Nothing Special   »   [go: up one dir, main page]

CN111825070B - 一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法 - Google Patents

一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法 Download PDF

Info

Publication number
CN111825070B
CN111825070B CN202010579735.XA CN202010579735A CN111825070B CN 111825070 B CN111825070 B CN 111825070B CN 202010579735 A CN202010579735 A CN 202010579735A CN 111825070 B CN111825070 B CN 111825070B
Authority
CN
China
Prior art keywords
coordination polymer
temperature
composite material
flower
phpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010579735.XA
Other languages
English (en)
Other versions
CN111825070A (zh
Inventor
肖振宇
张家鑫
邓英
王福鹏
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202010579735.XA priority Critical patent/CN111825070B/zh
Publication of CN111825070A publication Critical patent/CN111825070A/zh
Application granted granted Critical
Publication of CN111825070B publication Critical patent/CN111825070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,首先将质量比为1:1.3的苯膦酸和六水合硝酸钴分别溶入无水乙醇和乙二醇体积比为2:3的混合溶剂中,然后,在150℃的条件下反应12‑48小时,制备了花状的苯基膦酸钴配位聚合物[Co(PhPO3)]前驱体;称取200mg Co(PhPO3),在氮气氛围中,以2℃min‑1的升温速度从常温升至煅烧所需的温度(600‑1000℃),并保持两小时,制备目标产物原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料(Co2P2O7/C‑X;其中X为煅烧的温度)。本发明提供的原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备策略,实现了纳米Co2P2O7颗粒与纳米石墨化碳的原位杂化,有效的增强了材料的导电性和循环稳定性,具有良好的超级电容器应用潜能。

Description

一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料 的制备方法
技术领域
本发明属于功能性新材料技术领域,具体涉及一种原位杂化的,基于苯基膦酸钴配位聚合物的多孔花状Co2P2O7/C复合材料的可控制备方法及其电化学储能应用。
背景技术
随着电动汽车和移动电子设备的飞速发展,传统的储能装置已不能满足人们日益增长的生产需求,因此,开发安全、高效、便捷的储能装置,就显得尤为重要。超级电容器,作为一种新兴的电能存储器件,由于其具有循环寿命长、充放电速率快、安全系数高、功率密度大等优势,引起科学界的广泛关注。众所周知,根据电荷存储机制不同,超级电容器主要分为双电层超级电容器和赝电容超级电容器。其中,赝电容超级电容器是依靠电极材料与电解质溶液之间发生的氧化还原反应实现电荷存储,因此,通过设计和调整一些合适的电极材料,提高与电解质溶液之间的氧化还原反应活性,是提高赝电容超级电容器储能性能的策略之一。
过渡金属磷酸盐(TMPs,MxPyOz M=Co2+,Ni2+,Mn2+,et al.),是一种由磷酸盐/焦磷酸盐/磷阴离子和金属离子构建的结构稳定的具有开放骨架的一类材料。以Co2P2O7为例,该材料具有优越的氧化还原活性、丰富的自然储量和环境友好等优点,是一种十分有潜力的候选电极材料之一。然而,该材料本身的电子电导率较低,限制其储能性能。因此设计与构筑TMPs与高导电材料的复合材料,尤其是纳米级的复合与原位的掺杂,是解决材料本征电导性缺陷和提升电容器性能的有效途径。
配位聚合物,是一类由金属离子和有机配体通过自组装的方式,以配位键相互连接而成的聚合物网络结构。其具有结构和组成多样、超高的比表面积、丰富的孔结构以及孔径可调等优点,是一种制备超级电容器电极材料的理想前驱体。此外,配位聚合物独特的金属-有机杂化结构,可实现无机纳米粒子和纳米碳的原位杂化,增强复合材料电子电导率,促进电化学反应的动力学过程。因此,设计与制备具有特定形貌的配位聚合物前驱体,并通过可控的处理工艺,构筑原位碳掺杂的纳米过渡金属磷酸盐,可以显著改良过渡金属磷酸盐的本征缺陷,实现超级电容器性能的提高。
发明内容
本发明提供了一种原位杂化的策略,通过精准的制备工艺调控,基于花状的苯基膦酸钴配位聚合物[Co(PhPO3)]前驱体独特的配位骨架结构,通过高温热转化过程,保持了Co(PhPO3)前驱体的框架,防止了Co2P2O7纳米颗粒的过度团聚,实现了纳米Co2P2O7颗粒与纳米石墨化碳的原位杂化,有效的增强了焦磷酸钴的比容量和循环稳定性。
本发明提出的一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,可以通过如下技术路线予以实现:
(1)Co(PhPO3)前驱体的制备:将质量比为1:1.3的苯膦酸和六水合硝酸钴分别溶入无水乙醇和乙二醇体积比为2:3的混合溶剂中,超声分散30分钟使其混合均匀并形成均一溶液。之后将其转移到高压反应釜中,在150℃的条件下反应12-48小时;这里反应12~48小时是为了使Co(PhPO3)材料可以充分结晶并矿化,反应时间过短材料的结晶度和尺寸较小,反应时间增长材料结晶度和尺寸会逐渐增加。
(2)Co2P2O7/C杂化材料的制备:称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃min-1的升温速度从常温升至煅烧所需的温度(600-1000℃),并在该温度下保持两个小时,制备目标产物原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料(Co2P2O7/C-X;其中X为煅烧的温度);这里不同的煅烧温度会影响材料的形貌,结晶度,相转变程度等,温度过低时,材料无法完全转变为焦磷酸钴和石墨化的碳,温度过高时,前驱体的花状形貌难以维持,会破坏材料的纳米花状结构。
作为本发明的进一步特征:所述步骤(1)溶剂热反应时间为24小时,得到的Co(PhPO3)材料呈现由层状结构堆积出的花状形貌;虽然溶剂热反应不同时间得到的Co(PhPO3)的结晶性与纳米尺寸会有区别,对本发明的后续热转化过程也同样适用,只是性能会有所区别。
作为本发明的进一步特征:所述步骤(2)的煅烧温度为900℃,并命名为Co2P2O7/C-900。
作为本发明的进一步的特征:经过步骤(2)得到的原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料具有良好的超级电容器性能,在三电极体系条件下,其在1Ag-1的电流密度下的比容量达到248.2~349.6F g-1,其中最优样品Co2P2O7/C-900在2Ag-1的电流密度下,经过3000个循环后其容量保持率高达97.33%,表现出优异的循环稳定性。
作为本发明的进一步特征:经过步骤(2)原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料还可以与石墨烯基超级电容器负极材料组装构筑两电极超级电容器,其在0.375kW·kg-1功率密度下,能量密度高达21.9Wh·kg-1
由于采用以上技术方案,本发明具有以下有益效果:
通过本发明制备的原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料,基于一种由有机苯环包覆无机2D[Co(-PO3)(H2O)2]n层组成的花状结构的苯基膦酸钴配位聚合物[Co(PhPO3)]前驱体。在氮气氛围中,通过高温煅烧过程,使前驱体的中的2D无机层转变为Co2P2O7纳米颗粒,同时2D无机层表面的有机苯环原位转变为石墨化的碳,覆盖在无机层表面,形成多孔花状Co2P2O7/C复合材料。其中,在氮气氛围下进行煅烧,隔绝氧气,可以保护材料中的有机苯环不被氧化。原位纳米级石墨化碳的形成,可以提高材料的电子电导率和循环稳定性,同时防止Co2P2O7纳米颗粒的过度团聚,提供更多的电化学活性位点,提高材料的比容量。所以,通过本发明方法制备的原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料具有更优良的超级电容器性能,具体的说,在1A g-1的电流密度下,它的比容量达到248.2~349.6F g-1,其中最优样品Co2P2O7/C-900在2Ag-1的电流密度下,3000个循环后其容量保持率高达97.33%,表现出优异的循环稳定性。
附图说明:
图1:实施例1中Co(PhPO3)前驱体的扫描电镜图;
图2:实施例1中Co(PhPO3)前驱体的粉末X-射线衍射图;
图3:实施例1中Co2P2O7/C-900的粉末X-射线衍射图;
图4:实施例1中Co2P2O7/C-900的扫描电镜图;
图5:实施例1中Co2P2O7/C-900的投射电镜图;
图6:实施例1中Co2P2O7/C-900的X-射线光电子能谱图;
图7:实施例1中Co2P2O7/C-900在不同扫速下的恒流充放电曲线图;
图8:实施例1中Co2P2O7/C-900在三电极体系中的循环稳定性测试曲线;
图9:实施例2中Co2P2O7-900在不同扫速下的恒流充放电曲线图;
图10:实施例3中Co2P2O7/C-600在不同扫速下的恒流充放电曲线图;
图11:实施例4中Co2P2O7/C-700在不同扫速下的恒流充放电曲线图;
图12:实施例5中Co2P2O7/C-800在不同扫速下的恒流充放电曲线图;
图13:实施例6中Co2P2O7/C-1000在不同扫速下的恒流充放电曲线图。
具体实施方式
下面结合具体实验方案和附图阐述本发明的技术特点,但本发明并不局限于此。下面实施例所述试验方法,如无特殊说明,均为常规方法;所述仪器及材料,如无特殊说明,均可从商业途径获得。
实施例1
一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,包括以下步骤:
(1)将质量比为1:1.3的苯膦酸和六水合硝酸钴分别溶入无水乙醇和乙二醇体积比为2:3的混合溶剂中,超声分散30分钟使其混合均匀并形成均一溶液。之后将其转移到高压反应釜中,在150℃的条件下反应24小时。待高压反应釜自然冷却至室温,收集得到的沉淀,用无水乙醇离心洗涤2~3次,然后在70℃的烘箱中干燥12小时,得到花状Co(PhPO3)前驱体。Co(PhPO3)前驱体的形貌如其扫描电镜图所示(图1);Co(PhPO3)前驱体的结晶性如其粉末X-射线衍射图所示(图2)。
(2)称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃min-1的升温速度从常温升至900℃,并在900℃的温度下保持两个小时,制备Co2P2O7/C-900。Co2P2O7/C-900的结晶性如其粉末X-射线衍射图所示(图3);Co2P2O7/C-900的形貌如其扫描电镜图所示(图4),材料维持了前驱体的花状形貌,并且形成了一个多孔骨架;Co2P2O7/C-900的微观形貌如其投射电镜图所示(图5),材料的多孔花状骨架由一些纳米粒子构建的纳米分支交错支撑而成;Co2P2O7/C-900的电子能谱如其XPS图所示(图6),材料内部含有Co、P、C、O等元素,表明高温煅烧之后,碳元素得以成功保留。Co2P2O7/C-900在不同扫速下的恒流充放电如图7所示,通过计算得Co2P2O7/C-900在1Ag-1的电流密度下的比容量达到349.6F g-1,在2Ag-1的电流密度下,经过3000个循环后其容量保持率高达97.33%(图8)。
实施例2
一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,包括以下步骤:
(1)Co(PhPO3)前驱体的制备同实施例1。
(2)称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入马弗炉中,在空气中,以2℃min-1的升温速度从常温升至900℃,并在900℃的温度下保持两个小时,制备Co2P2O7-900。Co2P2O7-900在不同扫速下的恒流充放电如图9所示,通过图中计算得Co2P2O7-900在1Ag-1的电流密度下的比容量达到234F g-1
实施例3
一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,包括以下步骤:
(1)Co(PhPO3)前驱体的制备同实施例1。
(2)称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃min-1的升温速度从常温升至600℃,并在600℃的温度下保持两个小时,制备Co2P2O7/C-600。Co2P2O7/C-600在不同扫速下的恒流充放电如图10所示,通过图中计算得Co2P2O7/C-600在1A g-1的电流密度下的比容量达到248.2F g-1
实施例4
一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,包括以下步骤:
(1)Co(PhPO3)前驱体的制备同实施例1。
(2)称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃min-1的升温速度从常温升至700℃,并在700℃的温度下保持两个小时,制备Co2P2O7/C-700。Co2P2O7/C-700在不同扫速下的恒流充放电如图11所示,通过图中计算得Co2P2O7/C-700在1Ag-1的电流密度下的比容量达到313.8F g-1
实施例5
一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,包括以下步骤:
(1)Co(PhPO3)前驱体的制备同实施例1。
(2)称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃min-1的升温速度从常温升至800℃,并在800℃的温度下保持两个小时,制备Co2P2O7/C-800。Co2P2O7/C-800在不同扫速下的恒流充放电如图12所示,通过图中计算得Co2P2O7/C-800在1A g-1的电流密度下的比容量达到334.6F g-1
实施例6
一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,包括以下步骤:
(1)Co(PhPO3)前驱体的制备同实施例1。
(2)称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃min-1的升温速度从常温升至1000℃,并在1000℃的温度下保持两个小时,制备Co2P2O7/C-1000。Co2P2O7/C-1000在不同扫速下的恒流充放电如图13所示,通过图中计算得Co2P2O7/C-1000在1A g-1的电流密度下的比容量达到281F g-1
对本发明中所公开的实施方式的描述并非为了限制本发明的范围,而是用于描述本发明。相应地,本发明的范围不受以上实施方式的限制,而是由权利要求或其等同物进行限定。

Claims (5)

1.一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法,其特征在于,包括以下步骤:
(1)Co(PhPO3)前驱体的制备:将质量比为1:1.3的苯膦酸和六水合硝酸钴分别溶入无水乙醇和乙二醇体积比为2:3的混合溶剂中,超声分散30分钟使其混合均匀并形成均一溶液。之后将其转移到高压反应釜中,在150℃的条件下反应12-48小时。
(2)Co2P2O7/C杂化材料的制备:称取200mg Co(PhPO3)前驱体置于瓷舟,将瓷舟放入管式炉中,在氮气氛围中,以2℃ min-1的升温速度从常温升至煅烧所需的温度(600-1000℃),并在该温度下保持两个小时,制备目标产物原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料,所获得的多孔材料在1Ag-1的电流密度下的比容量达到248.2~349.6F g-1
2.根据权利要求书1所述的制备方法,其特征在于:所述步骤(1)溶剂热反应时间为24小时
3.根据权利要求书1所述的制备方法,其特征在于:所述步骤(2)的煅烧温度为900℃。
4.根据权利要求书1所述的制备方法,其特征在于:所述步骤(2)当煅烧温度为900℃时,得到的Co2P2O7/C复合材料在2A g-1的电流密度下,经过3000个循环后其容量保持率高达97.33%。
5.根据权利要求书1所述的制备方法,其特征在于:经过步骤(2)得到的原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料还可以与石墨烯基超级电容器负极材料组装构筑两电极超级电容器,其在0.375kW·kg-1功率密度下,能量密度高达21.9Wh·kg-1
CN202010579735.XA 2020-06-23 2020-06-23 一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法 Active CN111825070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010579735.XA CN111825070B (zh) 2020-06-23 2020-06-23 一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010579735.XA CN111825070B (zh) 2020-06-23 2020-06-23 一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111825070A CN111825070A (zh) 2020-10-27
CN111825070B true CN111825070B (zh) 2023-08-11

Family

ID=73629556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010579735.XA Active CN111825070B (zh) 2020-06-23 2020-06-23 一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111825070B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931265B (zh) * 2019-11-11 2021-08-03 江苏大学 一种(Co0.55Mn0.45)2P2O7/氮掺杂石墨烯复合电极材料的合成方法及其应用
CN113772648B (zh) * 2021-09-24 2023-07-21 江南大学 一种均质c,n共掺杂磷酸盐材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018744A (ja) * 2005-07-05 2007-01-25 Sony Corp 正極活物質の製造方法および電池
UA23974U (en) * 2007-02-22 2007-06-11 Univ Nat Agrarian Amorphous triple aquaaminopyrophosphate of nickel (ii)-cobalt (ii)-copper (ii)
CN108328593A (zh) * 2018-02-11 2018-07-27 济南大学 一种棉花团状磷酸钴球及其制备方法
CN110707336A (zh) * 2019-08-30 2020-01-17 南京理工大学 偏磷酸钴/氮碳氧还原催化剂及其制备方法和应用
CN113036101A (zh) * 2021-02-26 2021-06-25 中国科学院宁波材料技术与工程研究所 一种碳包覆的焦磷酸盐及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011056812A1 (de) * 2011-12-21 2013-06-27 Chemische Fabrik Budenheim Kg Metallphosphate und Verfahren zu deren Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018744A (ja) * 2005-07-05 2007-01-25 Sony Corp 正極活物質の製造方法および電池
UA23974U (en) * 2007-02-22 2007-06-11 Univ Nat Agrarian Amorphous triple aquaaminopyrophosphate of nickel (ii)-cobalt (ii)-copper (ii)
CN108328593A (zh) * 2018-02-11 2018-07-27 济南大学 一种棉花团状磷酸钴球及其制备方法
CN110707336A (zh) * 2019-08-30 2020-01-17 南京理工大学 偏磷酸钴/氮碳氧还原催化剂及其制备方法和应用
CN113036101A (zh) * 2021-02-26 2021-06-25 中国科学院宁波材料技术与工程研究所 一种碳包覆的焦磷酸盐及其制备方法和应用

Also Published As

Publication number Publication date
CN111825070A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
Su et al. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage
He et al. MXene derivatives for energy storage applications
Lei et al. Formation of CoS2/N, S-codoped porous carbon nanotube composites based on bimetallic zeolitic imidazolate organic frameworks for supercapacitors
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
Zhang et al. Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials
Yang et al. Synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor
Yan et al. Li3VO4/carbon sheets composites from cellulose as an anode material for high performance lithium-ion batteries
Jiang et al. Non-sacrificial template synthesis of Cr 2 O 3–C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries
Shi et al. Rapid microwave synthesis of self-assembled hierarchical Mn2O3 microspheres as advanced anode material for lithium ion batteries
Tang et al. Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries
Tian et al. Highly porous MnO/C@ rGO nanocomposite derived from Mn-BDC@ rGO as high-performance anode material for lithium ion batteries
Xin et al. Coupling Mo2C@ C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery
CN108987729B (zh) 一种锂硫电池正极材料及其制备方法与锂硫电池
Liu et al. Controlled synthesis of porous 3D interconnected MnO/C composite aerogel and their excellent lithium-storage properties
Xia et al. Microwave-assisted facile and rapid synthesis of layered metal hydroxide nanosheet arrays towards high-performance aqueous hybrid supercapacitors
CN111825070B (zh) 一种原位杂化的配位聚合物衍生多孔花状Co2P2O7/C复合材料的制备方法
Yao et al. Synthesis and electrochemical properties of α-Fe2O3 porous microrods as anode for lithium-ion batteries
CN110197769B (zh) 一种复合碳纳米管材料及其制备方法和应用
Jin et al. Tailoring the structure of clew-like carbon skeleton with 2D Co-MOF for advanced Li-S cells
Luo et al. Triethanolamine assisted synthesis of bimetallic nickel cobalt nitride/nitrogen-doped carbon hollow nanoflowers for supercapacitor
Chen et al. Self-templating synthesis of carbon-encapsulated SnO2 hollow spheres: a promising anode material for lithium-ion batteries
CN114551828A (zh) 一种Bi-MOF衍生的氧化铋基负极材料及其制备与应用
CN108461725B (zh) 碳限域的三氧化二钒中空微球及其制备方法和应用
Xing et al. A facile ice‐templating‐induced puzzle coupled with carbonization strategy for kilogram‐level production of porous carbon nanosheets as high‐capacity anode for lithium‐ion batteries
Garakani et al. Template-synthesis of a poly (ionic liquid)-derived Fe 1− x S/nitrogen-doped porous carbon membrane and its electrode application in lithium–sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant