Nothing Special   »   [go: up one dir, main page]

CN111886913B - 通信方法和通信设备 - Google Patents

通信方法和通信设备 Download PDF

Info

Publication number
CN111886913B
CN111886913B CN201880091445.1A CN201880091445A CN111886913B CN 111886913 B CN111886913 B CN 111886913B CN 201880091445 A CN201880091445 A CN 201880091445A CN 111886913 B CN111886913 B CN 111886913B
Authority
CN
China
Prior art keywords
antennas
network device
information
reference signal
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880091445.1A
Other languages
English (en)
Other versions
CN111886913A (zh
Inventor
宋暖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Shanghai Bell Co Ltd
Original Assignee
Nokia Shanghai Bell Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co Ltd filed Critical Nokia Shanghai Bell Co Ltd
Publication of CN111886913A publication Critical patent/CN111886913A/zh
Application granted granted Critical
Publication of CN111886913B publication Critical patent/CN111886913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例涉及通信方法以及通信设备。提供一种在终端设备处实施的通信方法,包括:基于预先测量的信道质量,从终端设备处的多个天线中确定候选天线集合,候选天线集合包括可用于网络设备进行非线性预编码的天线;以及利用参考信号资源指示符而向网络设备发送关于候选天线集合的信息,以使得网络设备从候选天线集合中确定用于进行非线性预编码的目标天线集合。

Description

通信方法和通信设备
技术领域
本公开的实施例总体上涉及通信技术,更具体地,涉及用于执行非线性预编码的方法以及相应的通信设备。
背景技术
为了提高通信质量,目前已经研究了用于共同调度的终端设备(例如UE)的发射机侧干扰消除技术。这些干扰消除技术例如包括非线性预编码、线性和非线性混合预编码技术等。非线性预编码技术可以包括基于脏纸编码(DPC)的预编码技术,例如TomlinsonHarashima预编码(THP)、基于QL的DPC、迫零THP(ZF-THP)、矢量扰动等。
非线性预编码技术在无线通信系中,特别是下一代新无线电(NR)系统中,已经进行了一定的应用,并且将会进行进一步的研究。与线性预编码相比,非线性预编码(例如THP)能够提供显著增强的系统性能,尤其是对于UE的子空间重叠的相关信道更为如此。
然而,现有的非线性预编码技术也存在一些问题。例如,由于通常UE安装有多个天线,而为了获得非线性预编码的更优性能则会获取高精度的全下行链路信道状态信息(CSI),因此大量的CSI反馈会导致非常大的开销和CSI延迟。此外,与基于信号子空间计算的线性预编码相比,非线性预编码通常对CSI误差更加敏感,因此非线性预编码更需要明确和高分辨率的CSI,从而不利地增加了CSI开销并需要提高CSI精度。这些都是目前技术中亟待解决的问题。
发明内容
总体上,本公开的实施例提出在通信设备处实施的通信方法以及相应的通信设备,用以提高非线性预编码的实现开销和复杂度,从而进一步提高了通信系统的性能。
在第一方面,本公开的实施例提供一种在终端设备处实施的通信方法。该方法包括:基于预先测量的信道质量,从终端设备处的多个天线中确定候选天线集合,候选天线集合包括可用于网络设备进行非线性预编码的天线;以及利用参考信号资源指示符向网络设备发送关于候选天线集合的信息,以使得网络设备从候选天线集合中确定用于进行非线性预编码的目标天线集合。
在此方面,本公开的实施例还提供一种用于进行通信的终端设备,包括:控制单元,被配置为基于预先测量的信道质量,从终端设备处的多个天线中确定候选天线集合,候选天线集合包括可用于网络设备进行非线性预编码的天线;以及发送单元,被配置为利用参考信号资源指示符向网络设备发送关于候选天线集合的信息,以使得网络设备从候选天线集合中确定用于进行非线性预编码的目标天线集合。
本公开的实施例还包括一种用于通信的终端设备。该终端设备包括:处理器以及存储有指令的存储器,指令在被处理器运行时使得该终端设备执行根据第一方面的方法。
在第二方面,本公开的实施例提供一种在网络设备处实施的通信方法。该方法包括:从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息,候选天线集合是终端设备基于预先测量的信道质量而从终端设备处的多个天线中选择的,候选天线集合包括可用于网络设备进行非线性预编码的天线;从候选天线集合中确定用于进行非线性预编码的目标天线集合;以及向终端设备发送有关目标天线集合的信息。
在此方面,本公开的实施例还提供一种用于通信的网络设备。该设备包括:控制单元,被配置为:从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息,候选天线集合是终端设备基于预先测量的信道质量而从终端设备处的多个天线中选择的,候选天线集合包括可用于网络设备进行非线性预编码的天线,以及从候选天线集合中确定用于进行非线性预编码的目标天线集合;以及发送单元,被配置为向终端设备发送有关目标天线集合的信息。
本公开的实施例还包括一种用于通信的网络设备。该网络设备包括:处理器以及存储有指令的存储器,该指令在被处理器运行时使得该网络设备执行根据第二方面的方法。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了本公开的实施例可以在其中实施的示例通信网络;
图2示出了根据本公开的某些实施例的在终端设备侧实施的方法的流程图;
图3示出了根据本公开的某些实施例的在网络设备侧实施的方法的流程图;
图4示出了根据本公开的某些实施例的网络设备和终端设备的交互图;
图5示出了根据本公开的某些实施例的网络设备和终端设备的交互图;
图6示出了根据本公开的某些实施例的帧结构和传输的示意图;
图7和图8分别示出了根据本公开的某些实施例的系统性能示意图;
图9示出了根据本公开的某些实施例的终端设备处的装置的框图;
图10示出了根据本公开的某些实施例的网络设备处的装置的框图;以及
图11示出了根据本公开的某些实施例的设备的框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
根据本公开的实施例,“网络设备”是指在基站或者通信网络中具有特定功能的其他实体或节点。“基站”(BS)可以表示节点B(NodeB或者NB)、演进节点B(eNodeB或者eNB)、新无线电基站gNB、远程无线电单元(RRU)、射频头(RH)、远程无线电头端(RRH)、中继器、或者诸如微微基站、毫微微基站等的低功率节点等等。在本公开的上下文中,为讨论方便之目的,术语“网络设备”和“基站”可以互换使用,并且可能主要以gNB作为网络设备的示例。
在此使用的术语“终端设备”是指能够与基站之间或者彼此之间进行无线通信的任何终端设备。作为示例,终端设备可以包括用户设备(UE)、终端设备(MT)、订户台(SS)、便携式订户台(PSS)、移动台(MS)或者接入终端(AT),以及车载的上述设备。在本公开的上下文中,为讨论方便之目的,术语“终端设备”和“UE”可以互换使用。
在此使用的术语“包括”或“包含”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。
如上所述,在非线性预编码系统中,为了在UE侧进行接收合并,需要获取经波束成形的CSI或全部下行链路CSI,并且UE必须执行特定的解调过程。然而,这使得UE的接收实现和CSI采集都更加复杂,增大了实现难度。
此外,gNB的天线选择过程要求gNB获取所有的CSI并确定选择的天线和/或端口(为了便于讨论,以下将天线和端口统称为“天线”),这增加了开销并增大了定时问题的困难。所选天线的当前指示是明确的,例如天线索引。如果天线选择情况需要使用改进的CSI,例如经由非周期性CSI报告或非周期性探测参考信号(SRS)传输来获得这样的CSI,则需要将这些CSI与所选择的天线索引的指示相组合,这大大增加了对控制信道的占用率,是不希望的。
为了解决这些以及其它潜在问题,本公开的实施例提供了一种通信方法。根据本公开的实施例的方法,终端设备基于预先测量的信道质量,从终端设备处的多个天线中确定候选天线集合,候选天线集合包括可用于网络设备进行非线性预编码的天线。终端设备利用上行控制信息中的参考信号资源指示符向网络设备发送关于候选天线集合的信息,以使得网络设备从候选天线集合中确定用于进行非线性预编码的目标天线集合。以此方式,仅对来自目标天线集合的天线的CSI设计非线性预编码,从而简化了CSI的获取过程,减少了需要获取的CSI的数量。同时,由于利用了参考信号资源指示符来指示候选天线集合的信息,没有额外增加控制信息的字段或其他控制信令,从而减少了对控制信道的占用率,提高了系统性能。
图1示出了本公开的实施例可以在其中实施的示例通信网络100。通信网络100包括网络设备(例如gNB)110以及与之通信的终端设备(例如UE)120-1、……120-K(以下统称为终端设备120或UE 120)。
图1所示的通信网络100中的通信可以根据任何适当的通信协议来实施,包括但不限于,第一代(1G)、第二代(2G)、第三代(3G)、第四代(4G)和第五代(5G)等蜂窝通信协议、诸如电气与电子工程师协会(IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。而且,该通信使用任意适当无线通信技术,包括但不限于,码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、频分双工(FDD)、时分双工(TDD)、多输入多输出(MIMO)、正交频分多址(OFDM)、和/或目前已知或者将来开发的任何其他技术。
应当理解,图1所示的网络设备的数目以及终端设备的数目仅仅是出于说明之目的而无意于限制。通信网络100可以包括任意适当类型和数目的网络设备,各个网络设备可以提供适当范围和适当数目的覆盖,并且通信网络100还可以包括任意适当类型和数目的终端设备。
还应当理解,虽然图1示出了多用户例如多输入多输出(MIMO)系统,但是本公开的实施例并不局限于此,而是可以应用于其他适当的系统,例如单用户多天线系统。
如图1所示,假设在gNB 110处进行基于THP的非线性预编码,K个UE中的每个UE120都有个天线。在gNB 110有MT个天线,并且总共有r个数据流,其中/>gNB110将rk个数据流发送给第k个UE。在图1的实施例中,gNB 110侧的预编码包括线性预编码器/>112和非线性THP预编码器111,以抑制数据流间和用户间干扰。
在终端设备侧,UE 120能够选择用于进行接收的天线。在一些实施例中,可以将选择的天线表示为天线选择矩阵包括索引向量的单位矩阵的行。此外,还包括在解调和解码之前的加权过程和模操作Mod(·)。信道/>是根据完全的CSI得到的,其中/>是来自所有UE的接收天线的总数。
传统非线性预编码方案依赖于波束形成的CSI或全下行链路CSI,UE需要执行不同的接收过程以用于进行线性组合。本公开的实施例则提出了另一种模式,即以UE为中心的天线选择,当不能获得所需的CSI时,这样的模式能够有效地解决问题。
本公开的实施例采用了以终端设备为中心的天线选择的非线性预编码方案,其中利用了上行链路/下行链路信令格式中的SRS资源指示符(SRI)。与使用关于天线选择的明确指示(即天线索引)不同,本公开的实施例利用特定DCI格式的SRI来有效地互相通知所选或下选/进一步选择的天线。
具体而言,UE 120使用SRI定期向gNB报告其希望使用的N个选定天线,在本公开的上下文中,这N个选定天线也称为候选天线集合。SRI还隐式地表示传输信道的秩(RI),并且可以将其认为是CSI报告的一个组成部分。在这种情况下,基于SRS的天线切换始终处于启用状态。
在gNB 110处,在下行链路控制信息(DCI)中形成SRI参考指示格式,以通知UE 120在N个天线中的、适合数据传输的r个天线(r≤N)上进行接收,从而实现基于天线选择的接收过程。
UE 120根据来自gNB的SRI隐式指示的天线选择,来接收下行数据,以此方式,可以绕过UE 120侧的接收合并设计。
SRI在传统方案中已经被设计用于协助波束管理,例如SRI可以被应用在从gNB到UE的下行链路中,以在UE侧指示对应的波束。本公开的实施例中,利用了这样的能够进行波束指示的SRI来进行天线选择,从而提供了一种简单高效的非线性预编码解决方案。
与传统方案相比,本公开的实施例简化了CSI获取过程,因为只有来自所选天线/端口的CSI需要设计非线性预编码。此外,在本公开的实施例中,使用SRI隐式指示天线选择以及带有天线选择的非周期性SRS,可以简化程序并节省信令。通常天线选择由高层信令指示。如果需要由gNB启用和确定,则gNB必须知道UE通过某个信令报告的天线索引,然后通过指示这些索引来请求UE应用哪个或哪些天线。如果它与用于CSI获取的非周期性SRS传输一起应用,那么非周期性SRS的资源也应该被通知给UE。解调相关指示和非周期性SRS相关指示应该被包括在DCI中,例如,每个所选择的天线的天线索引和/或SRS资源,这增加了DCI利用率。由于在天线切换周期内,不同的天线/组被分配有不同的SRS资源,所以gNB可以简单地使用SRI来隐式地向UE指示用于解调数据流的选择天线。在非周期性SRS传输的情况下,包括SRI和非周期性SRS触发的特定DCI格式是优选的,因为SRI不仅包括所选天线的信息,而且还包括SRS资源。在本公开的实施例中,天线的明确索引和DCI中的非周期性SRS资源的指示被SRI替代,从而有效节省了信令开销。以此方式,能够有效减小CSI误差的影响,使得系统更加鲁棒。同时,由于接收组合阶段被天线选择所取代,有效降低了UE的复杂度。
在一些实施例中,为了更新预编码器,非周期SRS传输与天线选择还可以通过利用SRI来联合触发,此时所使用的可以是N个选定天线中的m个天线(以下也称为“更新天线集合”),其中m≤N。在此情况下,UE只需要在例如由m个SRI隐含指示的选定天线上发送非周期性SRS。通过这种方式,在DCI格式中能够进行非周期SRS与SRI的联合触发,从而有效提高了系统性能。
下面将结合图2至图9分别从终端设备和网络设备的角度,对本公开的原理和具体实施例进行详细说明。首先参考图3,其示出了根据本公开的某些实施例的在终端设备侧实施的方法200的流程图。可以理解,方法200可以例如在如图1所示的终端设备120处实施。
在210,终端设备120基于预先测量的信道质量,从终端设备120处的多个天线中确定候选天线集合。候选天线集合包括可用于网络设备进行非线性预编码的天线。
在一些实施例中,终端设备120可以获取终端设备处的多个天线中的每个天线的预先测量的信道质量,然后从多个天线中选择信道质量高于阈值质量的天线,作为候选天线集合中的天线。
在220,终端设备120利用参考信号资源指示符向网络设备发送关于候选天线集合的信息,以使得网络设备110从候选天线集合中确定用于进行非线性预编码的目标天线集合。
在一些实施例中,可以将关于候选天线集合的信息包括在上行链路控制信息的参考信号资源指示符中,并且向网络设备110发送上行链路控制信息。
附加地或可选地,在一些实施例中,终端设备120可以从网络设备110接收有关目标天线集合的信息。例如,可以接收来自网络设备110的下行链路控制信息(DCI),并从下行链路控制信息所包括的参考信号资源指示符中获取有关目标天线集合的信息。
另一方面,网络设备110可以基于从终端设备120接收的周期性参考信号(例如SRS),来测量与目标天线集合对应的信道信息。然后,网络设备110可以基于测量的信道信息对数据进行非线性预编码并向终端设备120发送经非线性预编码的所述数据。因此在一些实施例中,附加地或可选地,终端设备120可以利用目标天线集合中的天线,接收来自网络设备110的经非线性预编码的数据。终端设备120然后可以基于用于非线性预编码的解调参考信号,对接收的数据进行解调。
在一些情况下,用于非线性预编码的CSI可能不够精确,特别是对于小区边缘UE尤其如此。当需要增强的性能时,需要更新预编码器。因此,网络设备110可能需要通过非周期性SRS获得更新的CSI,以改善非线性预编码的性能。在一些实施例中,终端设备120响应于从网络设备接收到关于更新天线集合的信息,利用更新天线集合中的天线,向网络设备110发送参考信号。在此情况下,终端设备120向网络设备110发送的参考信号是由于触发而发送的参考信号,因此是非周期性的。网络设备110则可以基于接收的参考信号来测量与更新天线集合对应的信道信息,并且基于测量的信道信息对数据进行非线性预编码并发送至终端设备120。在终端设备120处,可以从网络设备110接收经非线性预编码的数据。
更新天线集合可以由网络设备110从候选天线集合而确定。终端设备120可以从网络设备接收到的下行链路控制信息包括的参考信号资源指示符中获取更新天线集合的信息。
根据本公开的实施例能够简化CSI获取过程,因为只需要来自所选天线/端口的CSI来设计非线性预编码。此外,使用SRI隐式指示天线选择以及带有天线选择的非周期性SRS可简化非线性预编码过程并节省信令。根据本公开的实施例天线选择方案还能够减轻CSI误差的影响,并且更加鲁棒。另外,由于接收组合阶段被天线选择所取代,UE的复杂度得以降低。
接下来参考图3,其示出了根据本公开的某些实施例的在终端设备侧实施的方法300的流程图。可以理解,方法300可以例如在如图1所示的网络设备110处实施。
在310,网络设备110从接收自终端设备120的参考信号资源指示符来获取关于候选天线集合的信息。
候选天线集合可以是终端设备基于预先测量的信道质量而从终端设备处的多个天线中选择的。候选天线集合包括可用于网络设备进行非线性预编码的天线。
在一些实施例中,网络设备110可以从终端设备120接收包括参考信号资源指示符的上行链路控制信息,并从参考信号资源指示符中获取关于候选天线集合的信息。
在320,网络设备110从候选天线集合中确定用于进行非线性预编码的目标天线集合。网络设备110可以根据测量的信道信息来从候选天线集合中选择信道信息较好的天线,将其作为目标天线集合中的天线。在替代方式中,网络设备110也可以根据预设的规则或系统要求等来从候选天线集合确定目标天线集合。
在330,网络设备110向终端设备发送有关目标天线集合的信息。在一些实施例中,网络设备110可以将关于目标天线集合的信息包括在下行链路控制信息的参考信号资源指示符中,并向终端设备120发送下行链路控制信息。
在一些实施例中,终端设备120周期性地向网络设备110可以发送参考信号,例如SRS。网络设备110可以基于从终端设备接收的周期性参考信号,来测量与目标天线集合对应的信道信息,并且可以基于测量的信道信息对数据进行非线性预编码。然后,网络设备110可以向终端设备120发送经非线性预编码的数据。
附加地或可选地,在一些实施例中,网络设备110可以响应于要触发非周期性参考信号的发送,从候选天线集合中确定更新天线集合。网络设备110还可以向终端设备120发送关于更新天线集合的信息,以使得终端设备120利用更新天线集合中的天线来向网络设备110发送非周期性的参考信号。
关于更新天线集合的信息可以通过多种方式发送。例如,网络设备110可以将关于更新天线集合的信息包括在下行链路控制信息的参考信号资源指示符中,并向终端设备120发送下行链路控制信息。
附加地或可选地,在一些实施例中,网络设备110可以接收终端设备120利用更新天线集合中的天线所发送的参考信号,例如SRS。由于这样的参考信号是终端设备120根据来自网络设备110的触发而发送的,因此是非周期性的参考信号。网络设备110可以基于从终端设备接收的非周期性参考信号,来测量与更新天线集合对应的信道信息,并且可以基于测量的信道信息对数据进行非线性预编码。然后,网络设备110可以向终端设备120发送经非线性预编码的数据。
以下将结合图4和图5的实施例对网络设备110和终端设备120的交互进行进一步说明。在以下实施例中,以gNB和UE为例来描述网络设备110和终端设备120。应当理解,这是示例性的,而无意对本公开的实施例进行任何限制。
图4示出了根据本公开的某些实施例的网络设备和终端设备的交互图。在图4的实施例中,UE确定候选天线集合,并向gNB发送关于候选天线集合的信息。然后gNB基于候选天线集合来进行天线选择,从而确定目标天线集合,用以进行非线性预编码。为了便于讨论,以下将这一过程简称为“常规阶段”(Regular Phase)。
在图4的实施例中,UE 120通过天线切换来连续发送411参考信号(例如SRS),以便得到UE处所有天线的CSI。UE基于在每个天线/端口上预先测量的信道质量,从UE的所有天线中选择412N个天线来作为候选天线集合。gNB 110不必使用全部下行链路CSI,从而避免了在不同时隙中、在不同天线上获得的CSI之间存在的延迟问题。因此,UE 120利用上行控制信息中的SRI来定期报告413隐式CSI,以向gNB 110指示其希望使用的候选天线集合中的N个天线。例如,UE可以在PUCCH中周期性地反馈N个SRI,来向gNB 110指示该N个天线。
然后,在414,gNB 110获取CSI,进行调度,设计线性编码器,选择候选天线集合中的N个优选天线中的r个天线作为目标天线集合,并且设计非线性预编码。在设计线性编码器时,gNB 110计算线性预编码器F并构建天线选择矩阵T。在设计非线性编码器时,gNB 110针对反馈滤波器B和前馈滤波器P、基于有效信道来设计非线性预编码器,其中有效信道Heff可以如下计算:
Heff=THF (1)
其中表示根据完全的CSI得到的信道,T表示天线选择矩阵,F表示线性预编码器,/>
gNB 110通过r个SRI在DCI格式中形成天线选择模式,隐含指示UE 120应根据SRI来确定选择哪个或哪些天线/端口。这样的格式通过天线选择和SRI来进行表示。gNB 110在415向UE 120发送这样的SRI。以此方式,gNB 110不必知道UE 120的天线索引,并且避免了通过额外信令对天线索引进行明确指示。由此,可以节省信令开销。这种方式还为UE 120应用天线选择提供了更高的灵活性,例如,UE 120可以为SRS传输定义其自己的天线索引规则。
UE 120从PDCCH上传输的SRI中确定416gNB 110选择的r个天线,即,目标天线集合。由此,当gNB 110向UE 120发送417数据时,在418,UE 120利用由SRI指示的目标天线集合中的r个天线来接收数据,并通过非线性预编码DMRS对数据进行加权后解调。
图5示出了根据本公开的某些实施例的网络设备和终端设备的交互图。在图5的实施例中,gNB发起非周期性SRS触发,其中包括了gNB所选择的更新天线集合的信息。UE根据该触发来利用更新天线集合发送非周期性SRS,以便gNB根据该非周期性SRS来更新信道状态信息。为了便于讨论,以下将这一过程简称为“更新阶段”(Updated Phase)。
与常规阶段类似,用于预编码设计的CSI是从常规过程获得的,对于非线性预编码可能不够精确,特别是对于小区边缘UE尤其如此。当需要增强的性能时,需要更新预编码器。因此,gNB可能需要通过非周期性SRS获得更新的CSI,以改善非线性预编码的性能。
在图5所示的实施例中,gNB 110可以仅通过SRI触发511在UE 120处以选择的m个天线(m≤N)来进行非周期性SRS传输,即,DCI格式包括的SRI字段用于指示非周期性SRS触发、并且包括天线选择(更新天线集合,其包括上述选择的m个天线)。这样的SRI与常规SRS情况下的天线索引具有相同的映射,但是选择的m个天线可以与常规阶段下选择的r个天线不同、部分相同或完全相同。一旦UE 120被触发,UE 120从SRI中确定512更新天线集合,并向gNB 110发送513相应的非周期性SRS,以用于更新CSI。然后,gNB 110更新514非线性预编码器(如果该SRI与常规SRI不同,m≠r,则可能附加地更新线性预编码器),并将数据发送515到UE 120。UE 120应用更新天线集合(即,上述r个天线)来进行数据接收516,并通过非线性预编码DMRS计算数据流的权重和解调数据。
在上述常规阶段和更新阶段两个阶段中提出的DCI格式的示例在以下的表1和表2中示出。
表1:支持UE天线选择过程的DCI格式
天线选择(AS) 参考
0 []
1 SRI1(用于基于天线选择的接收)
表2:支持非周期性SRS传输和UE天线选择过程的DCI格式
表1对应于常规阶段,其中DCI若具有的天线选择(AS)为1“1”并且SRI为SRI1,则指示gNB应用于在天线上触发UE的情况基于选择的接收。表2对应于更新阶段,其中DCI具有为“A”的SRS类型和SRI1或SRI2,该DCI不仅用于触发具有天线选择的非周期性SRS传输,而且还指示基于相应的基于UE的接收过程的天线选择。当DCI的SRI为“空”(表示为“NULL”或“[]”)时,不对所确定的已选择的天线进行改变。在这种情况下,实际上是重新使用SRI1,与表1中的情况相同。当DCI中的SRI为SRI2时,用于非周期性SRS发送和接收的天线被改变,即,更新天线集合中的天线与以前所选择的天线不完全相同。
图6示出了根据本公开的某些实施例的帧结构和传输示意图。假定UE具有支持相关功能的4个发送(Tx)/接收(Rx)天线,即,Tx天线0~3(简称“Tx0~Tx3”)对应于Rx天线0~3(简称“Rx0~Rx3”),并且两者都被映射到0~3个SRI。随后,UE使用天线切换(从Tx0到Tx3)来发送SRS,使得gNB能够获取与每个UE天线有关的CSI。由于在不同时隙中的不同天线处获得的CSI存在延迟问题,gNB并不使用全部下行链路CSI。因此,UE利用SRI来定期报告CSI,来向gNB指示该UE所优选的能够得到较好CSI的天线,即,候选天线集合。
gNB执行调度,确定用于UE进行接收所要使用的天线,即目标天线集合,并且通过线性和非线性预编码的级联来对数据进行预编码。在下行链路子帧中,gNB例如使用表1而在DCI中利用SRI通知UE该目标天线集合,以确保UE进行正确接收。在该示例中,DCI为AS1&SRI1,其中SRI1对应于所选的Rx0。
在需要提高性能的情况下,非周期性SRS与天线选择一起被触发。如果DCI格式(参见表2)为A-SRS和空([]),则选择的天线没有改变并且所指示的SRI仍然是SRI1,即它指向SRI1字段,该字段由指示AS1和SRI1共享。在该例子中,非周期性SRS在Tx0上传输,而UE所进行的接收仍然使用Rx0。当DCI格式(参见表2)为A-SRS&SRI2时,这意味着CSI更新应该在不同的选择天线上执行,在该例子中,例如是Tx0&Tx1。因此,指示UE的选择天线的DCI格式应该是AS1&SRI2,其中SRI2指示Rx0和Rx1。
根据本公开的实施例也适用于使用混合天线阵列的NR系统。在一些实施例中,针对NR系统中的大型天线阵列,则“天线”选择即为“端口”选择,其中端口指的是射频(RF)链处的电平并且不直接链接到天线元件。如果它是全数字,则该端口对应于天线。如果它是其他混合阵列配置之一,则端口对应于连接到多个天线元件的RF链)。在本公开的实施例中,将数据流传送到期望的“端口”,其中在UE处有几个“端口”/天线可用。在混合阵列配置的情况下,多个天线元件连接到一个RF链并且天线的数量大于RF链的数量。对于该过程,因为gNB能够获取接收端口级别的CSI,所以它能够选择具有良好CSI(波束形成的CSI)的端口。因此,在本公开的实施例中,“天线”选择也可以称为“端口”选择。
图7和图8分别示出了根据本公开的某些实施例的系统性能示意图。以下在具有CSI错误的情况下,评估根据本公开的实施例的方案的小区吞吐量和UE吞吐量性能。本公开的实施例的方案简称为“THP w./天线选择”,与两种已有方案进行比较,一种已有方案简称为“THP w./接收组合”,另一种已有方案简称为“全THP”。在该示例中,线性组合与THP非线性预编码一起设计。考虑在gNB处的全THP方案(没有线性预编码阶段)作为最佳情况。应用WINNER II通道模型中定义的本地小型办公场景,其中详细的模拟参数参见表3。
表3
图7和图8分别示出了针对不同UE配置通过不同方案获得的小区吞吐量的累积分布函数(CDF)。在图7的示例中UE数目为8,而在图8的示例中,UE的数目为16。从图7和图8可以观察到,在较高等级传输的情况下,即2个流,根据本公开的实施例的方案优于具有接收组合的方案,并且非常接近全THP情况。因此,根据本公开的实施例的方案通过简单的天线选择即可获得与需要全部下行链路CSI的方案相似甚至更好的性能,这对于NR MIMO而相而言是非常有前途的。
图9示出了根据本公开的某些实施例的终端设备处的装置900的框图。可以理解,装置900可以实施在图1所示的终端设备120中。如图9所示,装置900包括:控制单元910,被配置为基于预先测量的信道质量,从所述终端设备处的多个天线中确定候选天线集合,所述候选天线集合包括可用于网络设备进行非线性预编码的天线;以及发送单元920,被配置为利用参考信号资源指示符向所述网络设备发送关于所述候选天线集合的信息,以使得所述网络设备从所述候选天线集合中确定用于进行非线性预编码的目标天线集合。
在一些实施例中,控制单元910还被配置为:获取所述终端设备处的所述多个天线中的每个天线的预先测量的信道质量;以及从所述多个天线中选择信道质量高于阈值质量的天线,作为所述候选天线集合中的天线。
在一些实施例中,发送单元920还被配置为:将关于所述候选天线集合的信息包括在上行链路控制信息的参考信号资源指示符中;以及向所述网络设备发送所述上行链路控制信息。
在一些实施例中,装置900还包括接收单元,被配置为:从所述网络设备接收有关目标天线集合的信息。
在一些实施例中,接收单元还被配置为:接收来自所述网络设备的下行链路控制信息;以及从所述下行链路控制信息所包括的参考信号资源指示符中获取有关所述目标天线集合的信息。
在一些实施例中,接收单元还被配置为:利用所述目标天线集合中的天线,接收经所述网络设备非线性预编码的数据;以及基于用于非线性预编码的解调参考信号,对接收的所述数据进行解调。
在一些实施例中,发送单元920还被配置为:响应于从所述网络设备接收到关于更新天线集合的信息,利用所述更新天线集合中的天线,向所述网络设备发送参考信号,以使得所述网络设备基于接收的所述参考信号来测量与所述更新天线集合对应的信道信息并且基于测量的所述信道信息对数据进行非线性预编码,所述更新天线集合由所述网络设备从所述候选天线集合而确定。接收单元还被配置为从所述网络设备接收经非线性预编码的数据。
在一些实施例中,所述更新天线集合的信息是从所述网络设备接收到的下行链路控制信息包括的参考信号资源指示符中获取的。
图10示出了根据本公开的某些实施例的网络设备处的装置1000的框图。可以理解,可以实施在图1所示的网络设备110中。如图10所示,装置1000包括:控制单元1010,被配置为:从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息,所述候选天线集合是所述终端设备基于预先测量的信道质量而从所述终端设备处的多个天线中选择的,所述候选天线集合包括可用于网络设备进行非线性预编码的天线,以及从所述候选天线集合中确定用于进行非线性预编码的目标天线集合;以及发送单元1020,被配置为向所述终端设备发送有关目标天线集合的信息。
在一些实施例中,装置1000还包括接收单元,被配置为从所述终端设备接收包括所述参考信号资源指示符的上行链路控制信息;以及从所述参考信号资源指示符中获取关于所述候选天线集合的信息。
在一些实施例中,发送单元1020还被配置为将关于所述目标天线集合的信息包括在下行链路控制信息的参考信号资源指示符中;以及向所述终端设备发送所述下行链路控制信息。
在一些实施例中,控制单元1010还被配置为:基于从所述终端设备接收的周期性参考信号,来测量与所述目标天线集合对应的信道信息;以及基于测量的所述信道信息对数据进行非线性预编码。发送单元1020还被配置为向所述终端设备发送经非线性预编码的所述数据。
在一些实施例中,控制单元1010还被配置为:响应于要触发非周期性参考信号的发送,从所述候选天线集合中确定更新天线集合。发送单元1020还被配置为向所述终端设备发送关于更新天线集合的信息,以使得所述终端设备利用所述更新天线集合中的天线,向所述网络设备发送所述非周期性的参考信号。
在一些实施例中,发送单元1020还被配置为:将关于所述更新天线集合的信息包括在下行链路控制信息的参考信号资源指示符中;以及向所述终端设备发送所述下行链路控制信息。
在一些实施例中,接收单元还被配置为接收所述终端设备利用所述更新天线集合中的天线所发送的参考信号。控制单元1010还被配置为基于接收的所述参考信号,测量与所述更新天线集合对应信道信息;以及基于测量的所述信道信息对数据进行非线性预编码。发送单元1020还被配置为向所述终端设备发送经非线性预编码的所述数据。
应当理解,装置900和装置1000中记载的每个单元分别与参考图2和图3描述的方法200和300中的各步骤相对应。因此,上文结合图2和图3描述的操作和特征同样适用于装置900和装置1000及其中包含的单元,并且具有同样的效果,具体细节不再赘述。
装置900和装置1000中所包括的单元可以利用各种方式来实现,包括软件、硬件、固件或其任意组合。在一个实施例中,一个或多个单元可以使用软件和/或固件来实现,例如存储在存储介质上的机器可执行指令。除了机器可执行指令之外或者作为替代,装置900和装置1000的部分或者全部单元可以至少部分地由一个或多个硬件逻辑组件来实现。作为示例而非限制,可以使用的示范类型的硬件逻辑组件包括现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD),等等。
图9和图10中所示的这些单元可以部分或者全部地实现为硬件模块、软件模块、固件模块或者其任意组合。特别地,在某些实施例中,上文描述的流程、方法或过程可以由基站或者终端设备中的硬件来实现。例如,基站或者终端设备可以利用其发射器、接收器、收发器和/或处理器或控制器来实现方法200和300。
图11示出了适合实现本公开的实施例的设备1100的方框图。设备1100可以用来实现网络设备或终端设备,例如图1中所示的网络设备110和终端设备120。
如图所示,设备1100包括控制器1110。控制器1110控制设备1100的操作和功能。例如,在某些实施例中,控制器1110可以借助于与其耦合的存储器1120中所存储的指令1130来执行各种操作。存储器1120可以是适用于本地技术环境的任何合适的类型,并且可以利用任何合适的数据存储技术来实现,包括但不限于基于半导体的存储器件、磁存储器件和系统、光存储器件和系统。尽管图11中仅仅示出了一个存储器单元,但是在设备1100中可以有多个物理不同的存储器单元。
控制器1110可以是适用于本地技术环境的任何合适的类型,并且可以包括但不限于通用计算机、专用计算机、微控制器、数字信号控制器(DSP)以及基于控制器的多核控制器架构中的一个或多个多个。设备1100也可以包括多个控制器1110。控制器1110与收发器1140耦合,收发器1140可以借助于一个或多个天线1150和/或其他部件来实现信息的接收和发送。
当设备1100充当终端设备120时,控制器1110和收发器1140可以配合操作,以实现上文参考图2描述的方法200。其中,控制器1110被配置用于基于预先测量的信道质量,从所述终端设备处的多个天线中确定候选天线集合,所述候选天线集合包括可用于网络设备进行非线性预编码的天线。收发器1140被配置用于利用参考信号资源指示符向所述网络设备发送关于所述候选天线集合的信息,以使得所述网络设备从所述候选天线集合中确定用于进行非线性预编码的目标天线集合。
在一些实施例中,控制器1110还被配置为:获取所述终端设备处的所述多个天线中的每个天线的预先测量的信道质量;以及从所述多个天线中选择信道质量高于阈值质量的天线,作为所述候选天线集合中的天线。
在一些实施例中,收发器1140还被配置为:将关于所述候选天线集合的信息包括在上行链路控制信息的参考信号资源指示符中;以及向所述网络设备发送所述上行链路控制信息。
在一些实施例中,收发器1140还被配置为:从所述网络设备接收有关目标天线集合的信息。
在一些实施例中,收发器1140还被配置为:接收来自所述网络设备的下行链路控制信息;以及从所述下行链路控制信息所包括的参考信号资源指示符中获取有关所述目标天线集合的信息。
在一些实施例中,收发器1140还被配置为:利用所述目标天线集合中的天线,接收经所述网络设备非线性预编码的数据;以及基于用于非线性预编码的解调参考信号,对接收的所述数据进行解调。
在一些实施例中,收发器1140还被配置为:响应于从所述网络设备接收到关于更新天线集合的信息,利用所述更新天线集合中的天线,向所述网络设备发送参考信号,以使得所述网络设备基于接收的所述参考信号来测量与所述更新天线集合对应的信道信息并且基于测量的所述信道信息对数据进行非线性预编码,所述更新天线集合由所述网络设备从所述候选天线集合而确定。接收单元还被配置为从所述网络设备接收经被非线性预编码的数据。
在一些实施例中,所述更新天线集合的信息是从所述网络设备接收到的下行链路控制信息包括的参考信号资源指示符中获取的。
当设备1100充当网络设备120时,控制器1110和收发器1140可以配合操作,以实现上文参考图3描述的方法300。其中,控制器1110被配置为从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息,所述候选天线集合是所述终端设备基于预先测量的信道质量而从所述终端设备处的多个天线中选择的,所述候选天线集合包括可用于网络设备进行非线性预编码的天线;以及从所述候选天线集合中确定用于进行非线性预编码的目标天线集合。收发器1140被配置为向所述终端设备发送有关目标天线集合的信息。
在一些实施例中,收发器1140还被配置为从所述终端设备接收包括所述参考信号资源指示符的上行链路控制信息;以及从所述参考信号资源指示符中获取关于所述候选天线集合的信息。
在一些实施例中,收发器1140还被配置为将关于所述目标天线集合的信息包括在下行链路控制信息的参考信号资源指示符中;以及向所述终端设备发送所述下行链路控制信息。
在一些实施例中,控制器1110还被配置为:基于从所述终端设备接收的周期性参考信号,来测量与所述目标天线集合对应的信道信息;以及基于测量的所述信道信息对数据进行非线性预编码。收发器1140还被配置为向所述终端设备发送经非线性预编码的所述数据。
在一些实施例中,控制器1110还被配置为:响应于要触发非周期性参考信号的发送,从所述候选天线集合中确定更新天线集合。收发器1140还被配置为向所述终端设备发送关于更新天线集合的信息,以使得所述终端设备利用所述更新天线集合中的天线,向所述网络设备发送所述非周期性的参考信号。
在一些实施例中,收发器1140还被配置为:将关于所述更新天线集合的信息包括在下行链路控制信息的参考信号资源指示符中;以及向所述终端设备发送所述下行链路控制信息。
在一些实施例中,收发器1140还被配置为接收所述终端设备利用所述更新天线集合中的天线所发送的参考信号。控制器1110还被配置为基于接收的所述参考信号,测量与所述更新天线集合对应信道信息;以及基于测量的所述信道信息对数据进行非线性预编码。收发器1140还被配置为向所述终端设备发送经非线性预编码的所述数据。
上文参考图2和图3所描述的所有特征均适用于设备1100,在此不再赘述。
一般而言,本公开的各种示例实施例可以在硬件或专用电路、软件、逻辑,或其任何组合中实施。某些方面可以在硬件中实施,而其他方面可以在可以由控制器、微处理器或其他计算设备执行的固件或软件中实施。当本公开的实施例的各方面被图示或描述为框图、流程图或使用某些其他图形表示时,将理解此处描述的方框、装置、系统、技术或方法可以作为非限制性的示例在硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某些组合中实施。
作为示例,本公开的实施例可以在机器可执行指令的上下文中被描述,机器可执行指令诸如包括在目标的真实或者虚拟处理器上的器件中执行的程序模块中。一般而言,程序模块包括例程、程序、库、对象、类、组件、数据结构等,其执行特定的任务或者实现特定的抽象数据结构。在各实施例中,程序模块的功能可以在所描述的程序模块之间合并或者分割。用于程序模块的机器可执行指令可以在本地或者分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质二者中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,机器可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。机器可读介质可以是机器可读信号介质或机器可读存储介质。机器可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。机器可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
另外,尽管操作以特定顺序被描绘,但这并不应该理解为要求此类操作以示出的特定顺序或以相继顺序完成,或者执行所有图示的操作以获取期望结果。在某些情况下,多任务或并行处理会是有益的。同样地,尽管上述讨论包含了某些特定的实施细节,但这并不应解释为限制任何发明或权利要求的范围,而应解释为对可以针对特定发明的特定实施例的描述。本说明书中在分开的实施例的上下文中描述的某些特征也可以整合实施在单个实施例中。反之,在单个实施例的上下文中描述的各种特征也可以分离地在多个实施例或在任意合适的子组合中实施。
尽管已经以特定于结构特征和/或方法动作的语言描述了主题,但是应当理解,所附权利要求中限定的主题并不限于上文描述的特定特征或动作。相反,上文描述的特定特征和动作是作为实现权利要求的示例形式而被公开的。

Claims (18)

1.一种在终端设备处实施的通信方法,包括:
基于预先测量的信道质量,从所述终端设备处的多个天线中确定候选天线集合,所述候选天线集合包括可用于网络设备进行非线性预编码的天线;
利用参考信号资源指示符向所述网络设备发送关于所述候选天线集合的信息,以使得所述网络设备从所述候选天线集合中确定用于进行非线性预编码的目标天线集合;
从所述网络设备接收有关目标天线集合的信息;
响应于从所述网络设备接收到关于更新天线集合的信息,利用所述更新天线集合中的天线,向所述网络设备发送参考信号,以使得所述网络设备基于接收的所述参考信号来测量与所述更新天线集合对应的信道信息并且基于测量的所述信道信息对数据进行非线性预编码,所述更新天线集合由所述网络设备从所述候选天线集合确定;以及
从所述网络设备接收经非线性预编码的所述数据。
2.根据权利要求1所述的方法,其中从所述终端设备处的多个天线中选择确定候选天线集合包括:
获取所述终端设备处的所述多个天线中的每个天线的预先测量的信道质量;以及
从所述多个天线中选择信道质量高于阈值质量的天线,作为所述候选天线集合中的天线。
3.根据权利要求1所述的方法,其中利用参考信号资源指示符向所述网络设备发送关于所述候选天线集合的信息包括:
将关于所述候选天线集合的信息包括在上行链路控制信息的参考信号资源指示符中;以及
向所述网络设备发送所述上行链路控制信息。
4.根据权利要求1所述的方法,其中从所述网络设备接收有关目标天线集合的信息包括:
接收来自所述网络设备的下行链路控制信息;以及
从所述下行链路控制信息所包括的参考信号资源指示符中获取有关所述目标天线集合的信息。
5.根据权利要求1所述的方法,还包括:
利用所述目标天线集合中的天线,接收经所述网络设备非线性预编码的数据;以及
基于用于非线性预编码的解调参考信号,对接收的所述数据进行解调。
6.根据权利要求1所述的方法,其中所述更新天线集合的信息是从所述网络设备接收到的下行链路控制信息包括的参考信号资源指示符中获取的。
7.一种在网络设备处实施的通信方法,包括:
从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息,所述候选天线集合是所述终端设备基于预先测量的信道质量而从所述终端设备处的多个天线中选择的,所述候选天线集合包括可用于网络设备进行非线性预编码的天线;
从所述候选天线集合中确定用于进行非线性预编码的目标天线集合;
向所述终端设备发送有关目标天线集合的信息;
响应于要触发非周期性参考信号的发送,从所述候选天线集合中确定更新天线集合;以及
向所述终端设备发送关于更新天线集合的信息,以使得所述终端设备利用所述更新天线集合中的天线,向所述网络设备发送所述非周期性的参考信号。
8.根据权利要求7所述的方法,其中从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息包括:
从所述终端设备接收包括所述参考信号资源指示符的上行链路控制信息;以及
从所述参考信号资源指示符中获取关于所述候选天线集合的信息。
9.根据权利要求7所述的方法,其中向所述终端设备发送有关目标天线集合的信息包括:
将关于所述目标天线集合的信息包括在下行链路控制信息的参考信号资源指示符中;以及
向所述终端设备发送所述下行链路控制信息。
10.根据权利要求7所述的方法,还包括:
基于从所述终端设备接收的周期性参考信号,来测量与所述目标天线集合对应的信道信息;
基于测量的所述信道信息对数据进行非线性预编码;以及
向所述终端设备发送经非线性预编码的所述数据。
11.根据权利要求7所述的方法,其中向所述终端设备发送关于更新天线集合的信息包括:
将关于所述更新天线集合的信息包括在下行链路控制信息的参考信号资源指示符中;以及
向所述终端设备发送所述下行链路控制信息。
12.根据权利要求7所述的方法,还包括:
接收所述终端设备利用所述更新天线集合中的天线所发送的参考信号;
基于接收的所述参考信号,测量与所述更新天线集合对应的信道信息;
基于测量的所述信道信息对数据进行非线性预编码;以及
向所述终端设备发送经非线性预编码的所述数据。
13.一种终端设备,包括:
至少一个处理器;以及
与所述至少一个处理器耦合的存储器,所述存储器包含有存储于其中的指令,所述指令在被所述至少一个处理器执行时,使得所述终端设备执行根据权利要求1至6中任一项所述的方法。
14.一种网络设备,包括:
至少一个处理器;以及
与所述至少一个处理器耦合的存储器,所述存储器包含有存储于其中的指令,所述指令在被所述至少一个处理器执行时,使得所述网络设备执行根据权利要求7至12中任一项所述的方法。
15.一种终端设备,包括:
控制单元,被配置为基于预先测量的信道质量,从所述终端设备处的多个天线中确定候选天线集合,所述候选天线集合包括可用于网络设备进行非线性预编码的天线;
发送单元,被配置为利用参考信号资源指示符向所述网络设备发送关于所述候选天线集合的信息,以使得所述网络设备从所述候选天线集合中确定用于进行非线性预编码的目标天线集合;
第一接收单元,被配置为从所述网络设备接收有关目标天线集合的信息;
发送单元,被配置为响应于从所述网络设备接收到关于更新天线集合的信息,利用所述更新天线集合中的天线,向所述网络设备发送参考信号,以使得所述网络设备基于接收的所述参考信号来测量与所述更新天线集合对应的信道信息并且基于测量的所述信道信息对数据进行非线性预编码,所述更新天线集合由所述网络设备从所述候选天线集合确定;以及
第二接收单元,被配置为从所述网络设备接收经非线性预编码的所述数据。
16.一种网络设备,包括:
控制单元,被配置为:
从接收自终端设备的参考信号资源指示符来获取关于候选天线集合的信息,所述候选天线集合是所述终端设备基于预先测量的信道质量而从所述终端设备处的多个天线中选择的,所述候选天线集合包括可用于网络设备进行非线性预编码的天线,以及
从所述候选天线集合中确定用于进行非线性预编码的目标天线集合;
第一发送单元,被配置为向所述终端设备发送有关目标天线集合的信息;
确定单元,被配置为响应于要触发非周期性参考信号的发送,从所述候选天线集合中确定更新天线集合;以及
第二发送单元,被配置为向所述终端设备发送关于更新天线集合的信息,以使得所述终端设备利用所述更新天线集合中的天线,向所述网络设备发送所述非周期性的参考信号。
17.一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现根据权利要求1-6中任一项所述的方法。
18.一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现根据权利要求7-12中任一项所述的方法。
CN201880091445.1A 2018-04-19 2018-04-19 通信方法和通信设备 Active CN111886913B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/083809 WO2019200595A1 (zh) 2018-04-19 2018-04-19 通信方法和通信设备

Publications (2)

Publication Number Publication Date
CN111886913A CN111886913A (zh) 2020-11-03
CN111886913B true CN111886913B (zh) 2023-07-21

Family

ID=68240592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880091445.1A Active CN111886913B (zh) 2018-04-19 2018-04-19 通信方法和通信设备

Country Status (2)

Country Link
CN (1) CN111886913B (zh)
WO (1) WO2019200595A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009785B (zh) * 2013-02-25 2017-11-28 华为技术有限公司 码本反馈方法、用户设备和基站
CN106160823B (zh) * 2015-04-03 2021-02-05 索尼公司 用于无线通信的装置和方法
EP3327950A4 (en) * 2015-07-23 2019-03-27 LG Electronics Inc. METHOD OF TRANSMITTING / RECEIVING SIGNAL BASED ON A CODEBOOK IN A MULTI-ANTENNA WIRELESS COMMUNICATION SYSTEM, AND DEVICE THEREOF
WO2017049644A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种资源选择的方法及装置和一种电子设备
CN106817156A (zh) * 2015-11-27 2017-06-09 中兴通讯股份有限公司 天线选择信息的指示方法及装置
CN107360625B (zh) * 2016-05-09 2023-04-18 中兴通讯股份有限公司 一种传输数据的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"R1-1719042 Offline discussion UL MIMO".3GPP tsg_ran\WG1_RL1.2017, *

Also Published As

Publication number Publication date
CN111886913A (zh) 2020-11-03
WO2019200595A1 (zh) 2019-10-24

Similar Documents

Publication Publication Date Title
US11689255B2 (en) Wireless communication system, and device and method in wireless communication system
CN110838856B (zh) 一种数据传输方法、终端及网络设备
EP3228021B1 (en) Method and apparatus of downlink signaling for partially precoded csi-rs and csi feedback
CN110832803B (zh) 用于多用户多入多出的干扰测量和信道状态信息反馈
CN108292942B (zh) 在无线通信系统中发送和接收信道状态信息的方法及其设备
CN105359427B (zh) 用于在无线通信系统中通过终端发送用于使波束成形分离的反馈信息的方法
US10374678B2 (en) Channel state information feedback method and apparatus
TWI595759B (zh) Hybrid beamforming transmission method and network equipment
EP3016430B1 (en) Method and apparatus for acquiring channel state information in antenna array
US10659126B2 (en) Method for feeding back CSI information in wireless communication system and device therefor
KR101060857B1 (ko) Mimo 통신 시스템에서의 데이터 전송 방법 및 장치
KR102371961B1 (ko) 레퍼런스 신호를 전송하는 방법 및 장치, 채널 상태 정보를 측정 및 보고하는 방법 및 장치, 그리고 이를 위한 설정 방법
CN108418614B (zh) 用于非线性预编码的通信方法和设备
EP2816739B1 (en) Aerial calibration method, system and device
US10630353B2 (en) Two-stage precoding method and apparatus
EP3565154A1 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
EP3399661A1 (en) Method for reporting csi in wireless communication system and apparatus therefor
US20180054244A1 (en) Method for feeding back csi information on basis of csi reporting type in wireless communication system, and device thereof
WO2017048178A1 (en) Network node, wireless device and methods thereby to indicate a first set of antenna ports and a second set of antenna ports
KR20100100578A (ko) 무선 통신 시스템에서 CoMP 동작 수행 및 피드백 정보 전송 방법
CN109391305B (zh) 一种通信处理方法及装置
EP3675378A1 (en) Measurement method, network device, and terminal device
US10608724B2 (en) Method for reporting CSI in wireless communication system and device for same
KR20140054254A (ko) 무선 통신 시스템에서 채널상태정보를 전송하는 방법 및 장치
CN110622438A (zh) 在无线通信系统中发送反馈信息的方法及其设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant