, the heat input can also be determined from the electrical power loss of the battery. By determining the heat input from the energy extraction from the battery, in particular from the electrical power loss of the battery (during energy extraction), the heat input into the battery can be determined simply and precisely.
备选地,向电池中的热输出可以根据(电池的)热损耗功率来确定。热损耗功率尤其与用于电池的冷却装置的冷却功率和电池的环境温度相关。因此,热输出是电池由于冷却装置的冷却功率(向外)输出的那个热功率。因此,通过冷却装置的冷却功率可以测量/确定从电池的热输出。Alternatively, the heat output into the battery can be determined from the heat loss power (of the battery). The heat loss power is in particular related to the cooling power of the cooling device for the battery and the ambient temperature of the battery. Therefore, the thermal output is that thermal power output by the battery due to the cooling power (outward) of the cooling device. Thus, the heat output from the battery can be measured/determined by the cooling power of the cooling device.
此外,电池可以是机动车的牵引用电池。Furthermore, the battery can be a traction battery for a motor vehicle.
本公开的第二方面涉及一种用于机动车的控制器。所述控制器设置和设计为实施按照本发明的方法及其上述的设计方案和备选方案。A second aspect of the present disclosure relates to a controller for a motor vehicle. The controller is provided and designed to carry out the method according to the invention and its above-mentioned designs and alternatives.
本公开的第三方面涉及一种具有上述控制器的机动车。所述机动车设置和设计为实施按照本发明的方法及其上述的设计方案和备选方案。A third aspect of the present disclosure relates to a motor vehicle having the above-described controller. The motor vehicle is provided and designed to carry out the method according to the invention and its above-mentioned configurations and alternatives.
附图说明Description of drawings
现在示例性地且借助附图描述本发明的实施例。在附图中:Embodiments of the invention will now be described by way of example and with the aid of the drawings. In the attached image:
图1示意性地示出根据一种实施例的机动车;Figure 1 schematically shows a motor vehicle according to an embodiment;
图2示出根据一种实施例的方法;和Figure 2 illustrates a method according to an embodiment; and
图3示意性地示出电池的热失控之后的温度变化走向。FIG. 3 schematically shows the temperature change trend after thermal runaway of the battery.
具体实施方式Detailed ways
在图1中示意性地示出具有机动车电池2(或者说电池)的机动车1。电池2也可以转用于与机动车领域不同的应用领域。在此,机动车1可以例如设计为电动车或混合动力车辆。在这种情况下,电池2设计为牵引用电池。电池2与测量装置4耦连,测量装置4设计为电压表和/或电流表并且例如可以测量例如电池2的接线柱电压或电池2的电流负载(放电电流)。电池2还与温度传感器6耦连。温度传感器6记录电池2的实际的温度Tsens。显然,电池2也可以与多个温度传感器4耦连。此外,冷却装置8与电池2耦连。通过冷却装置8可以调节/确定从电池2的热输出。A
控制器10与电池2、测量装置4、温度传感器6和冷却装置8耦连。控制器10设置为,根据电池2的存储在控制器10中的特性数据和由测量装置4记录到的数据计算/确定电池2的电损耗功率,该电损耗功率由于在机动车1的运行期间从电池2的能量提取产生。根据该电损耗功率可以确定向电池2中的热输入,该热输入对电池2加热。例如,电损耗功率与向电池2中的热输入之间的关系可以存储在控制器10中。此外,控制器10设置用于根据冷却装置8的冷却功率计算/确定电池2的热损耗功率。根据该热损耗功率可以确定从电池2的热输出,由于该热输出,电池2被冷却。在此,热损耗功率或冷却功率与从电池2的热输出之间的关系也可以存储在控制器10中。此外,电损耗功率、冷却装置8的冷却功率和电池2的温度梯度之间的关系也可以存储在控制器10中。上述每个关系都可以例如通过数学公式、特性曲线族、特征曲线或模型描述。The
在考虑向电池2中的热输入和从电池2的热输出的情况下,控制器10可以得出电池2的热平衡并且因此可以(在一时间段上)对电池2的温度变化走向Tmod进行计算/模拟。因此,借助于温度模型确定电池2的模拟的温度变化走向Tmod,其中,该温度模型考虑了向电池2中的热输入和从电池2的热输出。Taking into account the heat input into and from the
在图2中示出用于检测电池2的热失控的方法。在此,在步骤(S1)中,对电池2的温度变化走向Tmod进行模拟/计算。在步骤(S2)中,通过温度传感器4记录电池2的实际的温度变化走向Tsens。在步骤(S3)中,将模拟的温度变化走向Tmod与实际的温度变化走向Tsens进行比较。在步骤(S4)中,当模拟的温度变化走向Tmod与实际的温度变化走向Tsens之间存在偏差时,检测电池的热失控。A method for detecting thermal runaway of the
如下文描述的那样,这两种温度变化走向的偏差也可以相当于这两种温度变化走向的梯度的偏差。因此,步骤(S3)还可以包括子步骤(S3.1)和(S3.1),这些子步骤用于确定第一温度梯度kmod和第二温度梯度ksens。这些子步骤(S3.1)和(S3.2)将结合图3阐述。As described below, the deviation of the two temperature profiles can also correspond to the deviation of the gradients of the two temperature profiles. Therefore, step (S3) may also comprise sub-steps (S3.1) and (S3.1) for determining the first temperature gradient k mod and the second temperature gradient k sens . These sub-steps (S3.1) and (S3.2) will be explained in conjunction with FIG. 3 .
图3示意性地示出模拟的温度变化走向Tmod和实际的温度变化走向Tsens。在时刻tTR,存在电池2的热失控。也就是说,在图3的在时间上处于热失控之前的阴影区域中,模拟的温度变化走向Tmod与实际的温度变化走向Tsens基本一致。由于电池2的热失控,电池2的实际的温度Tsens升高得比通过温度模型得到的温度Tmod更快。温度模型考虑通常主要与在从电池2提取能量期间的电损耗功率相关的向电池2中的热输入。由热失控引起的热输入未被温度模型考虑。因此在图3中,由于热失控,在模拟的温度变化走向Tmod与实际的温度变化走向Tsens之间产生偏差。FIG. 3 schematically shows the simulated temperature change course T mod and the actual temperature change course T sens . At time t TR , there is a thermal runaway of
为了检测该热失控,将第一温度梯度kmod和第二温度梯度ksens进行比较。在步骤(S3.1)中确定第一温度梯度kmod,方式是构造模拟的温度变化走向(在预先确定的时间段内)的温度升高ΔTmod与预先确定的时间段的商。换言之,第一温度梯度kmod通过以下步骤得出:To detect this thermal runaway, the first temperature gradient k mod and the second temperature gradient k sens are compared. In step (S3.1) the first temperature gradient k mod is determined by constructing the quotient of the temperature rise ΔT mod of the simulated temperature change trend (within a predetermined time period) and the predetermined time period. In other words, the first temperature gradient k mod is obtained by the following steps:
-在当前时刻t(x)记录当前的模拟的温度Tmod(x);- record the current simulated temperature T mod (x) at the current time t(x);
-在先前时刻t(x-Δt)记录先前的模拟的温度Tmod(x-Δt),其中,先前时刻t(x-Δt)以预先确定的时间段Δt位于当前时刻t(x)之前;- recording the temperature T mod (x-Δt) of the previous simulation at the previous time t(x-Δt), wherein the previous time t(x-Δt) preceded the current time t(x) by a predetermined time period Δt;
-将模拟的温度升高ΔTmod确定为当前的模拟的温度Tmod(x)与先前的模拟的温度Tmod(x-Δt)之差;和- determining the simulated temperature increase ΔT mod as the difference between the current simulated temperature T mod (x) and the previous simulated temperature T mod (x-Δt); and
-将第一温度梯度kmod确定为由模拟的温度升高和预先确定的时间段构成的商。- Determining the first temperature gradient k mod as a quotient consisting of the simulated temperature increase and a predetermined time period.
在发生热失控时,电池2的温度在数秒内升高数百开尔文。因此,预先确定的时间段Δt为尤其至少一秒,以便可靠地检测热失控。通过预先确定的时间段Δt也可以检测电池2的高阻短路,在高阻短路中,温度升高得相对较慢。In the event of a thermal runaway, the temperature of the
对第二温度梯度ksens的确定对应于上述步骤(S3.2)并且与对第一温度梯度kmod的确定(S3.1)类似地进行,其中,当前和先前的实际的温度Tsens(x)、Tsens(x)在相应的时刻被记录。The determination of the second temperature gradient k sens corresponds to the above-mentioned step (S3.2) and is performed analogously to the determination of the first temperature gradient k mod (S3.1), wherein the current and previous actual temperature T sens ( x), T sens (x) are recorded at the corresponding moments.
为了检测电池2的热失控,通常使用检验条件,即第一温度梯度kmod和第二温度梯度ksens之商需要超出预先确定的极限值kTR。预先确定的极限值与电池2的拓扑结构和电池2的内部短路的类型相关。例如,预先确定的极限值kTR在热失控的情况下可以尤其大约为10并且在内部短路的情况下可以尤其大约为1.5。为了检测不是由电池2的负载引起的每个温度升高并且因此及早地识别到热失控的风险,也可以使用其它不同的检验条件,诸如第一温度梯度和第二温度梯度之差超出预先确定的数值/极限值。In order to detect thermal runaway of the
通常,在发生热失控时,电池在时刻tTR后的数秒内起火,在这种情况下可能出现大约1000℃的温度。Typically, in the event of thermal runaway, the battery catches fire within seconds of time t TR , in which case a temperature of about 1000°C may occur.
附图标记列表List of reference signs
1 机动车1 motor vehicle
2 电池2 batteries
4 测量装置4 Measuring device
6 温度传感器6 Temperature sensor
8 冷却装置8 Cooling device
10 控制器10 Controller
kmod 模拟的(第一)温度梯度(first) temperature gradient simulated by k mod
ksens 实际的(第二)温度梯度k sens actual (second) temperature gradient
kTR 极限值k TR limit
tTR 电池的热失控的时刻t Moment of thermal runaway of TR battery
Tmod 模拟的温度/温度变化走向Trend of temperature/temperature change simulated by T mod
Tmod(x) 当前时刻的模拟的温度T mod (x) the simulated temperature at the current moment
Tmod(x-Δt) 先前时刻的模拟的温度T mod (x-Δt) the simulated temperature at the previous moment
Tsens 实际的温度/温度变化走向The actual temperature/temperature change trend of T sens
Tsens(x) 当前时刻的实际的温度T sens (x) the actual temperature at the current moment
Tsens(x-Δt) 先前时刻的实际的温度T sens (x-Δt) the actual temperature at the previous moment
t(x) 当前时刻t(x) current time
t(x-Δt) 先前时刻t(x-Δt) previous time
S1-S4 方法步骤S1-S4 Method Steps
Δt 预先确定的时间段Δt predetermined time period
ΔTmod 模拟的(第一)温度升高The (first) temperature rise simulated by ΔT mod
ΔTsens 实际的(第二)温度升高ΔT sens actual (second) temperature rise
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019111555.8 | 2019-05-03 | ||
DE102019111555.8A DE102019111555A1 (en) | 2019-05-03 | 2019-05-03 | Method and apparatus for detecting thermal runaway of a lithium ion battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111883868A true CN111883868A (en) | 2020-11-03 |
CN111883868B CN111883868B (en) | 2024-12-03 |
Family
ID=72839172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010353997.4A Active CN111883868B (en) | 2019-05-03 | 2020-04-29 | Method and apparatus for detecting thermal runaway of lithium-ion batteries |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111883868B (en) |
DE (1) | DE102019111555A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021205402A1 (en) | 2021-05-27 | 2022-12-01 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for monitoring a temperature of a battery |
CN114895200B (en) * | 2022-05-24 | 2024-06-21 | 吉林大学 | A multi-parameter analysis method for thermal runaway process of lithium-ion batteries |
CN116118566B (en) * | 2023-03-27 | 2023-10-20 | 广东华庄科技股份有限公司 | A battery management method, system and storage medium |
CN118367263B (en) * | 2024-04-23 | 2024-10-15 | 东莞市智高实业有限公司 | New energy automobile battery heat dissipation system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160216719A1 (en) * | 2015-01-22 | 2016-07-28 | Qualcomm, Incorporated | Systems and methods for detecting thermal runaway |
JP2017103077A (en) * | 2015-12-01 | 2017-06-08 | 日立化成株式会社 | Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery |
CN107391870A (en) * | 2017-08-02 | 2017-11-24 | 中国科学技术大学 | The computational methods of thermal runaway critical condition |
JP2018206524A (en) * | 2017-05-31 | 2018-12-27 | 日立化成株式会社 | Power storage system and control method thereof |
CN109361029A (en) * | 2018-07-31 | 2019-02-19 | 中国电力科学研究院有限公司 | A thermal runaway protection method and device for a battery energy storage system |
-
2019
- 2019-05-03 DE DE102019111555.8A patent/DE102019111555A1/en active Pending
-
2020
- 2020-04-29 CN CN202010353997.4A patent/CN111883868B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160216719A1 (en) * | 2015-01-22 | 2016-07-28 | Qualcomm, Incorporated | Systems and methods for detecting thermal runaway |
JP2017103077A (en) * | 2015-12-01 | 2017-06-08 | 日立化成株式会社 | Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery |
JP2018206524A (en) * | 2017-05-31 | 2018-12-27 | 日立化成株式会社 | Power storage system and control method thereof |
CN107391870A (en) * | 2017-08-02 | 2017-11-24 | 中国科学技术大学 | The computational methods of thermal runaway critical condition |
CN109361029A (en) * | 2018-07-31 | 2019-02-19 | 中国电力科学研究院有限公司 | A thermal runaway protection method and device for a battery energy storage system |
Also Published As
Publication number | Publication date |
---|---|
CN111883868B (en) | 2024-12-03 |
DE102019111555A1 (en) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111883868B (en) | Method and apparatus for detecting thermal runaway of lithium-ion batteries | |
CN113030735B (en) | System and method for real-time estimation of rechargeable battery capacity | |
CN110816366B (en) | Applicable to the temperature estimation method, system, medium and equipment inside the single battery | |
KR102502106B1 (en) | efficient battery tester | |
CN110098439B (en) | A method for estimating charging time of power battery | |
KR102171096B1 (en) | Method and device to estimate battery lifetime during driving of electrical vehicle | |
CN108931732B (en) | Method for estimating the current and state of charge of a battery or battery cell | |
TW201610454A (en) | Battery pack, control circuit, and control method | |
CN106772081B (en) | Battery limit charging and discharging current estimation method based on extended equivalent circuit model | |
US20170012327A1 (en) | Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method | |
JP2019504451A (en) | Effective battery cell balancing method and system using duty control | |
KR20150019190A (en) | Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same | |
CN112924878B (en) | Battery safety diagnosis method based on relaxation voltage curve | |
JP2017103077A (en) | Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery | |
KR20170051008A (en) | Method and apparatus for estimating an initial condition of battery | |
CN107402352A (en) | Diagnostic method, the operation method of cell apparatus, the operation method of equipment and equipment | |
SE1950652A1 (en) | Method for estimating state of health of a battery | |
CN116409152A (en) | Over-temperature protection method and device for charging device, electric vehicle | |
KR102717091B1 (en) | Battery management apparatus, battery pack, energy storage system, and battery management method | |
JP2024031905A (en) | Battery hazard detection | |
JP5379820B2 (en) | Secondary battery temperature estimation device and secondary battery temperature estimation method | |
JP7062870B2 (en) | Battery management device, battery management method and battery pack | |
JP7135532B2 (en) | Battery state estimation device, manufacturing method of battery state estimation device, battery state estimation method, and assembled battery system | |
US20210242512A1 (en) | Method for determining a status of the thermal connection of at least one component within an electrical energy storage system to a heat source or heat sink | |
CN115236527A (en) | Electronic circuit for determining the state of charge of a battery cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |