CN111871430B - Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material - Google Patents
Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material Download PDFInfo
- Publication number
- CN111871430B CN111871430B CN202010646999.2A CN202010646999A CN111871430B CN 111871430 B CN111871430 B CN 111871430B CN 202010646999 A CN202010646999 A CN 202010646999A CN 111871430 B CN111871430 B CN 111871430B
- Authority
- CN
- China
- Prior art keywords
- kca
- znin
- preparation
- dimensional
- heterojunction composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 37
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- YYKKIWDAYRDHBY-UHFFFAOYSA-N [In]=S.[Zn] Chemical compound [In]=S.[Zn] YYKKIWDAYRDHBY-UHFFFAOYSA-N 0.000 title claims abstract description 5
- 239000002135 nanosheet Substances 0.000 claims abstract description 46
- 239000011941 photocatalyst Substances 0.000 claims abstract description 12
- 239000011575 calcium Substances 0.000 claims abstract description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 claims abstract description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 15
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 229910021617 Indium monochloride Inorganic materials 0.000 claims description 9
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims description 9
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 9
- 230000005588 protonation Effects 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 7
- 239000004570 mortar (masonry) Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- NYRAVIYBIHCEGB-UHFFFAOYSA-N [K].[Ca] Chemical compound [K].[Ca] NYRAVIYBIHCEGB-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims 2
- 230000003197 catalytic effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 3
- 239000008204 material by function Substances 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 238000001816 cooling Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000010757 Reduction Activity Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000010812 external standard method Methods 0.000 description 1
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/40—Carbon monoxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明属于无机功能材料及其制备领域,具体说是一种硫铟锌/铌酸钙钾二维纳米片异质结复合光催化材料(ZnIn2S4/KCa2Nb3O10)的制备方法与用途。采用低温水热法制备具有紧密二维‑二维界面的ZnIn2S4/KCa2Nb3O10异质结复合光催化剂。所开发材料展现出优异的可见光催化还原CO2活性,最佳比例产物即ZnIn2S4质量分数为20%,活性达4.69μmol·g‑1·h‑1,为纯相ZnIn2S4纳米片、KCa2Nb3O10纳米片的12.31倍和1.95倍。本方法简便可行,易于重复,所制备产物性能优异,在光催化还原CO2领域具有广阔的应用前景。
The invention belongs to the field of inorganic functional materials and their preparation, specifically the preparation of a sulfur indium zinc/calcium potassium niobate two-dimensional nanosheet heterojunction composite photocatalytic material (ZnIn 2 S 4 /KCa 2 Nb 3 O 10 ) Methods and uses. ZnIn 2 S 4 /KCa 2 Nb 3 O 10 heterojunction composite photocatalysts with tight two-dimensional-two-dimensional interfaces were prepared by low-temperature hydrothermal method. The developed material exhibits excellent visible-light photocatalytic reduction of CO 2 activity, the optimal ratio product is ZnIn 2 S 4 with a mass fraction of 20%, and the activity reaches 4.69 μmol g ‑1 h ‑1 , which is a pure phase ZnIn 2 S 4 nanometer sheet, KCa 2 Nb 3 O 10 nanosheets are 12.31 times and 1.95 times. The method is simple and feasible, easy to repeat, and the prepared product has excellent performance, and has broad application prospects in the field of photocatalytic reduction of CO 2 .
Description
技术领域technical field
本发明涉及一种硫铟锌/铌酸钙钾二维异质结复合光催化材料的制备方法与用途,属于无机功能材料制备及光催化技术领域。The invention relates to a preparation method and application of a sulfur indium zinc/calcium potassium niobate two-dimensional heterojunction composite photocatalytic material, belonging to the technical field of inorganic functional material preparation and photocatalysis.
技术背景technical background
随着工业的不断进步,环境污染问题日益凸显,尤其是CO2气体的排放量与日俱增,所引起的温室效应不断威胁着人类未来的发展。利用基于太阳能的光催化技术将CO2转化为高附加值化学品被认为是解决上述问题的有效途径。因此,高效光催化剂的开发具有重要意义。近年来,二维(2D)纳米片半导体材料因其具有较大的比表面积,充足的活性位点和较短的载流子迁移路径被认为是构建高效CO2光催化还原系统的理想材料。其中,作为典型的Dion-Jacobson(DJ)相钙钛矿氧化物,KCa2Nb3O10纳米片材料具有与碳基化合物的生成电位相匹配的能带结构、较强的光生电子还原能力以及优异的稳定性,已成为目前光催化领域研究的热点。然而,纯相KCa2Nb3O10纳米片带隙能较宽(~3.4eV),只能响应紫外光,并且其光生载流子复合率高,严重限制其光催化活性。因此,扩展KCa2Nb3O10纳米片基光催化剂光响应范围,同时实现高效载流子分离,是实现其高效催化的关键问题。With the continuous progress of industry, the problem of environmental pollution is becoming more and more prominent, especially the emission of CO 2 gas is increasing day by day, and the greenhouse effect caused by it is constantly threatening the future development of human beings. The conversion of CO2 into high value-added chemicals using solar-based photocatalytic technology is considered to be an effective way to solve the above problems. Therefore, the development of high-efficiency photocatalysts is of great significance. In recent years, two-dimensional (2D) nanosheet semiconductor materials have been considered as ideal materials for constructing efficient CO2 photocatalytic reduction systems due to their large specific surface area, sufficient active sites, and short carrier migration paths. Among them, as a typical Dion-Jacobson (DJ) phase perovskite oxide, KCa 2 Nb 3 O 10 nanosheet material has an energy band structure that matches the generation potential of carbon-based compounds, a strong ability to reduce photogenerated electrons and Excellent stability has become a research hotspot in the field of photocatalysis. However, pure-phase KCa 2 Nb 3 O 10 nanosheets have a wide band gap (~3.4eV), can only respond to ultraviolet light, and their high recombination rate of photogenerated carriers severely limits their photocatalytic activity. Therefore, expanding the photoresponse range of KCa 2 Nb 3 O 10 nanosheet-based photocatalysts while achieving efficient carrier separation is a key issue for realizing its high-efficiency catalysis.
近年来,通过构建异质结构来提高光催化材料CO2还原活性已被人们广泛研究。相较于其他维度异质结光催化体系,2D-2D异质结具有更大的接触面积、更快的载流子分离迁移速率,因而受到广泛关注。三元硫属化合物ZnIn2S4纳米片具有良好的载流子分离能力及可见光吸收性能,但是其光催化稳定性较差。利用其与KCa2Nb3O10纳米片构建2D-2D异质结,不仅可以有效促进KCa2Nb3O10的光吸收能力,同时增强ZnIn2S4的稳定性,更利于促进光生载流子分离,提高光催化剂CO2还原活性。In recent years, enhancing the CO2 reduction activity of photocatalytic materials by constructing heterostructures has been widely studied. Compared with other dimensional heterojunction photocatalytic systems, 2D-2D heterojunction has a larger contact area and faster carrier separation and migration rate, so it has attracted extensive attention. Ternary chalcogenide ZnIn 2 S 4 nanosheets have good carrier separation ability and visible light absorption performance, but their photocatalytic stability is poor. Using it with KCa 2 Nb 3 O 10 nanosheets to construct a 2D-2D heterojunction can not only effectively promote the light absorption ability of KCa 2 Nb 3 O 10 , but also enhance the stability of ZnIn 2 S 4 , which is more conducive to promoting photogenerated current carrying sub-separation to improve the CO2 reduction activity of photocatalysts.
然而,目前关于成功制备2D-2D ZnIn2S4/KCa2Nb3O10异质结光催化剂的方法仍鲜有报道。However, there are still few reports on the successful preparation of 2D-2D ZnIn 2 S 4 /KCa 2 Nb 3 O 10 heterojunction photocatalysts.
发明内容Contents of the invention
本发明目的是提供一种新的在低温条件下,以简单易行的水热法合成ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的方法。The purpose of the present invention is to provide a new method for synthesizing ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nano-sheet heterojunction composite photocatalytic material by a simple and easy hydrothermal method under low temperature conditions.
本发明通过以下步骤实现:The present invention is realized through the following steps:
步骤1、制备铌酸钙钾纳米片(KCa2Nb3O10):Step 1. Preparation of calcium potassium niobate nanosheets (KCa 2 Nb 3 O 10 ):
称取一定量干燥的K2CO3、CaCO3和Nb2O5于研钵中,经充分研磨混合后置于半封闭的坩埚中,然后将坩埚转移至自动程序控温的升温管式炉中煅烧。待自然冷却至室温后,取出,用研钵研磨至粉末状后,加入到HNO3溶液中搅拌数天,进行质子化处理。将质子化得到的白色沉淀用去离子水和无水乙醇清洗除去HNO3,再离心,干燥得到白色固体HCa2Nb3O10。Weigh a certain amount of dry K 2 CO 3 , CaCO 3 and Nb 2 O 5 in a mortar, grind and mix them thoroughly, put them in a semi-closed crucible, and then transfer the crucible to an automatic temperature-controlled tube furnace Calcined. After naturally cooling to room temperature, take it out, grind it into powder with a mortar, add it into HNO 3 solution and stir for several days to carry out protonation treatment. The white precipitate obtained by protonation was washed with deionized water and absolute ethanol to remove HNO 3 , then centrifuged and dried to obtain white solid HCa 2 Nb 3 O 10 .
称取一定量的HCa2Nb3O10加入一定量四丁基氢氧化铵溶液以及适量去离子水搅拌数天后,经离心得上层胶质物质。随后将胶质物质逐滴加入到KCl溶液中得到白色沉淀,将上述沉淀用去离子水和无水乙醇清洗,离心,最后置于真空干燥箱中干燥,得到KCa2Nb3O10纳米片。Weigh a certain amount of HCa 2 Nb 3 O 10 , add a certain amount of tetrabutylammonium hydroxide solution and an appropriate amount of deionized water, stir for several days, and centrifuge to obtain the upper colloidal substance. Subsequently, the colloidal substance was added dropwise into the KCl solution to obtain a white precipitate, which was washed with deionized water and absolute ethanol, centrifuged, and finally dried in a vacuum oven to obtain KCa 2 Nb 3 O 10 nanosheets.
步骤2、制备ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合材料:
取KCa2Nb3O10纳米片在一定量的水和丙三醇中混合,搅拌均匀后,加入ZnCl2,InCl3·4H2O和硫代乙酰胺固体,将所得混合液体置于圆底烧瓶中,油浴反应,离心洗涤真空干燥,得到ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合材料。Take KCa 2 Nb 3 O 10 nanosheets and mix them in a certain amount of water and glycerol. After stirring evenly, add ZnCl 2 , InCl 3 4H 2 O and thioacetamide solids, and place the resulting mixed liquid in a round bottom Reaction in an oil bath in a flask, centrifugal washing and vacuum drying to obtain a ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite material.
步骤1中,反应原料K2CO3、CaCO3和Nb2O5中,K+、Ca2+和Nb5+的摩尔比为1.1:2:3。In step 1, among the reaction raw materials K 2 CO 3 , CaCO 3 and Nb 2 O 5 , the molar ratio of K + , Ca 2+ and Nb 5+ is 1.1:2:3.
步骤1中,管式炉煅烧温度为1100~1400℃,管式炉煅烧时间为8~16h。最优煅烧温度为1200℃。In step 1, the calcination temperature of the tube furnace is 1100-1400° C., and the calcination time of the tube furnace is 8-16 hours. The optimal calcination temperature is 1200°C.
步骤1中,HNO3溶液的浓度为5mol·L-1,质子化时间为3~5天。In step 1, the concentration of the HNO 3 solution is 5 mol·L -1 , and the protonation time is 3-5 days.
步骤1中,四丁基氢氧化铵溶液质量分数为10%,质子化产物在四丁基氢氧化铵溶液中搅拌时间为5~10天;KCl溶液的浓度为2mol·L-1。In step 1, the mass fraction of the tetrabutylammonium hydroxide solution is 10%, and the stirring time of the protonated product in the tetrabutylammonium hydroxide solution is 5-10 days; the concentration of the KCl solution is 2mol·L -1 .
步骤2中,KCa2Nb3O10、ZnCl2、InCl3·4H2O、硫代乙酰胺的质量比例为100:6.41~25.62:13.78~55.12:7.11~28.42。In
进一步地,KCa2Nb3O10、ZnCl2、InCl3·4H2O、硫代乙酰胺的最优质量比例为100:12.81:27.56:14.21。Further, the optimal mass ratio of KCa 2 Nb 3 O 10 , ZnCl 2 , InCl 3 ·4H 2 O, and thioacetamide is 100:12.81:27.56:14.21.
步骤2中,油浴反应温度为60~100℃,油浴反应时间为1~3h。In
步骤2中,真空的温度为60℃,干燥时间为24h。In
将本发明制得的ZnIn2S4/KCa2Nb3O10二维异质结复合光催化材料用于还原CO2制备CO的用途。The ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional heterojunction composite photocatalytic material prepared by the present invention is used to reduce CO 2 to prepare CO.
利用X射线衍射仪(XRD)、透射电子显微镜(TEM)以及高分辨透射电子显微镜(HRTEM)对产物进行形貌结构分析,通过氙灯照射还原二氧化碳进行光催化活性实验,通过CEAULIGHT GC-7920气相色谱保留时间确定还原产物种类,用实测峰面积与标准峰面积进行对比来确定还原二氧化碳效率,以评估其光催化还原二氧化碳性能。X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) were used to analyze the morphology and structure of the product, and the photocatalytic activity experiment was carried out by reducing carbon dioxide by xenon lamp irradiation. The retention time determines the type of reduction product, and the efficiency of reducing carbon dioxide is determined by comparing the measured peak area with the standard peak area, so as to evaluate its photocatalytic carbon dioxide reduction performance.
有益效果:Beneficial effect:
(1)通过构建ZnIn2S4/KCa2Nb3O10二维异质结构光催化剂,不仅可以增加材料的光吸收能力,提高太阳能利用率,还可以增强光催化稳定性,赋予光催化材料实际应用价值。(1) By constructing ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional heterostructure photocatalyst, it can not only increase the light absorption ability of the material, improve the utilization rate of solar energy, but also enhance the photocatalytic stability, endow the photocatalytic material practical application value.
(2)所构建的二维异质结构光催化剂,具有丰富的异质界面,可有效促进光生载流子分离,提高载流子利用率,从而增强光催化CO2还原活性。(2) The constructed 2D heterostructure photocatalyst with abundant heterointerfaces can effectively promote the separation of photogenerated carriers and improve the carrier utilization, thereby enhancing the photocatalytic CO2 reduction activity.
(3)本发明合成的ZnIn2S4、KCa2Nb3O10均展现出极薄的纳米片形貌,且构建的复合材料具有紧密且丰富的异质界面。异质结构产物展现出优异的可见光光催化还原CO2活性,最佳比例产物(ZnIn2S4质量分数为20%)活性达4.69μmol·g-1·h-1,为纯相ZnIn2S4纳米片、KCa2Nb3O10纳米片的12.31倍和1.95倍。本方法简便可行,易于重复,所制备产物性能优异,在光催化还原CO2领域具有广阔的应用前景。(3) ZnIn 2 S 4 and KCa 2 Nb 3 O 10 synthesized in the present invention all exhibited extremely thin nanosheet morphology, and the constructed composites had tight and abundant heterointerfaces. The heterostructure product exhibits excellent visible-light photocatalytic CO 2 reduction activity, and the optimal ratio product (ZnIn 2 S 4 mass fraction is 20%) has an activity of 4.69 μmol·g -1 ·h -1 , which is a pure phase ZnIn 2 S 12.31 times and 1.95 times that of 4 nanosheets and KCa 2 Nb 3 O 10 nanosheets. The method is simple and feasible, easy to repeat, and the prepared product has excellent performance, and has broad application prospects in the field of photocatalytic reduction of CO 2 .
附图说明Description of drawings
图1为KCa2Nb3O10、ZnIn2S4以及20%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化剂的XRD谱图;Figure 1 is the XRD spectrum of KCa 2 Nb 3 O 10 , ZnIn 2 S 4 and 20%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalyst;
图2(a-c)分别为单纯KCa2Nb3O10、单纯ZnIn2S4、ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的透射电镜照片;(d)为ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的高分辨透射电镜照片;Figure 2(ac) shows the transmission electron micrographs of pure KCa 2 Nb 3 O 10 , pure ZnIn 2 S 4 , ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic materials; (d ) is a high-resolution transmission electron micrograph of ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic material;
图3(a)为单体KCa2Nb3O10、ZnIn2S4以及不同质量比的ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的CO产率图;(b)为单体KCa2Nb3O10、ZnIn2S4以及不同质量比的ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的CO生成速率图。Figure 3(a) shows the CO yield of monomer KCa 2 Nb 3 O 10 , ZnIn 2 S 4 and different mass ratios of ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic materials Figure; (b) is the CO generation rate of monomer KCa 2 Nb 3 O 10 , ZnIn 2 S 4 and different mass ratios of ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic materials picture.
具体实施方式Detailed ways
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but the protection scope of the present invention is not limited thereto.
实施例1:20%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化剂制备及性能分析Example 1: Preparation and performance analysis of 20%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalyst
KCa2Nb3O10纳米片的制备: Preparation of KCa2Nb3O 10 nanosheets:
KCa2Nb3O10纳米片的制备采用高温固相反应法:称取0.3406g K2CO3、0.8968gCaCO3和1.7865g Nb2O5于研钵中,经充分研磨混合后置于半封闭的坩埚中,然后将坩埚转移至自动程序控温的升温管式炉中1200℃煅烧10h。待自然冷却至室温后取出,用研钵研磨至粉末状后,取4g加入到200mL 5mol·L-1HNO3溶液中搅拌3天,进行质子化处理。将质子化得到的白色沉淀分别用去离子水和无水乙醇清洗3次除去HNO3,离心后60℃烘干12h得到白色固体HCa2Nb3O10。取0.1g HCa2Nb3O10和0.5mL质量分数10%的四丁基氢氧化铵溶液分散于100mL去离子水搅拌7天,离心得上层胶质物体。最后将胶质物体逐滴加入到100mL 2mol·L-1KCl溶液中得到白色沉淀,将上述沉淀分别用去离子水和无水乙醇清洗3次,离心后置于60℃真空干燥箱中干燥24h。The preparation of KCa 2 Nb 3 O 10 nanosheets adopts high-temperature solid-state reaction method: Weigh 0.3406g K 2 CO 3 , 0.8968g CaCO 3 and 1.7865g Nb 2 O 5 in a mortar, grind and mix thoroughly, then place in a semi-closed The crucible was then transferred to an automatically programmed temperature-controlled tube furnace for calcination at 1200 °C for 10 h. After naturally cooling to room temperature, take it out, grind it into powder with a mortar, add 4 g into 200mL 5mol·L -1 HNO 3 solution and stir for 3 days to carry out protonation treatment. The white precipitate obtained by protonation was washed three times with deionized water and absolute ethanol to remove HNO 3 , and dried at 60°C for 12 hours after centrifugation to obtain white solid HCa 2 Nb 3 O 10 . Disperse 0.1 g of HCa 2 Nb 3 O 10 and 0.5 mL of 10% tetrabutylammonium hydroxide solution in 100 mL of deionized water, stir for 7 days, and centrifuge to obtain a colloidal object in the upper layer. Finally, the colloidal substance was added dropwise to 100mL 2mol L -1 KCl solution to obtain a white precipitate, which was washed with deionized water and absolute ethanol three times, centrifuged and dried in a vacuum oven at 60°C for 24 hours .
20%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的制备:Preparation of 20%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic material:
ZnIn2S4/KCa2Nb3O10的制备采用低温水热法:将100mg KCa2Nb3O10纳米片、16mL去离子水和4mL丙三醇加入到容量为20mL的圆底烧瓶中超声搅拌30min,之后依次加入12.81mg的ZnCl2,27.56mg的InCl3·4H2O和14.21mg的硫代乙酰胺,将上述混合物搅拌5min后,置于80℃的油浴中并保持2h,待自然冷却,将产物离心,并用无水乙醇洗涤三次,最后置于60℃真空干燥箱中进行样品烘干,得到20%-ZnIn2S4/KCa2Nb3O10。ZnIn 2 S 4 /KCa 2 Nb 3 O 10 was prepared by a low-temperature hydrothermal method: 100 mg of KCa 2 Nb 3 O 10 nanosheets, 16 mL of deionized water, and 4 mL of glycerol were added to a 20-mL round-bottomed flask and sonicated Stir for 30 min, then add 12.81 mg of ZnCl 2 , 27.56 mg of InCl 3 ·4H 2 O and 14.21 mg of thioacetamide in sequence, stir the above mixture for 5 min, put it in an oil bath at 80°C and keep it for 2 h, wait After natural cooling, the product was centrifuged, washed three times with absolute ethanol, and finally placed in a vacuum oven at 60°C to dry the sample to obtain 20%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 .
由图1可见,复合结构中典型的层状KCa2Nb3O10衍射峰明显,新增的20.96°、27.48°、30.73°、47.30°、52.33°、55.85°衍射峰对应六方晶相ZnIn2S4的(006)、(102)、(104)、(110)、(112)、(202)晶面,无其他杂质峰出现,证明所合成材料为复合结构且无其他异质相出现。It can be seen from Figure 1 that the typical layered KCa 2 Nb 3 O 10 diffraction peaks in the composite structure are obvious, and the newly added diffraction peaks at 20.96°, 27.48°, 30.73°, 47.30°, 52.33°, and 55.85° correspond to the hexagonal crystal phase ZnIn 2 The (006), (102), (104), (110), (112), and (202) crystal planes of S 4 have no other impurity peaks, which proves that the synthesized material has a composite structure and no other heterogeneous phases appear.
由图2可见,所合成KCa2Nb3O10为刚性超薄纳米片结构,而ZnIn2S4纳米片边缘卷曲,证明材料具有良好的柔性。复合产物明显由两种结构纳米片构建而成,且形成均匀致密的异质结构。高分辨透射电镜中0.324nm、0.411nm分别对应ZnIn2S4的(102)、(006)晶面,0.280nm对应KCa2Nb3O10的(110)晶面。进一步证明了复合产物中两种材料形成异质结构且具有紧密而明显的异质界面。It can be seen from Figure 2 that the synthesized KCa 2 Nb 3 O 10 has a rigid ultrathin nanosheet structure, while the edge of ZnIn 2 S 4 nanosheets is curled, which proves that the material has good flexibility. The composite product is obviously constructed from two structural nanosheets, and forms a uniform and dense heterostructure. In the high-resolution transmission electron microscope, 0.324nm and 0.411nm correspond to the (102) and (006) crystal planes of ZnIn 2 S 4 respectively, and 0.280nm corresponds to the (110) crystal plane of KCa 2 Nb 3 O 10 . It is further proved that the two materials in the composite product form a heterostructure with a tight and obvious heterogeneous interface.
20%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合材料光催化活性实验:20%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite material photocatalytic activity experiment:
(1)在280mL自制石英反应器中进行光催化CO2还原实验。将50mg试样加入适量无水乙醇中分散均匀,60℃烘干。(1) The photocatalytic CO2 reduction experiment was carried out in a 280 mL self-made quartz reactor. Add 50mg of the sample to an appropriate amount of absolute ethanol to disperse evenly, and dry at 60°C.
(2)在反应器槽中加入0.084g NaHCO3。氮气氛围下鼓泡15min后,注入0.9mL H2SO4(2mol L-1)与NaHCO3反应,释放CO2和H2O。光源为300W氙灯。(2) Add 0.084g NaHCO 3 into the reactor tank. After bubbling under nitrogen atmosphere for 15 min, inject 0.9mL H 2 SO 4 (2mol L -1 ) to react with NaHCO 3 to release CO 2 and H 2 O. The light source is a 300W xenon lamp.
(3)用气相色谱仪(CEAULIGHT GC-7920)对产物进行检测,每隔一小时抽样注入气相色谱中进行检测,并用标准气体混合物进行标定。用保留时间测定各组分,用峰面积外标法计算各组分浓度。由图3可见该ZnIn2S4/KCa2Nb3O10异质结复合材料具有优异的光催化活性,20%-ZnIn2S4/KCa2Nb3O10在反应五小时后CO生成率高达23.43μmol·g-1,单位时间内产生CO的速率为4.69μmol·g-1·h-1,活性为单体ZnIn2S4和KCa2Nb3O10催化剂的12.31倍和1.95倍。(3) Detect the product with a gas chromatograph (CEAULIGHT GC-7920), inject samples into the gas chromatograph every hour for detection, and calibrate with a standard gas mixture. Each component was determined by retention time, and the concentration of each component was calculated by the external standard method of peak area. It can be seen from Figure 3 that the ZnIn 2 S 4 /KCa 2 Nb 3 O 10 heterojunction composite material has excellent photocatalytic activity, and the CO generation rate of 20%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 after five hours of reaction As high as 23.43μmol·g -1 , the rate of CO production per unit time is 4.69μmol·g -1 ·h -1 , and the activity is 12.31 times and 1.95 times that of monomer ZnIn 2 S 4 and KCa 2 Nb 3 O 10 catalysts.
实施例2:10%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化剂制备及性能分析Example 2: Preparation and performance analysis of 10%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalyst
KCa2Nb3O10纳米片的制备:与实施例1中方法相同。Preparation of KCa 2 Nb 3 O 10 nanosheets: the same method as in Example 1.
10%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的制备:将100mgKCa2Nb3O10纳米片、16mL去离子水和4mL丙三醇加入到容量为20mL的圆底烧瓶中超声搅拌30min,之后依次加入6.41mg的ZnCl2,13.78mg的InCl3·4H2O和7.11mg的硫代乙酰胺,将上述混合物搅拌5min后,置于80℃的油浴中并保持2h,待自然冷却,将产物离心,并用无水乙醇洗涤三次,最后置于60℃真空干燥箱中进行样品烘干,得到10%-ZnIn2S4/KCa2Nb3O10。Preparation of 10%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic material: 100 mg of KCa 2 Nb 3 O 10 nanosheets, 16 mL of deionized water and 4 mL of glycerol were added to a capacity Into a 20mL round-bottomed flask, ultrasonically stirred for 30min, then added 6.41mg of ZnCl 2 , 13.78mg of InCl 3 4H 2 O and 7.11mg of thioacetamide, and stirred the above mixture for 5min, then placed in a 80°C Keep it in an oil bath for 2 hours, wait for natural cooling, centrifuge the product, wash with absolute ethanol three times, and finally place the sample in a vacuum oven at 60°C to dry the sample to obtain 10%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 .
10%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合材料光催化活性实验:10%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite material photocatalytic activity experiment:
(1)光催化实施方法、产物检测方法实施例1中相同。(1) The photocatalytic implementation method and the product detection method are the same as in Example 1.
(2)由图3可知,10%-ZnIn2S4/KCa2Nb3O10在反应五小时后CO生成率为18.74μmol·g-1,单位时间内产生CO的速率为3.75μmol·g-1·h-1。(2) It can be seen from Figure 3 that the CO production rate of 10%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 after five hours of reaction is 18.74 μmol·g -1 , and the rate of CO generation per unit time is 3.75 μmol·g -1 h -1 .
实施例3:Example 3:
30%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化剂制备及性能分析Preparation and performance analysis of 30%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalyst
KCa2Nb3O10纳米片的制备:与实施例1中方法相同。Preparation of KCa 2 Nb 3 O 10 nanosheets: the same method as in Example 1.
30%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合光催化材料的制备:将100mgKCa2Nb3O10纳米片、16mL去离子水和4mL丙三醇加入到容量为20mL的圆底烧瓶中超声搅拌30min,之后依次加入19.23mg的ZnCl2,41.34mg的InCl3·4H2O和21.33mg的硫代乙酰胺,将上述混合物搅拌5min后,置于80℃的油浴中并保持2h,待自然冷却,将产物离心,并用无水乙醇洗涤三次,最后置于60℃真空干燥箱中进行样品烘干,得到30%-ZnIn2S4/KCa2Nb3O10。Preparation of 30%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite photocatalytic material: 100 mg of KCa 2 Nb 3 O 10 nanosheets, 16 mL of deionized water and 4 mL of glycerol were added to a capacity Into a 20mL round-bottomed flask, ultrasonically stirred for 30min, then added 19.23mg of ZnCl 2 , 41.34mg of InCl 3 ·4H 2 O and 21.33mg of thioacetamide, and stirred the above mixture for 5min, then placed in a 80°C Keep it in an oil bath for 2 hours, wait for natural cooling, centrifuge the product, wash with absolute ethanol three times, and finally place the sample in a vacuum oven at 60°C to dry the sample to obtain 30%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 .
30%-ZnIn2S4/KCa2Nb3O10二维纳米片异质结复合材料光催化活性实验:30%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 two-dimensional nanosheet heterojunction composite material photocatalytic activity experiment:
(1)光催化实施方法、产物检测方法实施例1中相同。(1) The photocatalytic implementation method and the product detection method are the same as in Example 1.
(2)由图3可知,30%-ZnIn2S4/KCa2Nb3O10在反应五小时后CO生成率为15.85μmol·g-1,单位时间内产生CO的速率为3.17μmol·g-1·h-1。(2) It can be seen from Figure 3 that the CO production rate of 30%-ZnIn 2 S 4 /KCa 2 Nb 3 O 10 after five hours of reaction is 15.85 μmol·g -1 , and the rate of CO generation per unit time is 3.17 μmol·g -1 h -1 .
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010646999.2A CN111871430B (en) | 2020-07-07 | 2020-07-07 | Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010646999.2A CN111871430B (en) | 2020-07-07 | 2020-07-07 | Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111871430A CN111871430A (en) | 2020-11-03 |
CN111871430B true CN111871430B (en) | 2023-03-21 |
Family
ID=73150479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010646999.2A Active CN111871430B (en) | 2020-07-07 | 2020-07-07 | Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111871430B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113083326B (en) * | 2021-03-30 | 2022-06-10 | 宁德师范学院 | A novel bonded sulfur indium zinc/niobate heterojunction photocatalyst and its preparation method and application |
CN113751026A (en) * | 2021-09-29 | 2021-12-07 | 上海市普陀区人民医院(上海纺织第一医院) | Ultra-thin CaIn2S4Nano-sheet photocatalytic material and preparation method thereof |
CN118179608A (en) * | 2024-03-27 | 2024-06-14 | 内蒙古师范大学 | Flower-shaped composite photocatalyst, preparation method and application thereof in carbon dioxide reduction |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106563485A (en) * | 2016-11-08 | 2017-04-19 | 江苏大学 | Carbon nitride/potassium calcium niobate composite material and preparing method and application thereof |
CN107262085A (en) * | 2017-07-21 | 2017-10-20 | 江苏大学 | A kind of preparation method of bismuth/calcium niobate potassium plasma nano composite |
CN107376943A (en) * | 2017-07-20 | 2017-11-24 | 江苏大学 | A kind of preparation method and purposes of calcium niobate potassium/cadmium sulfide composite material |
-
2020
- 2020-07-07 CN CN202010646999.2A patent/CN111871430B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106563485A (en) * | 2016-11-08 | 2017-04-19 | 江苏大学 | Carbon nitride/potassium calcium niobate composite material and preparing method and application thereof |
CN107376943A (en) * | 2017-07-20 | 2017-11-24 | 江苏大学 | A kind of preparation method and purposes of calcium niobate potassium/cadmium sulfide composite material |
CN107262085A (en) * | 2017-07-21 | 2017-10-20 | 江苏大学 | A kind of preparation method of bismuth/calcium niobate potassium plasma nano composite |
Non-Patent Citations (1)
Title |
---|
"All solid-state Z-scheme CeO2/ZnIn2S4 hybrid for the photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution";Chunli Jiang et al.;《Applied Catalysis B: Environmental》;20200612;第277卷;摘要和实验部分 * |
Also Published As
Publication number | Publication date |
---|---|
CN111871430A (en) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111871430B (en) | Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material | |
CN109248694B (en) | Preparation method and application of non-noble metal copper indium sulfide/zinc indium sulfide composite photocatalyst | |
CN107983387B (en) | Preparation method and application of carbon nitride/bismuth selenate composite material | |
CN110252346B (en) | MoS2/SnS2Preparation method and application of/r-GO composite photocatalyst | |
CN107376943B (en) | Preparation method and application of calcium potassium niobate/cadmium sulfide composite material | |
CN106076365B (en) | A kind of composite photo-catalyst promoting photodissociation aquatic products hydrogen | |
CN110280280B (en) | Black phosphorus nanosheet, and preparation method and application of zinc sulfide/black phosphorus nanosheet | |
CN103736501B (en) | A kind of sulphur indium zinc composite and Synthesis and applications thereof with isomerism knot | |
CN110961133B (en) | Non-metallic BCN/g-C3N4 van der Waals heterojunction photocatalyst and preparation method and application thereof | |
CN114849738A (en) | A kind of preparation method and application of manganese cadmium sulfide@nickel oxide composite photocatalyst | |
CN116713009A (en) | Preparation method and application of ZnCdS/NiO composite photocatalyst | |
CN116639729A (en) | Symbiotic bismuth layered ferroelectric Bi 7 Ti 4 NbO 21 Preparation method and application of semiconductor material | |
CN110026207B (en) | CaTiO3@ZnIn2S4 nanocomposite and its preparation method and application | |
CN107308973A (en) | A kind of alkali formula cobalt phosphate nanoneedle is combined LTON photochemical catalysts and its preparation method and application | |
CN110064426A (en) | A kind of LixMoS2/CdS/g-C3N4The preparation and its decomposition aquatic products hydrogen application of composite photo-catalyst | |
CN112717958B (en) | A kind of preparation method and application of oxygen vacancy-rich BiOBr/HNb3O8 nanosheet photocatalyst | |
CN108579773A (en) | A kind of perovskite-based composite nano materials and preparation method and purposes | |
CN106915769A (en) | A kind of ultra-thin mixed crystal titanium dioxide nanoplate and its preparation method and application | |
CN113697783B (en) | Porous g-C 3 N 4 Preparation method and application of nano-sheet | |
CN115212900A (en) | A kind of bismuth iodide and bismuth iodide heterojunction photocatalytic material and preparation method and application thereof | |
CN107159269A (en) | A kind of preparation method of CdS quantum dot/Bi2MoO6 composite photocatalysts | |
CN111468133A (en) | A kind of preparation method of potassium niobate/α-iron oxide heterogeneous photocatalyst | |
CN114762829A (en) | Simple preparation method of Z-type heterojunction photocatalytic material | |
CN110813283A (en) | Titanium dioxide/gold/titanium dioxide photocatalyst and preparation method thereof | |
CN115007127B (en) | Preparation method of ternary composite photocatalytic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Di Inventor after: Zhang Qianxiao Inventor after: Jiang Deli Inventor before: Jiang Deli Inventor before: Zhang Qianxiao Inventor before: Li Di |
|
GR01 | Patent grant | ||
GR01 | Patent grant |